Электродвижущая сила самоиндукции: ЭДС самоиндукции: основные послулаты — Основы электроники

Содержание

определение, формула, применение на практике

«Самоиндукция останавливает рост напряжения в индуктивных цепях». Если ваша работа или увлечение связаны с электричеством вы наверняка слышали подобные высказывания. На самом деле это явление присуще индуктивным цепям, как в явном виде, например, катушек, так и в неявном, такие как паразитные параметры кабеля. В этой статье мы простыми словами расскажем о том, что такое самоиндукция и где она применяется.

Определение

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС.

Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

То есть:

E=dФ/dt,

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Индуктивность

Мы уже сказали о том, что самоиндукция присуща индуктивным цепям, поэтому рассмотрим явление самоиндукции на примере катушки индуктивности.

Катушка индуктивности – это элемент, который представляет собой катушку из изолированного проводника. Для увеличения индуктивности увеличивают число витков или внутрь катушки помещают сердечник из магнитомягкого или другого материала.

Единица измерения индуктивности – Генри (Гн). Индуктивность характеризует то, насколько сильно проводник противодействует электрическому току. Так как вокруг каждого проводника, по которому протекает ток, образуется магнитное поле, и, если поместить проводник в переменное поле – в нем возникнет ток. В свою очередь магнитные поля каждого витка катушки складываются.

Тогда вокруг катушки, по которой протекает ток, возникнет сильное магнитное поле. При изменении его силы в катушке будет изменяться и магнитный поток вокруг неё.

Согласно закону электромагнитной индукции Фарадея, если катушку будет пронизывать переменный магнитный поток, то в ней возникнет ток и ЭДС самоиндукции. Они будут препятствовать току, который протекал в индуктивности от источника питания к нагрузке. Их еще называют экстратоки ЭДС самоиндукции.

Формула ЭДС самоиндукции на индуктивности имеет вид:

То есть чем больше индуктивность, и чем больше и быстрее изменился ток – тем сильнее будет всплеск ЭДС.

При возрастании тока в катушке возникает ЭДС самоиндукции, которая направлена против напряжения источника питания, соответственно возрастание тока замедлится. То же самое происходит при убывании – самоиндукция приведет к появлению ЭДС, которое будет поддерживать ток в катушке в том же направлении, что и до этого. Отсюда следует, что напряжение на выводах катушки будет противоположным полярности источника питания.

На рисунке ниже вы видите, что при включении/отключении индуктивной цепи ток не резко возникает, а изменяется постепенно. Об этом говорят и законы коммутации.

Другое определение индуктивности звучит так: магнитный поток пропорционален току, но в его формуле индуктивность выступает в качестве коэффициента пропорциональности.

Ф=L*I

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда дроссель (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к образованию дуги при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Напоследок рекомендуем просмотреть полезное видео по теме, на которых кратко и подробно рассматривается явление самоиндукции:

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

Формула ЭДС индукции, E

Закон Фарадея – Максвелла для электромагнитной индукции

Основной формулой, которая определяет ЭДС индукции, является закон Фарадея – Максвелла, больше известный как основной закон электромагнитной индукции (или закон Фарадея). Этот закон утверждает, что ЭДС индукции в контуре, находящемся в переменном магнитном поле, равна по величине и противоположна по знаку скорости изменения магнитного потока () через поверхность, которую ограничивает данный контур:

   

где – скорость изменения магнитного потока. Полная производная в законе (1) охватывает весь спектр причин изменения магнитного потока через поверхность контура. Знак минус в формуле (1) соответствует правилу Ленца. Формула (1) для ЭДС индукции записана для системы СИ.

В случае равномерного изменения магнитного потока формулу ЭДС индукции можно записать как:

   

Частные случаи формул ЭДС индукции

Если контур содержит N витков, которые соединяются последовательно, то ЭДС индукции вычисляют как:

   

где – потокосцепление.

При движении прямолинейного проводника в однородном магнитном поле в нем возникает ЭДС индукции, которая равна:

   

где v – скорость движения проводника; l – длина проводника; B – модуль вектора магнитной индукции поля; .

При вращении с постоянной скоростью в однородном магнитном поле плоского контура вокруг оси, которая лежит в плоскости контура в нем возникает ЭДС индукции, равная:

   

где S – площадь, которую ограничивает виток; – поток самоиндукции витка; — угловая скорость; () – угол поворота контура. Следует учесть, что формула (5) справедлива, если ось вращения составляет прямой угол с направлением вектора внешнего поля .

Если во вращающейся рамке имеется N витков и самоиндукцией рассматриваемой системы можно пренебречь, то:

   

В стационарном проводнике, который находится в переменном магнитном поле, ЭДС индукции находят по формуле:

   

Примеры решения задач по теме «ЭДС индукции»

Методы защиты устройств (датчиков, приборов, контроллеров) с транзисторными выходами от токов самоиндукции

Введение

В данной статье будет рассмотрено явление самоиндукции, проявляющееся зачастую при коммутации индуктивных нагрузок. Также будут рассмотрены способы защиты и используемое для этого оборудование.

Техника безопасности

ВНИМАНИЕ! К работам по монтажу, наладке, ремонту и обслуживанию технологического оборудования допускаются лица, имеющие техническое образование и специальную подготовку (обучение и проверку знаний) по безопасному производству работ в электроустановках с группой не ниже 2 для ремонтного персонала, а также имеющие опыт работ по обслуживанию оборудования, в конструкцию которого вносятся изменения и дополнения, либо производится модернизация.

За неисправность оборудования и безопасность работников при неквалифицированном монтаже и обслуживании ООО «КИП‑Сервис» ответственности не несет.

1. Электромагнитная индукция. Определение. Физический смысл

Электромагнитная индукция — явление возникновения электрического тока, при изменении во времени магнитного поля. Изменение магнитного поля, в силу закона электромагнитной индукции, приводит к возбуждению в контуре индуктивной электродвижущей силы (ЭДС). Процесс возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока называется самоиндукцией. Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию, а при убывании тока — препятствует убыванию. Величина ЭДС самоиндукции определяется уравнением:

E=−L×dI/dtE= -L times dI / dt

где:
E — ЭДС самоиндукции
L — индуктивность катушки
dI/dt — изменение тока во времени.

Знак «минус» означает, что ЭДС самоиндукции действует так, что индукционный ток препятствует изменению магнитного потока. Этот факт отражён в правиле Ленца:

Индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Явление самоиндукции можно наблюдать при включении и последующем выключении катушек соленоидов, промежуточных реле, электромагнитных пускателей. При подаче напряжения на катушку создается электромагнитное поле, в следствии чего образуется электродвижущая сила, которая препятствует мгновенному росту тока в катушке. Согласно принципу суперпозиции, основной ток в катушке можно представить в виде суммы токов, один из которых вызван внешним напряжением и сонаправлен с основным током, а второй вызван ЭДС самоиндукции и имеет противоположное направление основному току. Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки. При протекании тока катушка «запасает» энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдает запасенную энергию, стремясь поддержать величину тока в цепи. Это, в свою очередь, вызывает всплеск напряжения обратной полярности на катушке. Данный всплеск может достигать значений во много раз превышающих номинальное напряжение источника питания, что может помешать нормальной работе электронных устройств, вплоть до их разрушения.

Разберем более подробно, почему скачок ЭДС самоиндукции будет иметь обратную полярность. На рисунке 1 изображены две схемы, на которых стрелками обозначено направление движения тока, а так же потенциалы на всех элементах схемы при закрытом и открытом ключе.

а — закрытый ключб — открытый ключ

Рисунок 1 — Направление тока при закрытом и открытом ключе

При закрытом ключе потенциалы на всех элементах совпадают с потенциалом источника питания (рисунок 1, а). Во время размыкания ключа, из схемы исключается источник питания, и ЭДС самоиндукции стремится поддержать ток в катушке. Для того, что бы сохранить направление тока в катушке, ЭДС меняет свой потенциал на противоположный по знаку источнику питания (рисунок 1, б). Именно поэтому всплеск ЭДС самоиндукции будет иметь обратную полярность.

Более наглядно этот всплеск показан на рисунке 2. На графике изображено напряжение источника питания Uпит, ток возникающий в катушке I, ЭДС самоиндукции.

Рисунок 2 — График изменения тока и напряжения при коммутации

2. Теоретический расчет ЭДС самоиндукции

Рассмотрим явление самоиндукции на примере работы электромагнитной катушки при пропускании через нее постоянного тока. Включение катушки происходит при помощи бесконтактного датчика. Катушку можно заменить на последовательно соединенные активное Rk и индуктивное Lk сопротивления (рисунок 3).

Рисунок 3 — Эквивалентная схема электромагнитной катушки

Тогда электрическая схема будет иметь вид, представленный на рисунке 4.

Рисунок 4 — Схема включения электромагнитной катушки

При сработавшем датчики падение напряжения U на катушке составляет 24 В. При коммутации индуктивной нагрузки в первый момент времени ток остается равным току до коммутации, а после изменяется по экспоненциальному закону. Таким образом, при переходе управляющего транзистора в закрытое состояние катушка начинает генерировать ЭДС самоиндукции, предотвращающую падение тока. Попробуем рассчитать величину генерируемого катушкой напряжения.

На рисунке 5 показано направление тока при открытом транзисторе. Переход транзистора в закрытое состояние фактически означает что цепь катушки с генерируемым ЭДС самоиндукции замыкается через подтягивающий резистор. Обозначим его Ro. По документации датчика это сопротивление составляет 5,1 кОм.

Рисунок 5 — Направление тока при открытом транзистореРисунок 6 — Направление тока после перехода транзистора в закрытое состояние

На рисунке 6 видно что ток на резисторе Ro поменял направление — это обусловлено возникновением ЭДС самоиндукции в катушке. Для полученного замкнутого контура выполняется следующее уравнение:

UR0+URk+ULk=0U_R0+U_Rk+U_Lk=0

Выражая напряжение через ток и сопротивление, получим:

I×R0+I×Rk+ULk=0I times R_0 + I times R_k +U_Lk=0 ULk=−I×(Rk+R0)U_Lk= -I times ( R_k + R_0 )

При этом ток в цепи стремится к значению тока при открытом транзисторе:

Подставим данное выражение в предыдущую формулу, получим величину генерируемого напряжения самоиндукции:

ULk=−U×(Rk+R0)/Rk=−U×(1+R0/Rk)U_Lk= -U times ( R_k + R_0 ) / R_k = -U times ( 1 + R_0 / R_k )

Все переменные из этой формулы известны:
U = 24В — напряжение питания
Ro = 5,1кОм — сопротивление подтягивающего резистора датчика
Rk = 900 Ом — активное сопротивление катушки (данные из документации).

Подставив значения в формулу, рассчитаем примерное значение напряжения самоиндукции:

ULk=−U×(1+R0/Rk)=−24×(1+5100/900)=−160ВU_Lk= -U times ( 1 + R_0/R_k ) = -24 times ( 1 + 5100 / 900 )=-160 В

Данный расчет упрощен и не учитывает индуктивность катушки, от которой так же зависит ЭДС самоиндукции. Но даже из упрощенного расчета видно, что величина генерируемого напряжения оказывается во много раз больше номинального напряжения 24В.

Воздействие ЭДС самоиндукции может повредить устройства, имеющие общие с индуктивной нагрузкой цепи питания. На рисунке 7 приведена некорректная схема, на которой от одного источника питания подключен бесконтактный датчик и катушка соленоидного клапана.

Рисунок 7 — Некорректная схема подключения

На первый взгляд, данная схема может работать без каких-либо сбоев. Однако, при выключении катушки клапана возникает всплеск напряжения в результате самоиндукции. Всплеск распространяется по цепи питания на клемму «минус» датчика. В результате, разница потенциалов между коллектором и эмиттером закрытого транзистора превышает максимальное значение, что приводит к его пробою.

3. Практическое измерение ЭДС самоиндукции

Чтобы проверить правдивость приведенных выше теоретических расчетов, проведем измерение ЭДС самоиндукции. Для проведения измерений необходимо собрать схему, для которой мы проводили расчеты. При помощи осциллографа на клеммах катушки произведем измерение напряжения (рисунок 8).

Рисунок 8 — Измерение ЭДС самоиндукции

На рисунке 9 изображена осциллограмма значений напряжения самоиндукции катушки с питанием 24 В. На графике видно, что реальный всплеск напряжения при отключении катушки в несколько раз больше напряжения питания и составляет 128 В. Как следствие, транзисторный ключ выйдет из строя. Возникающий скачок ЭДС приводит к пробою транзисторных ключей, бесконтактных датчиков, слаботочных коммутирующих элементов и другим нежелательным эффектам в схемах управления.

Рисунок 9 — ЭДС самоиндукции при выключении катушки с питанием 24 В

4.

Методы и средства защиты от ЭДС самоиндукции

Для подавления ЭДС самоиндукции и предотвращения выхода из строя оборудования необходимо принимать специальные меры. Для подавления пиков напряжения на катушке во время выключения, необходимо параллельно катушке включить в схему диод (для постоянного напряжения) или варистор (для переменного напряжения). ЭДС самоиндукции будет ограничиваться этими элементами, тем самым они будут обеспечивать защиту схемы.

Диод включается параллельно катушке против напряжения питания (рисунок 10). Таким образом, в установившемся режиме он не оказывает никакого воздействия на работу схемы. Однако при отключении питания на катушке возникает ЭДС самоиндукции, имеющая полярность, противоположную рабочему напряжению. Диод открывается и шунтирует катушку индуктивности.

а — включение диода в схему PNPб — включение диода в схему NPN

Рисунок 10 — Схема включения диода для защиты от самоиндукции

Варистор также включается параллельно катушке (рисунок 11).

Рисунок 11 — Схема включения варистора для защиты от самоиндукции

При увеличении напряжения выше пороговой величины, сопротивление варистора резко уменьшается, шунтируя индуктивную нагрузку. Соответственно, при броске тока варистор быстро срабатывает и обеспечивает надежную защиту схемы.

На рисунке 12 изображен график напряжения во время включения и выключения индуктивной катушки с использованием защитного диода для напряжения 24 В.

Рисунок 12 — ЭДС самоиндукции с использованием диода

На графике видно, что использование защитных диодов сглаживает переходную характеристику напряжения.

Для защиты от ЭДС самоиндукции существует целый ряд готовых устройств. Их выбор зависит от применяемой катушки и типа напряжения питания. Для гашения ЭДС самоиндукции на катушках промежуточных реле используют модули FINDER серии 99 (рисунок 13):

Рисунок 13 — Защитный модуль Finder/99.02.9.024.99

99.02.0.230.98 Finder/ Модуль защитный(светодиод+варистор)~/=110…240

99. 02.9.024.99 Finder/ Модуль защитный(светодиод+диод), =6…24В

Модули устанавливаются непосредственно на колодку реле, не требуют дополнительного изменения схемы управления.

В случае подключения катушек пускателей, либо катушек соленоидных клапанов, необходимо использовать защитные клеммники Klemsan серии WG-EKI (рисунок 14):

Рисунок 14 – Защитный клеммник WG-EKI

110 220 Клеммник WG-EKI с варистором (0,5…2,5 мм2, рабочее напряжение до 30В, рабочий ток до 10А)

110 040 Клеммник WG-EKI с защитным диодом (0,5…2,5 мм2, рабочее напряжение до 1000В, рабочий ток до 10А, ток диода 1А)

Клеммники позволяют осуществить подключение индуктивной катушки без дополнительного изменения схемы. Клеммник имеет два яруса, соединенных между собой защитным диодом либо варистором. Для осуществления защиты необходимо провести провода питания катушки через этот клеммник. При использовании клеммника с защитным диодом необходимо соблюдать полярность при подключении (рисунок 15).

Рисунок 15 — Схема подключения клеммника WG-EKI с защитным диодом

Заключение

В рамках данной статьи было рассмотрено явление самоиндукции, приведен теоретический расчет ЭДС и практическое подтверждение этого расчета. Применяя модули Finder серии 99 и клеммники Klemsan серии WG-EKI, можно избавиться от пагубного воздействия самоиндукции и сохранить целостность коммутирующих элементов цепей управления.

Инженер ООО «КИП-Сервис»
Хоровец Г.Н.

Список использованной литературы:

  1. Сивухин, Д.В. Общий курс физики. Электричество. Том III / Сивухин Д.В — М.: Наука, 1977. — 724.с.
  2. Калашников, С.Г. Электричество / Калашников С.Г. — 6-е изд., стереот. — М.: Физматлит, 2003.-624.с.
  3. Алексеев Н.И., Кравцов А.В. Лабораторный практикум по общей физике (электричество и магнетизм). Самоиндукция / Лицей No1580 при МГТУ им. Н.Э. Баумана, 2012. — 16 с.

Читайте также:

Электричество и магнетизм

Рассмотрим снова контур с током, но не станем его помещать на этот раз во внешнее магнитное поле. Ток сам создает свое собственное поле В, которое пронизывает контур. Это поле, как следует из закона Био — Савара — Лапласа, пропорционально силе тока

Собственное магнитное поле контура с током обуславливает наличие магнитного потока Y через поверхность, опирающуюся на этот контур, который также будет пропорционален силе тока в контуре

Введем коэффициент пропорциональности L

                                

(8.16)

Коэффициент пропорциональности L называется индуктивностью контура

Индуктивность контурачисленно равна магнитному потоку, собственного магнитного поля через поверхность, опирающуюся на контур, при условии протекания в контуре единичного тока.  

 

Индуктивность контура определяется формой и размерами контура, а также свойствами окружающей среды.  

 В системе СИ единицей измерения индуктивности является генри (Гн)

 

Если в проводящем контуре протекает переменный электрический ток, то магнитное поле этого тока также меняется с течением времени. Собственный магнитный поток, создаваемый этим полем, также является переменным. Изменение магнитного потока влечет за собой возникновение ЭДС электромагнитной индукции. 

 Явление возникновения ЭДС индукции в замкнутом проводящем контуре вследствие изменения тока, текущего в этом контуре, называется явлением самоиндукции

 

Видео 8. 13.  Закон Фарадея. Явление самоиндукции.

Возникающая при этом ЭДС называется ЭДС самоиндукции. Явление самоиндукции является частным случаем электромагнитной индукции.

Явление самоиндукции является, в частности, причиной явления, которое называют «экстра токи замыкания и размыкания». Оно состоит в следующем. Собственное магнитное поле в цепи постоянного тока изменяется в моменты замыкания или размыкания цепи. Это означает, что в такие моменты в цепи должна возникать ЭДС самоиндукции. Направление токов самоиндукции следует из правила Ленца. При замыкании цепи ЭДС самоиндукции вызывает ток, препятствующий увеличению основного тока в цепи, что делает конечной скорость роста силы тока, а при размыкании ток самоиндукции, препятствуя его уменьшению, делает конечной скорость убывания тока. Если бы не ЭДС самоиндукции, то при замыкании цепи ток мгновенно нарастал бы до своего стационарного значения, а при размыкании цепи, мгновенно убывал бы до нуля.  

Выведем формулу для ЭДС самоиндукции . Для этого надо продифференцировать полный магнитный поток, охватываемый проводящим контуром, по времени

                               

(8.17)

Если контур не меняет свою форму, и рядом с контуром нет ферромагнетиков, то его индуктивность от времени не зависит. Однако, даже при неизменной форме контура, при наличии ферромагнетиков, например, ферромагнитного сердечника, индуктивность контура зависит от силы тока в нём и, тем самым, от времени, если ток переменный. Таким образом, в присутствии ферромагнетиков

,

что необходимо учитывать при дифференцировании

Подставляя это выражение в (8.17), получаем для неподвижного контура всреде

                          

(8. 18)

 

Если же индуктивность контура не зависит от силы тока в нём, то имеем

                           

(8.19)

Мы приходим к закону самоиндукции. В этом простейшем случае: 

 В отсутствие ферромагнетиков ЭДС самоиндукции в цепи прямопропорциональна скорости изменения силы тока в этой цепи. 

Будем считать катушку длинной, а магнитное поле внутри нее — однородным. Пропустим через соленоид ток I. Тогда магнитная индукциявнутри соленоида равна, как мы знаем (см. (6.20)), равна

где — магнитная проницаемость сердечника, a n — число витков на единицу длины. Полное число витков в катушке равно , где l — ее длина. Пусть S — площадь поперечного сечения соленоида. Полный магнитный поток (потокосцепление) определяется как

                       

(8.20)

где V — объем соленоида: V = Sl. Согласно определению индуктивности как коэффициента пропорциональности между  и I, получаем величину индуктивности длинного соленоида (рис. 8.31)

                            

(8.21)

 

Рис. 8.31. Индуктивность соленоида 

При замыкании или размыкании цепи (то есть в случаях, когда ток в цепи меняется по величине) в ней вследствие явления самоиндукции возникают дополнительные токи, которые по правилу Ленца всегда направлены так, чтобы воспрепятствовать причине их вызывающей, то есть чтобы воспрепятствовать нарастанию или убыванию тока в цепи. Следовательно, как уже было сказано,при замыкании цепи ЭДС самоиндукции будет замедлять скорость нарастания тока, а при размыкании, напротив, замедлять скорость уменьшения тока в ней.

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Подробности
Просмотров: 640

Самоиндукция

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.

Самоиндукция — явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.
Возникающая при этом ЭДС называется ЭДС самоиндукции


Проявление явления самоиндукции

Замыкание цепи

При замыкании в эл. цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

Размыкание цепи

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.

Вывод:

в электротехнике явление самоиндукции проявляется при замыкании цепи (электрический ток нарастает постепенно) и при размыкании цепи (электрический ток пропадает не сразу).



ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции?

Электрический ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике
(B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды ( возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии.
В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? — выделяется ( при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

ВОПРОСЫ К ПРОВЕРОЧНОЙ РАБОТЕ

по теме «Электромагнитная индукция»

1. Перечислить 6 способов получения индукционного тока.
2. Явление электромагнитной индукции (определение).
3. Правило Ленца.
4. Магнитный поток ( определение, чертеж, формула, входящие величины, их ед. измерения).
5. Закон электромагнитной индукции (определение, формула).
6. Свойства вихревого электрического поля.
7. ЭДС индукции проводника, движущегося в однородном магнитном поле ( причина появления, чертеж, формула, входящие величины, их ед. измерения).
8. Самоиндукция (кратко проявление в электротехнике, определение).
9. ЭДС самоиндукции (ее действие и формула).
10. Индуктивность (определение, формулы, ед. измерения).
11. Энергия магнитного поля тока (формула, откуда появляется энергия м. поля тока, куда пропадает при прекращении тока).


Электромагнитное поле — Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера — Действие магнитного поля на движущийся заряд. Магнитные свойства вещества — Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца — ЭДС электромагнитной индукции. Вихревое электрическое поле — ЭДС индукции в движущихся проводниках
— Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

Электродвижущая сила индукции. Закон Фарадея-Ленца

1. 1. Электродвижущая сила индукции. Закон Фарадея – Ленца.

1. Электродвижущая сила индукции. Закон
Фарадея – Ленца.
По определению Фарадея общим для этих
опытов является то, что: если поток вектора
индукции, пронизывающий замкнутый,
проводящий контур меняется, то в контуре
возникает электрический ток.
Это явление называют явлением
электромагнитной индукции, а ток –
индукционным.
При этом, явление совершенно не зависит
от способа изменения потока вектора
магнитной индукции.

2. 1. Электродвижущая сила индукции. Закон Фарадея – Ленца.

1. Электродвижущая сила индукции. Закон
Фарадея – Ленца.
Итак, движущиеся заряды (ток) создают магнитное
поле, а движущееся магнитное поле создает
(вихревое) электрическое поле и, собственно
индукционный ток.
Ленц установил общее правило нахождения
направления тока: индукционный ток всегда
направлен так, что магнитное поле этого тока
препятствует изменению магнитного потока,
вызывающего индукционный ток — правило Ленца.

3. 1. Электродвижущая сила индукции. Закон Фарадея – Ленца.

1. Электродвижущая сила индукции. Закон
Фарадея – Ленца.
Заполнение всего пространства
однородным магнетиком приводит при
прочих равных условиях к увеличению
индукции в µ раз.
Индукционный ток
обусловлен изменением
потока вектора B , а не потока вектора E .

4. 1. Электродвижущая сила индукции. Закон Фарадея – Ленца.

1. Электродвижущая сила индукции. Закон
Фарадея – Ленца.
Для создания тока в цепи необходимо
наличие ЭДС.
Поэтому явление электромагнитной
индукции свидетельствует о том, что при
изменении магнитного потока в контуре
возникает ЭДС индукции .

5. 1. Электродвижущая сила индукции. Закон Фарадея – Ленца.

1. Электродвижущая сила индукции. Закон
Фарадея – Ленца.
Для определения величины и природы ЭДС
индукции рассмотрим перемещение
подвижного участка 1 – 2 контура с током в
магнитном поле

6. 1. Электродвижущая сила индукции. Закон Фарадея – Ленца.

1. Электродвижущая сила индукции. Закон
Фарадея – Ленца.
Пусть сначала магнитное поле
отсутствует.
Батарея с ЭДС равной ε0 создает ток
I0 .
За время dt батарея совершает
работу
dA ε 0 I 0 dt
– эта работа будет переходить в тепло,
которое можно найти по закону
Джоуля-Ленца.

7. 1. Электродвижущая сила индукции. Закон Фарадея – Ленца.

1. Электродвижущая сила индукции. Закон
Фарадея – Ленца.
Поместим контур в однородное
магнитное поле с индукцией B .
Линии B параллельны n и связаны с
направлением тока «правилом
буравчика».
Поток Ф, сцепленный с контуром, ˃0 .

8. 1. Электродвижущая сила индукции. Закон Фарадея – Ленца.

1. Электродвижущая сила индукции. Закон
Фарадея – Ленца.
Каждый элемент контура
испытывает
механическую силу dF .
Подвижная сторона
рамки будет
испытывать силу F0 .
Под действием этой силы участок 1 – 2
будет перемещаться со скоростью dx/dt .
При этом изменится и поток магнитной
индукции.
Тогда в результате электромагнитной
индукции, ток в контуре изменится и станет
равным I I 0 I i .

9. Величина ЭДС индукции

F0
Изменится и сила
,
которая
теперь
станет равна F – результирующая
сила. Эта сила за время dt произведет
работу dA: dA Fdx IdФ.
Как и в случае, когда все элементы
рамки неподвижны, источником
работы является ε0.

10. Величина ЭДС индукции

При неподвижном контуре эта работа
сводилась только лишь к выделению тепла.
В нашем случае тепло тоже будет
выделяться, но уже в другом количестве,
так как ток изменился.
Кроме того, совершается механическая
работа.
Общая работа за время dt, равна:
0 Idt I 2 Rdt IdФ .

11. Величина ЭДС индукции

Отсюда:
I

dt .
R
0
Полученное выражение мы вправе
рассматривать как закон Ома для контура, в
котором кроме источника действует эдс
индукции , которая равна:

i
dt
ЭДС индукции контура равна скорости
изменения потока магнитной индукции,
пронизывающей этот контур.
.

12. Величина ЭДС индукции

Это выражение для ЭДС индукции контура
является совершенно универсальным, не
зависящим от способа изменения потока
магнитной индукции и носит название закон
Фарадея.
Знак минус – математическое выражение
правила Ленца о направлении
индукционного тока: индукционный ток
всегда направлен так, чтобы своим полем
противодействовать изменению начального
магнитного поля.

13. Природа ЭДС индукции

Ответим на вопрос, что является
причиной движения зарядов,
причиной возникновения
индукционного тока. Рассмотрим
рисунок

14. Природа ЭДС индукции

1) Если перемещать проводник в
однородном магнитном поле , то под
действием силы Лоренца, электроны
будут отклоняться вниз, а
положительные заряды вверх –
возникает разность потенциалов, под
действием которой течет ток.
Как мы знаем, для положительных
зарядов F q [B, ], для электронов F e[B, ].
л
л

15. Природа ЭДС индукции

2) Если проводник неподвижен, а
изменяется магнитное поле, какая сила
возбуждает индукционный ток в этом
случае?
Возьмем обыкновенный трансформатор.
Как только мы замкнули цепь первичной
обмотки, во вторичной обмотке сразу
возникает ток.
Но ведь сила Лоренца здесь ни причем, т.к.
она действует на движущиеся заряды, а они
в начале покоились (находились в тепловом,
хаотическом движении).

16. Природа ЭДС индукции

Ответ был дан Дж. Максвеллом в
1860 г.: всякое переменное магнитное
поле возбуждает в окружающем
пространстве электрическое поле.
Оно и является причиной
возникновения индукционного тока в
проводнике.
То есть, возникает только при
наличии переменного магнитного
поля (на постоянном токе
трансформатор не работает).

17. Природа ЭДС индукции

Сущность явления электромагнитной
индукции совсем не в появлении
индукционного тока (ток появляется
тогда, когда есть заряды и замкнута
цепь), а в возникновении вихревого
электрического поля (не только в
проводнике, но и в окружающем
пространстве, в вакууме).

18. Природа ЭДС индукции

Это поле имеет совершенно иную
структуру, нежели поле, создаваемое
зарядами.
Так как оно не создается зарядами,
то силовые линии не могут
начинаться и заканчиваться на
зарядах, как это было у нас в
электростатике.
Это поле вихревое, силовые линии
его замкнуты.

19. Циркуляция вектора напряженности вихревого электрического поля

Чему равна
циркуляция
вектора
вихревого
электрического
поля в случае
изображенном
на рисунке?

20. Циркуляция вектора напряженности вихревого электрического поля

Работу вихревого электрического поля по
перемещению заряда вдоль замкнутого
контура L можно подсчитать по формуле
dA q E’ d l .
С другой стороны, работа по перемещению
L
единичного заряда вдоль замкнутой цепи
равна ЭДС, действующей в этой цепи:
dA i
Следовательно:

E

d
l
.
d
t
L

21. Циркуляция вектора напряженности вихревого электрического поля

Эти выражения для циркуляции
справедливы всегда, независимо от
того, выполнен контур в виде
линейного проводника, диэлектрика
или речь идет о контуре (мысленном)
в вакууме.
Если контур выполнен из диэлектрика,
то каждый элемент его поляризуется
в соответствии с действующим
электрическим полем .

22. Циркуляция вектора напряженности вихревого электрического поля

Если заряд q движется в вакууме по контуру,
то при каждом обходе контура
механическая энергия его возрастает на
величину
m 2
qE ‘ d l q i ;
2 L
(при движении заряда в проводнике из-за
сопротивления устанавливается
динамическое равновесие).
На использовании этого факта основан
оригинальный ускоритель электронов –
бетатрон.

23. Токи Фуко (вихревые токи)

До сих пор мы рассматривали
индукционные токи в линейных
проводниках.
Но индукционные токи будут возникать и в
толще сплошных проводников при
изменении в них потока вектора магнитной
индукции .
Они будут циркулировать в веществе
проводника (напомним, что линии –
замкнуты).
Так как электрическое поле вихревое и токи
называются вихревыми – токи Фуко.

24. Токи Фуко (вихревые токи)

Если медную пластину отклонить от положения
равновесия и отпустить так, чтобы она вошла со
скоростью υ в пространство между полосами
магнита, то пластина практически остановится в
момент ее вхождения в магнитное поле.
Замедление движения связано с возбуждением в
пластине
вихревых
токов,
препятствующих
изменению потока вектора магнитной индукции.
Поскольку
пластина
обладает
конечным
сопротивлением,
токи
индукции
постепенно
затухают и пластина медленно двигается в
магнитном поле.
Если электромагнит отключить, то медная пластина
будет совершать обычные колебания, характерные
для маятника.

25. Токи Фуко (вихревые токи)

Тормозящее действие тока Фуко используется для
создания магнитных успокоителей – демпферов.
Если под качающейся в горизонтальной плоскости
магнитной стрелкой расположить массивную медную
пластину, то возбуждаемые в медной пластине токи Фуко
будут тормозить колебание стрелки.
Магнитные успокоители такого рода используются в
сейсмографах, гальванометрах и других приборах.
Токи Фуко применяются в электрометаллургии для плавки
металлов.
Металл помещают в переменное магнитное поле,
создаваемое током частотой 500 2000 Гц.
В результате индуктивного разогрева металл плавится, а
тигль в котором он находится при этом остается холодным.
Например, при подведенной мощности 600 кВт тонна
металла плавится за 40 – 50 минут.

26. Скин-эффект

Если быстропеременный высокочастотный ток
протекает по проводнику, то вихревые токи,
индуцируемые в проводнике, препятствуют
равномерному распределению плотности тока по
поперечному сечению проводника – плотность тока
на оси провода оказывается меньше, чем у его
поверхности.
Ток как бы вытесняется на поверхность провода, при
этом вихревые токи по оси проводника текут против
направления основного тока, а на поверхности – в
том же направлении.
Это явление называется скин-эффектом (от англ.
skin – кожа, оболочка).

27. Скин-эффект

При нарастании тока в проводе ЭДС
индукции направлена против тока.
Электрическое поле самоиндукции
максимально на оси провода, что
приводит к неравномерному
распределению плотности тока.
Плотность тока убывает от
поверхности к оси провода примерно
по экспоненциальному закону.

28. Скин-эффект

29. Скин-эффект

При частоте ν 50 Гц,r0 10 мм – ток
практически равномерно распределен
по объему проводов, исключая очень
толстые кабели.
Но при высокочастотных колебаниях
ν 100 МГц 108 Гц
глубина проникновения равна
– ток почти целиком течет по
поверхности провода.
r0 7 10 3 мм

30. Скин-эффект

По этой причине с целью уменьшения потерь
поверхность высокочастотных контуров серебрят.
Провода для переменных токов высокой частоты,
учитывая скин-эффект, сплетают из большого числа
тонких проводящих нитей, изолированных друг от
друга эмалевым покрытием – литцендратом.
ВЧ-токи используются для закалки поверхностей
деталей: поверхностный слой разогревается быстро
в ВЧ поле, закаливается и становится прочным, но не
хрупким, так как внутренняя часть детали – не
разогревалась и не закаливалась.

31. САМОИНДУКЦИЯ И ВЗАИМНАЯ ИНДУКЦИЯ

1. Явление самоиндукции
2. Влияние самоиндукции на ток при
замыкании и размыкании цепи,
содержащей индуктивность
3. Взаимная индукция
4. Индуктивность трансформатора
5. Энергия магнитного поля

32. Явление самоиндукции

До сих пор мы рассматривали изменяющиеся
магнитные поля не обращая внимание на то, что
является их источником.
На практике, чаще всего магнитные поля создаются с
помощью различного рода соленоидов, т.е.
многовитковых контуров с током.
Здесь возможны два случая: при изменении тока в
контуре изменяется магнитный поток,
пронизывающий: а) этот же контур; б) соседний
контур.
ЭДС индукции, возникающая в самом же контуре
называется ЭДС самоиндукции, а само явление –
самоиндукция.

33. Явление самоиндукции

Если же ЭДС индукции возникает
в соседнем контуре, то говорят о
явлении взаимной индукции.
Ясно, что природа явления одна
и та же, а разные названия
использованы для того, чтобы
подчеркнуть место
возникновения ЭДС индукции.

34. Явление самоиндукции

Явление самоиндукции открыл
американский ученый Дж. Генри в
1831 г.
Явление самоиндукции можно
определить следующим образом.
Ток I, текущий в любом контуре
создает магнитный поток Ψ,
пронизывающий этот же контур. При
изменении I, будет изменяться Ψ,
следовательно в контуре будет
наводится ЭДС индукции.

35. Явление самоиндукции

Т.к. магнитная индукция В
пропорциональна току I ( B μμ 0 nI ),
следовательно Ψ LI ,
где L – коэффициент
пропорциональности, названный
индуктивностью контура.

36. Явление самоиндукции

За единицу индуктивности в СИ
принимается индуктивность
такого контура, у которого при
токе I 1 A возникает полный поток
Ψ 1 Вб
Эта единица называется Генри
(Гн).

37. Явление самоиндукции

Вычислим индуктивность соленоида L.
Если длина соленоида l гораздо больше его
диаметра d (), то к нему можно применить
формулы для бесконечно длинного
соленоида.
N
B
μμ
I
,
0
Тогда
l
здесь N – число витков.
Поток через каждый из витков Ф BS.
Потокосцепление
N
N 2S
Ψ NBS μμ 0 I
l
NS μμ 0
l
I.

38. Явление самоиндукции

Так как
LI
Lсол
N 2S
0
0 n 2 lS ,
l
n N / l, l S V
Lсол 0 n 2V .
При изменении тока в контуре в нем
возникает ЭДС самоиндукции, равная

d
dI
IL L ,
i
dt
dt
dt

39. Явление самоиндукции

Явление самоиндукции играет
важную роль в электротехнике и
радиотехнике.
Как мы увидим дальше, благодаря
самоиндукции происходит
перезарядка конденсатора,
соединенного последовательно с
катушкой индуктивности, в
результате в такой LC-цепочке
(колебательном контуре) возникают
электромагнитные колебания.

40. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность

Рассмотрим несколько случаев влияния ЭДС
самоиндукции на ток в цепи.
Случай 1.
По правилу Ленца, токи возникающие в цепях
вследствие самоиндукции всегда направлены так,
чтобы препятствовать изменению тока, текущего в
цепи.
Это приводит к тому, что при замыкании ключа К
установление тока I2 в цепи содержащей
индуктивность L, будет происходить не мгновенно, а
постепенно.

41. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность

Сила тока в этой цепи будет удовлетворять
уравнению
R
t
I 2 I 0 1 e L
.

42. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность

Скорость возрастания тока будет
характеризоваться постоянной времени
L
цепи
τ
.
R
В цепи, содержащей только активное
сопротивление R ток установится
практически мгновенно
(пунктирная кривая ).

43. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность

Случай 2.
При переводе ключа из положения 1 в 2 в
момент времени t0 , ток начнет уменьшаться
но ЭДС самоиндукции будет поддерживать
ток в цепи, т.е. препятствовать резкому
уменьшению тока.
В этом случае убывание тока в цепи можно
описать уравнением
I I 0e
R
t
L
I 0e
t
.

44. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность

45. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность

Оба эти случая говорят, что чем больше
индуктивность цепи L и чем меньше сопротивление
R, тем больше постоянная времени и тем медленнее
изменяется ток в цепи.
Случай 3.
Размыкание цепи содержащей индуктивность L.
Сначала цепь замкнута. В цепи течет
установившийся ток. Поэтому рисуем зависимость
i (t ) . При размыкании цепи в момент времени t0 , R .
Это приводит к резкому возрастанию ЭДС индукции,
определяемой по формуле:
i L
dI
.
dt

46. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность

47. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность

Происходит этот скачек вследствие большой
величины скорости изменения тока
dI
dt
i резко возрастает по сравнению с 0 и даже может
быть в несколько раз больше . (Нельзя резко
размыкать цепь, состоящую из трансформатора и
других индуктивностей).

48. Взаимная индукция

Возьмем два контура, расположенные
недалеко друг от друга
В первом контуре течет ток I1 . Он создает
магнитный поток, который пронизывает и
витки второго контура.
Ψ2 L21I1.

49. Взаимная индукция

При изменении тока I1 во втором контуре
наводится ЭДС индукции
i 2 L21
Аналогично, ток I 2 второго контура создает
магнитный поток пронизывающий первый
контур
Ψ1 L12 I 2 .
И при изменении тока I 2 наводится ЭДС
i 1 L12
dI1
.
dt
dI 2
.
dt
Контуры называются связанными, а
явление – взаимной индукцией.

50. Индуктивность трансформатора

Трансформатор является типичным
примером двух связанных контуров.
Рассмотрим индуктивность трансформатора
и найдем коэффициент трансформации.
Рассчитаем взаимную индуктивность двух
катушек и , намотанных на общий
сердечник

51. Индуктивность трансформатора

Когда в первой катушке идет ток , в
сердечнике возникает магнитная индукция
и магнитный поток Ф через поперечное
сечение S.
Магнитное поле тороида можно рассчитать
по формуле
N1
Β μμ 0 I1
l
.
Через вторую обмотку проходит полный
магнитный поток Ψ2 сцепленный со второй
NN
обмоткой
Ψ N BS μμ 1 2 SI ,
2
2
0
l
1

52. Индуктивность трансформатора

здесь Ψ2 N 2Ф – потокосцепление которое
можно найти по формуле:
Ψ 2 L21I1.
По определению взаимная индуктивность
двух катушек равна:
Ψ2
N1N 2
L12 L21
μμ 0
S.
I1
l
К первичной обмотке подключена
переменная ЭДС E1 . По закону Ома ток в этой
цепи будет определятся алгебраической
суммой внешней ЭДС и ЭДС индукции.

53. Индуктивность трансформатора

К первичной обмотке подключена
переменная ЭДС 1.
По закону Ома ток в этой цепи будет
определяться алгебраической суммой
внешней ЭДС и ЭДС индукции.
d( N 1Ф)
1
I1 R1 ,
dt
где R1 – сопротивление обмотки, которое
делают малым, так что
I1R1 0

54. Индуктивность трансформатора

Тогда
1
d( N 1Ф)

N1
.
dt
dt
Во второй обмотке, по аналогии
1 N1
Отсюда
.
2
N2
Если пренебречь потерями, т.е.
предположить, что R 0 , то
1 I1 2 I 2 .

2 N2
dt
Коэффициент трансформации
1 N2
.
2 N1

55. Энергия магнитного поля

Сначала замкнем соленоид L на источник
ЭДС , в нем будет протекать ток .
Затем переключим ключ в положение 2 –
замкнем соленоид на сопротивление R.
В цепи будет течь убывающий ток I.
При этом будет совершена работа:

56. Энергия магнитного поля

Определим ее
dA i Idt ;
dA L
dI
Idt LIdI ;
dt
LI 2
A L IdI
;
2
I
0
LI 2
A
.
2

57. Энергия магнитного поля

Эта работа пойдет на нагревание
проводников.
Но откуда взялась эта энергия?
Поскольку других изменений кроме
исчезновения магнитного поля в окружном
пространстве не произошло, остается
заключить, что энергия была локализована
в магнитном поле.
Значит, проводник, с индуктивностью L, по
которой течет ток I, обладает энергией
LI 2
W
.
2

58. Энергия магнитного поля

Обозначим w – плотность энергии,
или энергия в объеме V, тогда
W 0 H
w
,
V
2
2
B2
w
.
2 0
BH
w
2
Энергия однородного магнитного
поля в длинном соленоиде может
быть рассчитана по формуле:
W
1
0 n2 I 2V
2
w
1
0 n 2 I 2
2

59.

Контрольные вопросы 1.
2.
3.
4.
5.
6.
Дайте определение явления
электромагнитной индукции.
Сформулируйте правило Ленца.
Циркуляция вектора напряженности
вихревого электрического поля.
Определение: токи Фуко, скин – эффект.
Явление самоиндукции.
Взаимная индукция

60. Контрольные вопросы

1. Взаимная индуктивность двух катушек –
трансформатора.
2. Энергия магнитного поля, объемная плотность
энергии магнитного поля, объемная плотность
энергии магнитного поля соленоида.
3. Диамагнетики, парамагнетики, ферромагнетики.
4. Орбитальный магнитный момент электрона,
орбитальный момент импульса электрона.
5. Гиромагнитное отношение орбитальных моментов,
гиромагнитное отношение спиновых моментов.

Чему равно эдс самоиндукции. Что такое самоиндукция — объяснение простыми словами

Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

1Гн = Вб/А).

Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

Энергия магнитного поля

Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:

. (5)

Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:

. (6)

Эта работа численно равна приросту потенциальной энергии ΔW п магнитного поля, связанного с этой цепью, т.е.A= -ΔW п.

Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного поля соленоида:

, (7)

где N – общее число витков соленоида; ℓ – его длина; S – площадь сечения внутреннего канала соленоида.

, (8)

После подстановки имеем:

Разделив обе части на V, получим объёмную плотность энергии поля:

(10)

или, с учётом, что
получим,
. (11)

Переменный ток

2.1 Переменный ток и его основные характеристики

Переменным называется ток, изменяющийся с течением времени и по величине и по направлению. Примером переменного тока может служить потребляемый промышленный ток. Этот ток является синусоидальным, т.е. мгновенное значение его параметров меняются со временем по закону синуса (или косинуса):

i = I 0 sinωt, u = U 0 sin(ωt + φ 0). (12)

Переменный синусоидальный ток можно получить, если вращать рамку (контур) с постоянной скоростью

в однородном магнитном поле с индукцией B (рис.5). При этом магнитный поток, пронизывающий контур, изменяется по закону

где S– площадь контура, α = ωt– угол поворота рамки за время t. Изменение потока приводит к возникновению ЭДС индукции

, (17)

направление которой определяется по правилу Ленца.

Если контур замкнут (рис.5), то по нему идёт ток:

. (18)

График изменения электродвижущей силыи индукционного токаi представлен на рис. 6.

Переменный ток характеризуется периодом Т, частотой ν = 1/Т, циклической частотой
и фазой φ = (ωt + φ 0) Графически значения напряжения и силы переменного тока на участке цепи будут представляться двумя синусоидами, в общем случае сдвинутыми по фазе на φ.

Для характеристики переменного тока вводятся понятия действующего (эффективного) значения тока и напряжения. Эффективным значением силы переменного тока называется сила такого постоянного тока, который выделяет в данном проводнике столько же тепла за время одного периода, сколько выделяет тепла и данный переменный ток.

,
. (13)

Приборы, включенные в цепь переменного тока (амперметр, вольтметр), показывают эффективные значения тока и напряжения.

Согласно закону Фарадея ℰ is = – . Если Ф = LI , то ℰ is = = – . При условии, что индуктивность контура в процессе изменения тока не меняется (т.е. не меняются геометрические размеры контура и магнитные свойства среды), то

is = – . (13.2)

Из этой формулы видно, что если индуктивность катушки L достаточно велика, а время изменения тока мало, то величина ℰ is может достигнуть большой величины и превысить ЭДС источника тока при размыкании цепи. Именно этот эффект мы наблюдали в опыте 1.

Из формулы (13.2) можно выразить L :

L = – ℰ is /(DI /Dt ),

т.е. индуктивность имеет еще один физический смысл: она численно равна ЭДС самоиндукции при скорости изменения тока через контур 1 А в 1 с.

Читатель : Но тогда получится, что размерность индуктивности

[L ] = Гн = .

СТОП! Решите самостоятельно: А3, А4, В3–В5, С1, С2.

Задача 13.2. Какова индуктивность катушки с железным сердечником, если за время Dt = 0,50 с ток в цепи изменился от I 1 = = 10,0 А до I 2 = 5,0 А, а возникшая при этом ЭДС самоиндукции по модулю равна |ℰ is | = 25 В?

Ответ : L = ℰ is » 2,5 Гн.

СТОП! Решите самостоятельно: А5, А6, В6.

Читатель : А какой смысл имеет знак минус в формуле (13.2)?

Рис. 13.6

Автор : Рассмотрим какой-либо проводящий контур, по которому течет ток. Выберем направление обхода контура – по или против часовой стрелки (рис. 13.6). Вспомним: если направление тока совпадает с выбранным направлением обхода, то сила тока считается положительной, а если нет – отрицательной.

Изменение тока DI = I кон – I нач – также величина алгебраическая (отрицательная или положительная). ЭДС самоиндукции – это работа, совершаемая вихревым полем при перемещении единичного положительного заряда по контуру вдоль направления обхода контура . Если напряженность вихревого поля направлена вдоль направления обхода контура, то эта работа положительна, а если против – отрицательна. Таким образом, знак минус в формуле (13.2) показывает, что величины DI и ℰ is всегда имеют разные знаки.

Покажем это на примерах (рис. 13.7):

а) I > 0 и DI > 0, значит, ℰ is

б) I > 0 и DI is >

в) I I| > 0, т.е. модуль тока возрастает, а сам ток становится все «более отрицательным». Значит, DI is > 0, т.е. ЭДС самоиндукции «включена» вдоль направления обхода;

г) I I| I > 0, тогда ℰ is

В задачах, по возможности, следует выбирать такое направление обхода, чтобы ток был положительным.

Задача 13.3. В цепи на рис. 13.8, а L 1 = 0,02 Гн и L 2 = 0,005 Гн. В некоторый момент ток I 1 = 0,1 А и возрастает со скоростью 10 А/с, а ток I 2 = 0,2 А и возрастает со скоростью 20 А/с. Найти сопротивление R .

а б Рис. 13.8 Решение. Так как оба тока возрастают, то в обеих катушках возникают ЭДС самоиндукции ℰ is 1
L 1 = 0,02 Гн L 2 = 0,005 Гн I 1 = 0,1 А I 2 = 0,2 А DI 1 /Dt = 10 А/с DI 2 /Dt = 20 А/с
R = ?

и ℰ is 2 , включенные навстречу токам I 1 и I 2 (рис. 13.8, б ), где

|ℰ is 1 | = ; |ℰ is 2 | = .

Выберем направление обхода по часовой стрелке (см. рис. 13.8,б ) и применим второе правило Кирхгофа

–|ℰ is 1 | + |ℰ is 2 | = I 1 R – I 2 R ,

R = |ℰ is 2 | – |ℰ is 1 | / (I 1 – I 2) = =

1 Ом.

Ответ : R = » 1 Ом.

СТОП! Решите самостоятельно: В7, В8, С3.

Задача 13.4. Катушка сопротивлением R = 20 Ом и индуктивностью L = 0,010 Гн находится в переменном магнитном поле. Когда создаваемый этим полем магнитный поток увеличился на DФ = = 0,001 Вб, ток в катушке возрос на DI = 0,050 А. Какой заряд прошел за это время по катушке?

дукции |ℰ is | = . Причем ℰ is «включилась» навстречу ℰ i , так как ток в цепи возрастал (рис. 13.9).

Возьмем направление обхода контура по часовой стрелке. Тогда согласно второму правилу Кирхгофа получим:

|ℰ i | – |ℰ is | = IR ,

I = (|ℰ i | – |ℰ is |)/R = .

Заряд q , прошедший по катушке за время Dt , равна

q = I Dt =

Ответ : 25 мкКл.

СТОП! Решите самостоятельно: В9, В10, С4.

Задача 13.5. Катушка с индуктивностью L и электрическим сопротивлением R подключена через ключ к источнику тока с ЭДС ℰ. В момент t = 0 ключ замыкают. Как изменяется со временем сила тока I в цепи сразу же после замыкания ключа? Через длительное время после замыкания? Оцените характерное время t возрастания тока в такой цепи. Внутренним сопротивлением источника тока можно пренебречь.

Рис. 13.10

Рис. 13.11

Сразу же после замыкания ключа I = 0, поэтому можно считать » ℰ/L , т.е. ток возрастает с постоянной скоростью (I = (ℰ/L )t ;рис. 13.11).

9.4. Явление электромагнитной индукции

9.4.3. Среднее значение электродвижущей силы самоиндукции

При изменении потока, сцепленного с замкнутым проводящим контуром, через площадь, ограниченную данным контуром, в нем появляется вихревое электрическое поле и течет индукционный ток — явление электромагнитной самоиндукции.

Модуль средней ЭДС самоиндукции за определенный промежуток времени рассчитывают по формуле

〈 | ℰ i s | 〉 = | Δ Ф s | Δ t ,

где ΔФ s — изменение магнитного потока, сцепленного с контуром, за время Δt .

Если сила тока в контуре изменяется с течением времени I = I (t ), то

∆Ф s = L ∆I ,

где L — индуктивность контура; ΔI — изменение силы тока в контуре за время Δt ;

〈 | ℰ i s | 〉 = L | Δ I | Δ t ,

где ΔI /Δt — скорость изменения силы тока в контуре.

Если индуктивность контура изменяется с течением времени L = L (t ), то

  • изменение потока, сцепленного с контуром, определяется формулой

∆Ф s = ∆LI ,

где ΔL — изменение индуктивности контура за время Δt ; I — сила тока в контуре;

  • модуль средней ЭДС самоиндукции за определенный промежуток времени рассчитывается по формуле

〈 | ℰ i s | 〉 = I | Δ L | Δ t .

Пример 16. В замкнутом проводящем контуре с индуктивностью 20 мГн течет ток силой 1,4 А. Найти среднее значение ЭДС самоиндукции, возникающей в контуре, при равномерном уменьшении в нем силы тока на 20 % за 80 мс.

Решение . Появление ЭДС самоиндукции в контуре вызвано изменением потока, сцепленного с контуром, при изменении в нем силы тока.

Поток, сцепленный с контуром, определяется формулами:

  • при силе тока I 1

Ф s 1 = LI 1 ,

где L — индуктивность контура, L = 20 мГн; I 1 — первоначальная сила тока в контуре, I 1 = 1,4 А;

  • при силе тока I 2

Ф s 2 = LI 2 ,

где I 2 — конечная сила тока в контуре.

Изменение потока, сцепленного с контуром, определяется разностью:

Δ Ф s = Ф s 2 − Ф s 1 = L I 2 − L I 1 = L (I 2 − I 1) ,

где I 2 = 0,8I 1 .

Среднее значение ЭДС самоиндукции, возникающей в контуре, при изменении в нем силы тока:

〈 ℰ s i 〉 = | Δ Ф s Δ t | = | L (I 2 − I 1) Δ t | = | − 0,2 L I 1 Δ t | = 0,2 L I 1 Δ t ,

где ∆t — интервал времени, за который происходит уменьшение силы тока, ∆t = 80 мс.

Расчет дает значение:

〈 ℰ s i 〉 = 0,2 ⋅ 20 ⋅ 10 − 3 ⋅ 1,4 80 ⋅ 10 − 3 = 70 ⋅ 10 − 3 с = 70 мВ.

При изменении силы тока в контуре в нем возникает ЭДС самоиндукции, среднее значение которой равно 70 мВ.

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция — это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция — это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где — магнитная индукция; — магнитная постоянная; — сила тока; — расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

где — площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой — число витков, а — длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N , равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция — это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью , которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. — М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. — М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. — М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) — Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?

Физика для науки и техники II