Энергия механическая и внутренняя энергия: 500 Internal Server Error

Содержание

1.3. Энергия. Виды энергии и их особенности

1.3. Энергия. Виды энергии и их особенности

Что представляет собой понятие «энергия», которое мы так часто используем? «Энергия» (греч. ενεργια – действие, деятельность) – общая количественная мера различных форм движения материи. По большому счету понятие энергии, идея энергии искусственны и созданы специально для того, чтобы быть результатом наших размышлений об окружающем мире. В отличие от материи, о которой мы можем сказать, что она существует, энергия – это плод мысли человека, его «изобретение», построенное так, чтобы была возможность описать различные изменения в окружающем мире и в то же время говорить о постоянстве, сохранении чего-то, что было названо энергией. Для этой физической величины долгое время употреблялся термин «живая сила», введенный И. Ньютоном. Впервые в истории в понятие «живая сила» смысл «энергия», не произнося ещё этого слова, вкладывает Роберт Майер в статье «Замечания о силах неживой природы», опубликованной в 1842 году.

Специальный термин «энергия» был введен в 1807 г. английским физиком Томасом Юнгом и обозначал величину, пропорциональную массе и квадрату скорости движущегося тела. В науку термин «энергия» в современном его смысле ввел Уильям Томсон (лорд Кельвин) в 1860 году.

Энергия проявляется в различных формах движения материи, заполняющей все мировое пространство. Свойством, присущим всем видам энергии и объединяющим их, является способность каждого вида энергии переходить при определенных условиях в любой другой ее вид в строго определенном количественном соотношении. Само название этого свойства – «закон сохранения и превращения энергии» – было введено в научное обращение Ф. Энгельсом, что позволило все виды энергии измерять в одних единицах. В качестве такой единицы принят джоуль (1 Дж =1 H · м =1 кг · м 2 /с 2). В то же время для измерения количества теплоты используют «старую» единицу – 1 кал (калория), для измерения механической энергии – величину 1 кГм = 9,8 Дж, электрической энергии – 1 кВт · ч = 3,6 МДж, при этом 1 Дж = 1 Вт · с.

Почти все виды энергии, рассматриваемые в технической термодинамике, за исключением тепловой, представляют собой энергию направленного движения. Так, механическая энергия проявляется в непосредственно наблюдаемом движении тел, имеющем определенное направление в пространстве (движение газа по трубе, полет снаряда, вращение вала и т. п.). Электрическая энергия проявляется в скрытом движении электронов по проводнику (электрический ток). Тепловая энергия выражается в молекулярном и внутримолекулярном хаотическом движении, представляя собой энергию хаотического движения атомов и молекул вещества. Тепловая энергия газов проявляется в колебательном, вращательном и поступательном движении молекул, которые постоянно меняют свою скорость по величине и направлению. При этом каждая молекула может беспорядочно перемещаться по всему объему газа. В твердых телах тепловая энергия проявляется в колебаниях молекул и атомов относительно положений, определяемых кристаллической структурой вещества, в жидкостях – в колебании и перемещении молекул или их комплексов.

Следовательно, коренным отличием тепловой энергии от других видов энергии является то, что она представляет собой энергию не направленного, а хаотического движения. В результате этого превращение тепловой энергии в любой вид энергии направленного движения имеет свои особенности, изучение которых и является одной из главных задач технической термодинамики.

Каждое тело в любом его состоянии может обладать одновременно различными видами энергии, в том числе тепловой, механической, электрической, химической, внутриядерной, а также потенциальной энергией различных физических полей (гравитационного, магнитного, электрического). Сумма всех видов энергии, которыми обладает тело, представляет собой полную его энергию.

Тепловая, химическая и внутриядерная энергии входят в состав внутренней энергии тела. Все прочие виды энергии, связанные с перемещением тела, а также потенциальная энергия внешних физических полей относятся к его внешней энергии. Например, внешней энергией летящего снаряда в зоне действия сил земного притяжения будет сумма его кинетической Е к и потенциальной энергии гравитационного поля E п. г.. Если газ или жидкость движутся непрерывным потоком в трубе, то в их внешнюю энергию дополнительно входит энергия проталкивания, иногда называемая энергией давления Е пр.

Внешняя энергия, следовательно, представляет собой сумму

Е в н = Е к + Σ Е п i +Е п р, где Е п i – потенциальная энергия i -го поля (магнитного, электростатического и т. д.).

Внутренняя энергия тела U может быть представлена как бы состоящей из двух частей: внутренней тепловой энергии U Т и U 0 – внутренней нулевой энергии тела, условно охлажденного до абсолютного нуля температуры:

U=U 0 +U Т .

Внутренней тепловой энергией является та часть полной внутренней энергии тела, которая связана с тепловым хаотическим движением молекул и атомов и может быть выражена через температуру тела и другие его параметры. Поскольку температура реального тела только частично отражает его внутреннюю тепловую энергию, изменение последней может иметь место и при постоянной температуре тела. Примерами этого являются процессы испарения, плавления, сублимации, в которых происходит фазовое превращение и меняется степень хаотичности молекулярного движения.

Таким образом, полная энергия тела в общем случае может быть представлена в виде суммы внутренней нулевой U 0, внутренней тепловой U Т, внешней кинетической Е к энергий, совокупных внешних потенциальных Σ Е п i энергий и энергии проталкивания Е п р :Е=U 0 +U Т +Е к + Σ Е п i +Е п р.

Каждая из этих составляющих полной энергии может при определенных условиях превращаться одна в другую. Например, в химических реакциях имеет место взаимное превращение U 0 вU Т. Если реакция экзотермическая, то часть нулевой энергии превращается в тепловую. Нулевая энергия полученных веществ оказывается меньшей, чем исходных, – происходит «выделение тепла». В эндотермических реакциях отмечается обратное явление: нулевая энергия увеличивается за счет уменьшения тепловой энергии – происходит «поглощение тепла».

В процессах, не связанных с изменением химического состава вещества, нулевая энергия не изменяется и остается постоянной. В этих условиях изменяется только внутренняя тепловая энергия. Это позволяет в различных расчетных уравнениях учитывать изменение лишь внутренней тепловой энергии, которую в дальнейшем будем называть просто внутренней энергией U. Если однородное тело массой m имеет внутреннюю энергию U,то внутренняя энергия 1 кг этого тела u=U/m.

Величину и называют удельной внутренней энергией и измеряют в Дж/кг.

Внешняя кинетическая энергия (Дж) представляет собой энергию поступательного движения тела как целого и выражается формулой

E к =mw 2 /2, где m – масса тела, кг; w – скорость движения, м/с.

Внешняя потенциальная энергия как энергия направленного действия статических полей может быть выражена через возможные работы каждого поля от заданного положения до каких-то нулевых. Так, потенциальная энергия гравитационного поля выражается как произведение силы тяжести mg этого тела на его высоту H над каким-либо нулем отсчета:

E = mgH.

Здесь высота H представляет собой соответствующую координату.

Энергия проталкивания Е п р представляет собой дополнительную энергию вещества, возникающую в системе за счет воздействия на него других частей системы, стремящихся вытолкнуть это вещество из занимаемого сосуда. Так, при течении газа (или пара) по трубе или какому-либо каналу в условиях сплошного потока каждый килограмм этого газа, кроме внутренней и внешних кинетической и потенциальных энергий, обладает еще дополнительной, переносимой на себе энергией проталкивания:

E пр . =p υ,

где p – удельное давление; υ – удельный объем (объем 1 кг массы вещества).

Для газов, паров и жидкостей, находящихся в потоке, величина p υ (или pV для m кг вещества) определяет неотъемлемую часть их

энергии. Поэтому для веществ, находящихся в сплошном потоке, определяющим параметром будет уже не внутренняя энергия U, а сумма U+pV=I, называемая энтальпией. Для 1 кг вещества i =u+ p υ, где i – в Дж/кг.

Такой же энергией i обладает и 1 кг газа, находящийся в цилиндре, при вытеснении его поршнем.

Полная энергия рассматриваемой системы, состоящей из 1 кг газа и действующего на него поршня, будет равна сумме внутренней энергии и газа и энергии p υ его выталкивания, т. е. равна его энтальпии. На этом основании энтальпию часто называют энергией расширенной системы.

Внутренняя энергия — Технарь

Мы знаем, что существует два вида механической энергии: потенциальная и кинетическая.

Потенциальной энергией обладают тела, которые взаимодействуют друг с другом — притягиваются или отталкиваются. Например, потенциальной энергией обладает камень, поднятый над Землей, сжатая или растянутая пружина, сжатый газ.

Кинетической энергией обладают движущиеся тела: текущая вода, ветер, катящийся мяч, летящая пуля. Значение кинетической энергии зависит от массы движущегося тела и от его скорости. Потенциальная и кинетическая энергии могут превращаться друг в друга.

Рассмотрим еще один пример превращения энергии.

На свинцовой плите лежит свинцовый шар. Поднимем его вверх и отпустим (рис. 179). Когда мы подняли шар, то сообщили ему потенциальную энергию. При падении шара она уменьшается, ведь шар опускается все ниже и ниже. Зато постепенно увеличивается кинетическая энергия шара, так как увеличивается его скорость. Происходит превращение потенциальной энергии тела в кинетическую. Но вот шар ударился о свинцовую плиту и остановился (рис. 180). И кинетическая, и потенциальная энергии его относительно плиты в этот момент будут равны нулю.

Означает ли это, что энергия, которой обладал до этого шар, бесследно исчезла? Нет, не означает. Рассматривая шар и плиту после удара, мы заметим, что шар немного сплющился, и на плите образовалась небольшая вмятина, т. е. шар и плита при ударе деформировались.

Измерив сразу же после удара температуру шара и плиты (а это можно сделать), мы обнаружим, что они нагрелись.

Таким образом, в результате удара шара о плиту изменилось состояние этих тел — они деформировались и нагрелись. Но если изменилось состояние тел, то изменилась и энергия частиц, из которых состоят тела.

Действительно, мы уже знаем, что при нагревании тела увеличивается средняя скорость движения молекул, а следовательно, увеличивается их средняя кинетическая энергия. Молекулы обладают также и потенциальной энергией: ведь они взаимодействуют друг с другом — притягиваются, а при очень тесном сближении отталкиваются. При деформации же тела изменяется взаимное расположение его молекул, поэтому изменяется и их потенциальная энергия. Итак, при соударении меняется и кинетическая, и потенциальная энергия молекул.

Энергию движения и взаимодействия частиц, из которых состоит тело, называют внутренней энергией тела.

Теперь Мы узнали, что, кроме механической энергий, существует еще один вид энергии — внутренняя.

Внутренняя энергия тела не зависит ни от движения тела, ни от положения этого тела относительно других тел. Имея всегда какой-то запас внутренней энергии, тело одновременно может обладать механической энергией. Например, летящий на некоторой высоте над землей самолет, кроме внутренней энергии, обладает еще механической энергией — потенциальной и кинетической.

Кинетическая и потенциальная энергии одной молекулы очень малы, так как мала масса молекулы. Но молекул в теле много, поэтому внутренняя энергия тела, равная сумме энергий всех молекул, достаточно велика.

Так, кинетическая энергия одной молекулы водорода при комнатной температуре равна 0,000 000 000 000 000 000005 Дж (5/1021 Дж = 5*10-21 Дж). Расчеты показывают, что сумма кинетических энергий всех молекул водорода, содержащихся в 1 м3 его при тех же условиях, равна 140 000 Дж,— это уже значительное число. Если поднять на высоту 3 м громадный ковочный молот массой 5 т, то его потенциальная энергия будет составлять тоже около 140 000 Дж. Но потенциальную энергию молота легче использовать, чем внутреннюю энергию 1 м3 водорода. Достаточно отпустить молот, и, падая на деталь, он совершит работу: его потенциальная энергия будет использована.

Но не так просто и не всегда возможно использовать внутреннюю энергию тела. Способам ее использования уделяют большое внимание в науке. Успехи техники во многом связаны с тем, насколько человечество научилось «извлекать» внутреннюю энергию тел.

К внутренней энергии относят также и ту энергию, которую называют атомной энергией. При изучении тепловых явлений учитывают только энергию молекул, потому что она главным образом изменяется в этих явлениях. Поэтому в дальнейшем, говоря о внутренней энергии тела, мы будем понимать под ней кинетическую энергию теплового движения и потенциальную энергию взаимодействия молекул тела.

Вопросы. 1. Какие превращения энергии происходят при подъеме шара и при его падении? 2. Как изменяется состояние свинцового шара и свинцовой плиты в результате их соударения? 3. В какую энергию превращается механическая энергия шара при ударе его о плиту? 4. Какую энергию называют внутренней энергией тела? 5. Зависит ли внутренняя энергия тела от того, обладает само тело кинетической и потенциальной энергией или нет? 6. Какую энергию легче использовать — механическую или внутреннюю?

Урок 23. внутренняя энергия. работа. количество теплоты — Физика — 10 класс

Физика, 10 класс

Урок 23. Внутренняя энергия. Работа. Количество теплоты

Список вопросов, рассмотренных в уроке: внутренняя энергия; способы изменения внутренней энергии; различные виды теплообмена; уравнение теплового баланса; работа в термодинамике; нахождение численного значения работы в различных тепловых процессах.

Глоссарий по теме

Термодинамическая система представляет собой систему тел, которые взаимодействуют и обмениваются энергией и веществом.

Состояние равновесия — это состояние системы, в которой нет теплообмена между телами, составляющими систему.

Термодинамический процесс — процесс изменения состояния системы, который изменяет параметры системы.

Внутренняя энергия представляет собой сумму кинетической энергии хаотичного теплового движения и потенциальной энергии взаимодействия всех молекул, составляющих тело.

Теплоемкость представляет собой энергию, которая численно равна количеству тепла, которое выделяется или поглощается, когда температура тела изменяется на 1 К.

Теплопередача- это передача энергии от одного тела другому без выполнения работы.

Количество тепла является количественной мерой изменения внутренней энергии во время теплообмена.

Работа в термодинамике — это взаимодействие системы с внешними объектами, в результате чего изменяются параметры системы.

Список литературы

Г.Я. Мякишев., Б. Буховцев., Н. Н. Соцкий. Физика.10. Учебник для образовательных организаций М .: Просвещение, 2017. — С. 243-254.

Рымкевич А.П. Сборник задач по физике. 10-11 класс М.: Дрофа, 2009.- с.75-84

Основное содержание урока

Внутренняя энергия тела — это полная энергия всех молекул, которые его составляют. Внутренняя энергия идеального газа пропорциональна его температуре.

U = 3/2 · ν · R · T

Чтобы изменить внутреннюю энергию вещества, надо сообщить ему некоторое количество тепла или совершить работу.

Работа в термодинамике равна изменению внутренней энергии системы: A = ΔU.

Работа газа в изобарном процессе равна A = P · ΔV. Если газ расширяется, то А > 0, если газ сжимается, то А < 0.

Кроме того, работа газа может быть определена с использованием графика давления в зависимости от объема.

Работа газа численно равна площади под графиком давления.

Количество теплоты — это энергия, которую система получает или теряет во время теплообмена.

Количество тепла для различных термических процессов определяется по-разному.

При нагревании и охлаждении: Q = c_ ∙ m ∙ ΔT;

Во время плавления и кристаллизации: Q = ℷ ∙ m;

Во время испарения и конденсации; Q = r ∙ m;

При сжигании: Q = q ∙ m.

Для замкнутой и адиабатически изолированной системы тел выполняется уравнение теплового баланса: Q1 + Q2 + . .. + Qn = 0

Выражение для внутренней энергии одноатомного идеального или разреженного реального газа имеет следующий вид:

U = 3/2 ν ∙ R ∙ T

Для идеального газа из молекул с двумя, тремя или более атомами необходимо учитывать кинетическую энергию вращения молекул (они больше не могут считаться материальными точками), поэтому выражение для их внутренней энергии отличается от U = 3/2 ν ∙ R ∙ T числовым коэффициентом.

Для двухатомного газа (например, O2, CO и т. д.):

U = 5/2 ν ∙ R ∙ T

Для газа с тремя атомами или более (например, O3, Ch5):

U = 3ν · R · T

Изменить внутреннюю энергию вещества можно, передав ему некоторое количество тепла или выполнить над ним работу.

Существует три типа теплопередачи:

1) Теплопроводность представляет собой процесс переноса энергии от более теплого тела к менее нагретому телу с прямым контактом или от более нагретых частей тела к менее нагретым, осуществляемый хаотично движущимися частицами тела (атомы, молекулы, электроны , и т. д.). Простым примером является нагревание чашки, в которую выливают горячий чай.

2) Конвекция — это своего рода передача тепла, в которой внутренняя энергия передается снизу вверх струями или потоками жидкости или газа. Пример: нагревание воды в чайнике, который стоит на горячей плите.

3) Лучистый обмен или излучение — это процесс передачи энергии через электромагнитное излучение. Простой пример: солнечный свет.

Механическая работа изменяет механическую энергию тела. Термодинамическая работа изменяет внутреннюю энергию газа.

Если газ расширяется, то работа газа считается положительной. Если он сжат, то отрицательной.

Формула для нахождения работы газа в изобарном процессе имеет следующий вид:

A = p · ΔV

Для изотермического процесса формула принимает следующий вид: A = ν ∙ R ∙ T ∙ ln⁡ (V_2 / V_1)

Разбор тренировочных заданий

1. Объём газа, расширяющегося при постоянном давлении 100 кПа, увеличился на 20 литров. Работа, выполняемая газом в этом процессе, — _____.

Варианты ответов:

2000 Дж;

20 000 Дж;

200 Дж;

50 МДж.

Правильный вариант / варианты (или правильные комбинации вариантов): 3) 2000 Дж.

Совет: используйте формулу работы.

2. Чтобы из 5 кг снега, при температуре 0ºС, получить воду при 20ºС, необходимо сжигать в печке с КПД 40% __ кг дров.

Решение: при сгорании дров выделится количество теплоты:

из этого количества на полезную работу пойдёт только:

Для плавления снега необходимо количество теплоты:

для нагревания воды понадобится:

Согласно уравнению теплового баланса:

Отсюда следует:

Подставим числовые значения в формулу:

Ответ: 0,5175 кг.

Богданов К.Ю. — учебник по физике для 10 класса

§ 28. ВНУТРЕННЯЯ ЭНЕРГИЯ ТЕЛА. ФОРМУЛА ДЛЯ ВНУТРЕННЕЙ ЭНЕРГИИ ИДЕАЛЬНОГО ГАЗА.

Внутренней энергией тела называют сумму кинетической энергии теплового движения его атомов и молекул и потенциальной энергии их взаимодействия между собой.

Во многих случаях механическая энергия тела, являющаяся суммой его кинетической и потенциальной энергии (см. §17), изменяется. Например, мяч, катящийся по полю, замедляется, а сосулька, упавшая с крыши, разбивается о землю и превращается в несколько неподвижных осколков. Когда мяч катится по полю, он преодолевает силу трения, совершая работу, в результате чего его кинетическая энергия уменьшается на величину совершённой работы, а вместе с ней – и скорость. Работа против силы трения приводит к различным деформациям вдоль траектории мяча, его нагреву, а также к нагреву всего того, чего он касался при движении. Механическая энергия ударившейся о землю сосульки частично расходуется на работу, необходимую для того, чтобы расколоть ее на куски,  а остальная часть энергии тратится на деформацию этих осколков и участка земли, на который они упали. Ну, а если эти осколки скользили по земле прежде, чем остановиться, то часть механической энергии превратилась и в тепло.

Так как энергия не может исчезать или возникать из неоткуда, то уменьшение механической энергии движущегося мяча и падающей сосульки означает, что механическая энергия переходит в какой-то другой вид энергии, зависящий от внутреннего состояния тела – его температуры, энергии связи между его частями и т.п. Этот вид энергии тела называют его внутренней энергией.

Внутренняя энергия тела увеличивается при нагреве, так как с ростом температуры кинетическая энергия молекул тоже растёт. Вторым слагаемым внутренней энергии является потенциальная энергия связей между частицами тела, т.к. эти частицы притягиваются друг к другу, чем и обеспечивается его целостность (рис. 28). Поэтому, внутреннюю энергию тела можно изменить, если сжать, растянуть или даже раздробить его, совершая, таким образом, работу над телом.

Однако внутренняя энергия тела зависит не только от его температуры, действующих на него сил и степени раздробленности. При плавлении, затвердевании, конденсации и испарении, т.е. при изменении агрегатного состояния тела, потенциальная энергия связи между его атомами и молекулами тоже изменяется, а значит, изменяется и его внутренняя энергия. Кроме того, внутренняя энергия может изменяться, когда вещество, из которого состоит тело, вступает в химическую (или ядерную) реакцию, в результате чего химическая структура вещества (или структура атомного ядра) изменяется и его внутренняя энергия – тоже.

Очевидно, что внутренняя энергия тела должна быть пропорциональна его объёму и равна сумме кинетической и потенциальной энергии всех молекул и атомов, из которых состоит это тело. К сожалению, для большинства веществ величины кинетической и потенциальной энергии молекул неизвестны, и поэтому вычислить значение внутренней энергии соответствующих тел не представляется возможным. В то же время, идеальный газ устроен очень просто и состоит из молекул, не взаимодействующих между собой, а значит, потенциальная энергия из взаимодействия равна нулю. Поэтому внутренняя энергия идеального газа равна кинетической энергии теплового движения его атомов или молекул и может быть вычислена довольно просто следующим образом.

Пусть газ одноатомный, т.е. состоит из отдельных атомов, а не молекул, например, любой из инертных газов. Тогда кинетическая энергия атомов этого газа равна кинетической энергии их поступательного движения, так как вращательное отсутствует. Поэтому для вычисления внутренней энергии, U одноатомного газа массы m необходимо умножить среднюю кинетическую энергию, ЕСР его атома (см. 23.6) на общее количество, N атомов в газе (см. 19.1 и 19.2):


Как следует из (28.1), внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре и не зависит от других макроскопических параметров газа – его давления и объёма. Таким образом, сжимая газ в изотермических условиях, мы не изменяем его внутренней энергии.       


Вопросы для повторения:

·        Дайте определение внутренней энергии тела?

·        Как внутренняя энергия зависит от агрегатного состояния и температуры?

·        Как зависит внутренняя энергия идеального газа от его температуры, давления и объёма.

Рис. 28. Схематическое изображение внутренней энергии воды в стакане, состоящей из кинетической энергии движения её молекул (верх) и потенциальной энергии из взаимодействия (низ).

05-е. Внутренняя энергия

      § 05-е. Внутренняя энергия

Наряду с механической энергией тел и её разновидностями – кинетической и потенциальной энергией, в физике изучают и так называемую внутреннюю энергию тел.

Вы видите взлетающую ракету. Она совершает работу – поднимает космонавтов и груз. Кинетическая энергия ракеты возрастает, так как по мере подъёма ракета приобретает всё большую скорость. Потенциальная энергия ракеты также возрастает, так как она всё выше поднимается над Землёй. Следовательно, сумма этих энергий, то есть механическая энергия ракеты, тоже увеличивается.

Мы помним, что при совершении телом работы его энергия уменьшается. Однако ракета совершает работу, но её энергия не уменьшается, а увеличивается! В чём же разгадка противоречия? Оказывается, что кроме механической энергии существует ещё один вид энергии – внутренняя энергия. Именно за счёт уменьшения внутренней энергии сгорающего топлива ракета совершает механическую работу и, кроме того, увеличивает свою механическую энергию.

Не только горючие, но и горячие тела обладают внутренней энергией, которую легко превратить в механическую работу. Проделаем опыт. Нагреем в кипятке гирю и поставим на жестяную коробочку, присоединённую к манометру. По мере того как воздух в коробочке будет прогреваться, жидкость в манометре начнёт двигаться (см. рисунок).

Расширяющийся воздух совершает над жидкостью работу. За счёт какой энергии это происходит? Разумеется, за счёт внутренней энергии гири. Следовательно, в этом опыте мы наблюдаем превращение внутренней энергии тела в механическую работу. Заметим, что механическая энергия гири в этом опыте не меняется – она всё время равна нулю.

Итак, внутренняя энергия – это такая энергия тела, за счёт которой может совершаться механическая работа, при этом не вызывая убыли механической энергии этого тела.

Внутренняя энергия любого тела зависит от множества причин: рода и состояния его вещества, массы и температуры тела и других. Внутренней энергией обладают все тела: большие и маленькие, горячие и холодные, твёрдые, жидкие и газообразные.

Наиболее легко на нужды человека может быть использована внутренняя энергия лишь, образно говоря, горячих и горючих веществ и тел. Это нефть, газ, уголь, геотермальные источники вблизи вулканов и так далее. Кроме того, в XX веке человек научился использовать и внутреннюю энергию так называемых радиоактивных веществ. Это, например, уран, плутоний и другие.

Взгляните на правую часть схемы. В популярной литературе нередко упоминаются тепловая, химическая, электрическая, атомная (ядерная) и другие виды энергии. Все они, как правило, являются разновидностями внутренней энергии, так как за счёт них может совершаться механическая работа, не вызывая при этом убыли механической энергии. Понятие внутренней энергии мы рассмотрим более подробно при дальнейшем изучении физики.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!