Тема_06
51
СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ
I. Постановка задачи.
II. Совместность однородных и неоднородных систем.
III. Система т уравнений с т неизвестными. Правило Крамера.
IV. Матричный метод решения систем уравнений.
V. Метод Гаусса.
I. Постановка задачи.
(1)
называют системой m линейных уравнений с n неизвестными . Коэффициенты уравнений этой системы записывают в виде матрицы
которую называют матрицей системы (1).
Числа, стоящие в правых частях уравнений, образуют столбец свободных членов {B}:
.
Если столбец {B}={0}, то система уравнений называется однородной. В противном случае, когда {B}≠{0} – система неоднородна.
Система линейных уравнений (1) может быть записана в матричном виде
[A]{x}={B}. (2)
Здесь — столбец неизвестных.
Решить систему уравнений (1) — значит найти совокупность n чисел такую, что при подстановке в систему (1) вместо неизвестных каждое уравнение системы обращается в тождество. Числа называются решением системы уравнений.
,
может иметь бесчисленное множество решений
или не иметь решений совсем
.
Системы уравнений, не имеющие решений, называются несовместными. Если система уравнений имеет хотя бы одно решение, то она называется совместной. Система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если имеет бесчисленное множество решений.
II. Совместность однородных и неоднородных систем.
Условие совместности системы линейных уравнений (1) формулируется в теореме Кронекера-Капелли: система линейных уравнений имеет хотя бы одно решение в том и только в том случае, когда ранг матрицы системы равен рангу расширенной матрицы:
.Расширенной матрицей системы называют матрицу, получающуюся из матрицы системы приписыванием к ней справа столбца свободных членов:
.
Если RgA<RgA* , то система уравнений несовместна.
Однородные системы линейных уравнений в соответствии с теоремой Кронекера-Капелли всегда совместны. Рассмотрим случай однородной системы, в которой число уравнений равно числу неизвестных, то есть т=п. Если определитель матрицы такой системы не равен нулю, т.е. , однородная система имеет единственное решение, которое является тривиальным (нулевым). Однородные системы имеют бесчисленное множество решений, если среди уравнений системы есть линейно зависимые, т.е.
Пример. Рассмотрим однородную систему трех линейных уравнений с тремя неизвестными:
и исследуем вопрос о количестве ее решений. Каждое из уравнений можно считать уравнением плоскости, проходящей через начало координат (D=0). Система уравнений имеет единственное решение, когда все три плоскости пересекаются в одной точке. При этом их нормальные векторы некомпланарны, и, следовательно, выполняется условие
.
Решение системы при этом x=0, y=0, z=0.
Если хотя бы две из трех плоскостей, например, первая и вторая, параллельны, т.е. , то определитель матрицы системы равен нулю, а система имеет бесчисленное множество решений. Причем решениями будут координаты x, y, z всех точек, лежащих на прямой
или
.
Если же все три плоскости совпадают, то система уравнений сведется к одному уравнению
,
а решением будут координаты всех точек, лежащих в этой плоскости.
При исследовании неоднородных систем линейных уравнений вопрос о совместности решается с помощью теоремы Кронекера-Капелли. Если же число уравнений в такой системе равно числу неизвестных, то система имеет единственное решение, если ее определитель не равен нулю. В противном случае система либо несовместна, либо имеет бесчисленное множество решений.
Пример. Исследуем неоднородную систему двух уравнений с двумя неизвестными
.
RgA=1 , т.к. ,
а ранг расширенной матрицы равен двум, т. к. для нее в качестве базисного минора может быть выбран минор второго порядка, содержащий третий столбец.
В рассматриваемом случае RgA<RgA*.
Если прямые
совпадают, т.е. ,
то система уравнений имеет бесчисленное
множество решений: координаты точек на
прямой .
В этом случае RgA=RgA
Система имеет единственное решение, когда прямые не параллельны, т.е. . Решением этой системы являются координаты точки пересечения прямых
III. Система т уравнений с т неизвестными. Правило Крамера.
Рассмотрим простейший случай, когда число уравнений системы равно числу неизвестных, т.е. m=n. Если детерминант матрицы системы отличен от нуля, решение системы может быть найдено по правилу Крамера:
(3)
Здесь
— определитель матрицы системы,— определитель матрицы, получаемой из [A] заменой i-ого столбца на столбец свободных членов:
.
Пример. Решить систему уравнений методом Крамера.
Решение :
1) найдем определитель системы
3) найдем решение системы по правилу Крамера:
Результат решения может быть проверен подстановкой в систему уравнений
Получены верные тождества.
IV. Матричный метод решения систем уравнений.
[A]{x}={B}
и умножим правую и левую части соотношения (2) слева на матрицу [A-1], обратную матрице системы:
[A-1][A]{x}=[A-1]{B}. (2)
По определению обратной матрицы произведение [A-1][A]=[E], а по свойствам единичной матрицы [E]{x}={x}. Тогда из соотношения (2′) получаем
{x}=[A-1]{B}. (4)
Соотношение (4) лежит в основе матричного метода решения систем линейных уравнений: необходимо найти матрицу, обратную матрице системы, и умножить на нее слева вектор-столбец правых частей системы.
Пример. Решим матричным методом систему уравнений, рассмотренную в предыдущем примере.
Матрица системы ее определитель detA==183.
Чтобы найти матрицу [A-1], найдем матрицу, присоединенную к [A]:
или
В формулу для вычисления обратной матрицы входит , тогда
Теперь можно найти решение системы
Тогда окончательно получаем .
V. Метод Гаусса.
При большом числе неизвестных решение системы уравнений методом Крамера или матричным методом связано с вычислением определителей высокого порядка или обращением матриц больших размеров. Эти процедуры весьма трудоемки даже для современных ЭВМ. Поэтому для решения систем большого числа уравнений чаще пользуются методом Гаусса.
Метод Гаусса заключается в последовательном исключении неизвестных путем элементарных преобразований расширенной матрицы системы. К элементарным преобразованиям матрицы относят перестановку строк, сложение строк, умножение строк на числа, отличные от нуля. В результате преобразований удается матрицу системы свести к верхней треугольной, на главной диагонали которой стоят единицы, а ниже главной диагонали — нули. В этом заключается прямой ход метода Гаусса. Обратный ход метода состоит в непосредственном определении неизвестных, начиная с последнего.
Проиллюстрируем метод Гаусса на примере решения системы уравнений
На первом шаге прямого хода добиваются того, чтобы коэффициент преобразованной системы стал равен 1, а коэффициенты и обратились в ноль. Для этого первое уравнение умножим на 1/10, второе уравнение умножим на 10 и сложим с первым, третье уравнение умножим на -10/2 и сложим с первым. После этих преобразований получим
На втором шаге добиваемся того, чтобы после преобразований коэффициент стал равным 1, а коэффициент . Для этого второе уравнение разделим на 42, а третье уравнение умножим на -42/27 и сложим со вторым. Получим систему уравнений
На третьем шаге должны получить коэффициент . Для этого третье уравнение разделим на (37 — 84/27); получим
На этом прямой ход метода Гаусса заканчивается, т.к. матрица системы сведена к верхней треугольной:
Система линейных алгебраических уравнений — Википедия
Система линейных уравнений от трёх переменных определяет набор плоскостей. Точка пересечения является решением.Система линейных алгебраических уравнений (линейная система, также употребляются аббревиатуры СЛАУ, СЛУ) — система уравнений, каждое уравнение в которой является линейным — алгебраическим уравнением первой степени.
В классическом варианте коэффициенты при переменных, свободные члены и неизвестные считаются вещественными числами, но все методы и результаты сохраняются (либо естественным образом обобщаются) на случай любых полей, например, комплексных чисел.
Решение систем линейных алгебраических уравнений — одна из классических задач линейной алгебры, во многом определившая её объекты и методы. Кроме того, линейные алгебраические уравнения и методы их решения играют важную роль во многих прикладных направлениях, в том числе в линейном программировании, эконометрике.
Общий вид системы линейных алгебраических уравнений:
- {a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2…am1x1+am2x2+⋯+amnxn=bm{\displaystyle {\begin{cases}a_{11}x_{1}+a_{12}x_{2}+\dots +a_{1n}x_{n}=b_{1}\\a_{21}x_{1}+a_{22}x_{2}+\dots +a_{2n}x_{n}=b_{2}\\\dots \\a_{m1}x_{1}+a_{m2}x_{2}+\dots +a_{mn}x_{n}=b_{m}\\\end{cases}}}
Здесь m{\displaystyle m} — количество уравнений, а n{\displaystyle n} — количество переменных, x1,x2,…,xn{\displaystyle x_{1},x_{2},\dots ,x_{n}} — неизвестные, которые надо определить, коэффициенты a11,a12,…,amn{\displaystyle a_{11},a_{12},\dots ,a_{mn}} и свободные члены b1,b2,…,bm{\displaystyle b_{1},b_{2},\dots ,b_{m}} предполагаются известными. Индексы коэффициентов в системах линейных уравнений (aij{\displaystyle a_{ij}}) формируются по следующему соглашению: первый индекс (i{\displaystyle i}) обозначает номер уравнения, второй (j{\displaystyle j}) — номер переменной, при которой стоит этот коэффициент[1].
Система называется однородной, если все её свободные члены равны нулю (b1=b2=…bm=0{\displaystyle b_{1}=b_{2}=\dots b_{m}=0}), иначе — неоднородной.
Квадратная система линейных уравнений — система, у которой количество уравнений совпадает с числом неизвестных (m=n{\displaystyle m=n}). Система, у которой число неизвестных больше числа уравнений является недоопределённой, такие системы линейных алгебраических уравнений также называются прямоугольными. Если уравнений больше, чем неизвестных, то система является переопределённой.
Решение системы линейных алгебраических уравнений — совокупность n{\displaystyle n} чисел c1,c2,…,cn{\displaystyle c_{1},c_{2},\dots ,c_{n}}, таких что их соответствующая подстановка вместо x1,x2,…,xn{\displaystyle x_{1},x_{2},\dots ,x_{n}} в систему обращает все её уравнения в тождества.
Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения. Решения считаются различными, если хотя бы одно из значений переменных не совпадает. Совместная система с единственным решением называется определённой, при наличии более одного решения — недоопределённой.
Система линейных алгебраических уравнений может быть представлена в матричной форме как:
- (a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn)(x1x2⋮xn)=(b1b2⋮bm){\displaystyle {\begin{pmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{pmatrix}}{\begin{pmatrix}x_{1}\\x_{2}\\\vdots \\x_{n}\end{pmatrix}}={\begin{pmatrix}b_{1}\\b_{2}\\\vdots \\b_{m}\end{pmatrix}}}
или:
- Ax=b{\displaystyle Ax=b}.
Здесь A{\displaystyle A} — это матрица системы, x{\displaystyle x} — столбец неизвестных, а b{\displaystyle b} — столбец свободных членов. Если к матрице A{\displaystyle A} приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.
Теорема Кронекера — Капелли устанавливает необходимое и достаточное условие совместности системы линейных алгебраических уравнений посредством свойств матричных представлений: система совместна тогда и только тогда, когда ранг её матрицы совпадает с рангом расширенной матрицы.
Эквивалентные системы линейных уравнений[править | править код]
Системы линейных уравнений называются эквивалентными, если множество их решений совпадает, то есть любое решение одной системы одновременно является решением другой, и наоборот. Также считается, что системы, не имеющие решений, эквивалентны.
Систему, эквивалентную данной, можно получить, в частности, заменив одно из уравнений на это уравнение, умноженное на любое отличное от нуля число. Эквивалентную систему можно получить также, заменив одно из уравнений суммой этого уравнения с другим уравнением системы. В общем, замена уравнения системы на линейную комбинацию уравнений даёт систему, эквивалентную исходной.
Система линейных алгебраических уравнений Ax =b{\displaystyle A\mathbf {x} \ =\mathbf {b} } эквивалентна системе CAx =Cb{\displaystyle CA\mathbf {x} \ =C\mathbf {b} }, где C{\displaystyle C} — невырожденная матрица. В частности, если сама матрица A{\displaystyle A} — невырожденная, и для неё существует обратная матрица A−1{\displaystyle A^{-1}}, то решение системы уравнений можно формально записать в виде x=A−1b{\displaystyle \mathbf {x} =A^{-1}\mathbf {b} }.
Прямые методы дают алгоритм, по которому можно найти точное решение систем линейных алгебраических уравнений. Итерационные методы основаны на использовании повторяющегося процесса и позволяют получить решение в результате последовательных приближений.
Некоторые прямые методы:
Итерационные методы устанавливают процедуру уточнения определённого начального приближения к решению. При выполнении условий сходимости они позволяют достичь любой точности просто повторением итераций. Преимущество этих методов в том, что часто они позволяют достичь решения с заранее заданной точностью быстрее, а также позволяют решать большие системы уравнений. Суть этих методов состоит в том, чтобы найти неподвижную точку матричного уравнения
- x=A′x+b′{\displaystyle \mathbf {x} =A^{\prime }\mathbf {x} +\mathbf {b} ^{\prime }},
эквивалентного начальной системе линейных алгебраических уравнений. При итерации x{\displaystyle \mathbf {x} } в правой части уравнения заменяется, например, в методе Якоби (метод простой итерации) приближение, найденное на предыдущем шаге:
- xn+1=A′xn+b′{\displaystyle \mathbf {x} _{n+1}=A^{\prime }\mathbf {x} _{n}+\mathbf {b} ^{\prime }}.
Итерационные методы делятся на несколько типов, в зависимости от применяемого подхода:
- Основанные на расщеплении: (M−N)x=b⇔Mx=Nx+b⇒Mxn+1=Nxn+b{\displaystyle (M-N)\mathbf {x} =\mathbf {b} \Leftrightarrow M\mathbf {x} =N\mathbf {x} +\mathbf {b} \Rightarrow M\mathbf {x} ^{n+1}=N\mathbf {x} ^{n}+\mathbf {b} }
- Вариационного типа: Ax=b⇒‖Ax−b‖→min{\displaystyle A\mathbf {x} =\mathbf {b} \Rightarrow \|A\mathbf {x} -\mathbf {b} \|\rightarrow \min }
- Проекционного типа: Ax=b⇒(Ax,m)=(b,m)∀m{\displaystyle A\mathbf {x} =\mathbf {b} \Rightarrow (A\mathbf {x} ,\mathbf {m} )=(\mathbf {b} ,\mathbf {m} )\forall \mathbf {m} }
Среди итерационных методов:
- ↑ Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. — 6-е изд., стер. — М.: Физматлит, 2004. — 280 с.
- ↑ Вержбицкий В. М. Основы численных методов. — М.: Высшая школа, 2009. — С. 80—84. — 840 с. — ISBN 9785060061239.
Три случая при решении систем линейных уравнений — КиберПедия
Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:
Первый случай: система линейных уравнений имеет единственное решение
(система совместна и определённа)
Условия:
*
Второй случай: система линейных уравнений имеет бесчисленное множество решений
(система совместна и неопределённа)
Условия:
* ,
** ,
т.е. коэффициенты при неизвестных и свободные члены пропорциональны.
Третий случай: система линейных уравнений решений не имеет
(система несовместна)
Условия:
*
** .
Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.
Примеры решения систем линейных уравнений методом Крамера
Пусть дана система
.
На основании теоремы Крамера
………….
,
где
—
определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:
Пример 2. Решить систему линейных уравнений методом Крамера:
.
Решение. Находим определитель системы:
Следовательно, система является определённой. Для нахождения её решения вычисляем определители
По формулам Крамера находим:
Итак, (1; 0; -1) – единственное решение системы.
Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.
Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.
Пример 3. Решить систему линейных уравнений методом Крамера:
.
Решение. Находим определитель системы:
Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных
По формулам Крамера находим:
Итак, решение системы — (2; -1; 1).
6. Общая система линейных алгебраических уравнений. Метод Гаусса.
Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений, который в каждом случаеприведет нас к ответу! Сам алгоритм метода во всех трёх случаях работает одинаково. Если в методах Крамера и матричном необходимы знания определителей, то для применения метода Гаусса необходимо знание только арифметических действий, что делает его доступным даже для школьников начальных классов.
Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:
1) Иметь единственное решение.
2) Иметь бесконечно много решений.
3) Не иметь решений (быть несовместной).
Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случаеприведет нас к ответу! На данном уроке мы опять рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№2-3 отведена статья Несовместные системы и системы с общим решением. Замечу, что сам алгоритм метода во всех трёх случаях работает одинаково.
Вернемся к простейшей системе с урока Как решить систему линейных уравнений?
и решим ее методом Гаусса.
На первом этапе нужно записать расширенную матрицу системы:
. По какому принципу записаны коэффициенты, думаю, всем видно. Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто отчеркивание для удобства оформления.
Справка: рекомендую запомнить термины линейной алгебры. Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей.
После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями.
Существуют следующие элементарные преобразования:
1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:
2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: .
3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить. Рисовать не буду, понятно, нулевая строка – это строка, в которой одни нули.
4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля. Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.
5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля. Рассмотрим нашу матрицу из практического примера: . Сначала я распишу преобразование очень подробно. Умножаем первую строку на –2: , и ко второй строке прибавляем первую строку умноженную на –2: . Теперь первую строку можно разделить «обратно» на –2: . Как видите, строка, которую ПРИБАВЛЯЛИ – не изменилась. Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ.
На практике так подробно, конечно, не расписывают, а пишут короче:
Еще раз: ко второй строке прибавили первую строку, умноженную на –2. Умножают строку обычно устно или на черновике, при этом мысленный ход расчётов примерно такой:
«Переписываю матрицу и переписываю первую строку: »
«Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0. Записываю результат во вторую строку: »
«Теперь второй столбец. Вверху –1 умножаю на –2: . Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку: »
«И третий столбец. Вверху –5 умножаю на –2: . Ко второй строке прибавляю первую: –7 + 10 = 3. Записываю результат во вторую строку: »
Пожалуйста, тщательно осмыслите этот пример и разберитесь в последовательном алгоритме вычислений, если вы это поняли, то метод Гаусса практически «в кармане». Но, конечно, над этим преобразованием мы еще поработаем.
Элементарные преобразования не меняют решение системы уравнений
! ВНИМАНИЕ: рассмотренные манипуляции нельзя использовать, если Вам предложено задание, где матрицы даны «сами по себе». Например, при «классических» действиях с матрицами что-то переставлять внутри матриц ни в коем случае нельзя!
Вернемся к нашей системе . Она практически разобрана по косточкам.
Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:
(1) Ко второй строке прибавили первую строку, умноженную на –2. И снова: почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке.
(2) Делим вторую строку на 3.
Цель элементарных преобразований – привести матрицу к ступенчатому виду: . В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид.
В результате элементарных преобразований получена эквивалентная исходной система уравнений:
Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса.
В нижнем уравнении у нас уже готовый результат: .
Рассмотрим первое уравнение системы и подставим в него уже известное значение «игрек»:
Ответ:
Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными.
Пример 1
Решить методом Гаусса систему уравнений:
Запишем расширенную матрицу системы:
Сейчас я сразу нарисую результат, к которому мы придём в ходе решения:
И повторюсь, наша цель – с помощью элементарных преобразований привести матрицу к ступенчатому виду. С чего начать действия?
Сначала смотрим на левое верхнее число:
Почти всегда здесь должна находиться единица. Вообще говоря, устроит и –1 (а иногда и другие числа), но как-то так традиционно сложилось, что туда обычно помещают единицу. Как организовать единицу? Смотрим на первый столбец – готовая единица у нас есть! Преобразование первое: меняем местами первую и третью строки:
Теперь первая строка у нас останется неизменной до конца решения. Уже легче.
Единица в левом верхнем углу организована. Теперь нужно получить нули вот на этих местах:
Нули получаем как раз с помощью «трудного» преобразования. Сначала разбираемся со второй строкой (2, –1, 3, 13). Что нужно сделать, чтобы на первой позиции получить ноль? Нужно ко второй строке прибавить первую строку, умноженную на –2. Мысленно или на черновике умножаем первую строку на –2: (–2, –4, 2, –18). И последовательно проводим (опять же мысленно или на черновике) сложение, ко второй строке прибавляем первую строку, уже умноженную на –2:
Результат записываем во вторую строку:
Аналогично разбираемся с третьей строкой (3, 2, –5, –1). Чтобы получить на первой позиции ноль, нужно к третьей строке прибавить первую строку, умноженную на –3. Мысленно или на черновике умножаем первую строку на –3: (–3, –6, 3, –27). И к третьей строке прибавляем первую строку, умноженную на –3:
Результат записываем в третью строку:
На практике эти действия обычно выполняются устно и записываются в один шаг:
Не нужно считать всё сразу и одновременно. Порядок вычислений и «вписывания» результатов последователен и обычно такой: сначала переписываем первую строку, и пыхтим себе потихонечку – ПОСЛЕДОВАТЕЛЬНО иВНИМАТЕЛЬНО:
А мысленный ход самих расчётов я уже рассмотрел выше.
Далее нужно получить единицу на следующей «ступеньке»:
В данном примере это сделать легко, вторую строку делим на –5 (поскольку там все числа делятся на 5 без остатка). Заодно делим третью строку на –2, ведь чем меньше числа, тем проще решение:
На заключительном этапе элементарных преобразований нужно получить еще один ноль здесь:
Для этого к третьей строке прибавляем вторую строку, умноженную на –2:
Попробуйте разобрать это действие самостоятельно – мысленно умножьте вторую строку на –2 и проведите сложение.
Последнее выполненное действие – причёска результата, делим третью строку на 3.
В результате элементарных преобразований получена эквивалентная исходной система линейных уравнений:
Круто.
Теперь в действие вступает обратный ход метода Гаусса. Уравнения «раскручиваются» снизу вверх.
В третьем уравнении у нас уже готовый результат:
Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом:
И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым:
Ответ:
Как уже неоднократно отмечалось, для любой системы уравнений можно и нужно сделать проверку найденного решения, благо, это несложно и быстро.
Пример 2
Решить систему линейных уравнений методом Гаусса
Это пример для самостоятельного решения, образец чистового оформления и ответ в конце урока.
Следует отметить, что ваш ход решения может не совпасть с моим ходом решения, и это – особенность метода Гаусса. Но вот ответы обязательно должны получиться одинаковыми!
Пример 3
Решить систему линейных уравнений методом Гаусса
Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:
Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Я поступил так:
(1) К первой строке прибавляем вторую строку, умноженную на –1. То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.
Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное телодвижение: умножить первую строку на –1 (сменить у неё знак).
Дальше алгоритм работает уже по накатанной колее:
(2) Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.
(3) Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.
(4) К третьей строке прибавили вторую строку, умноженную на 2.
(5) Третью строку разделили на 3.
Скверным признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде , и, соответственно, , то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.
Заряжаем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает, снизу вверх. Да тут подарок получился:
Ответ: .
Пример 4
Решить систему линейных уравнений методом Гаусса
Это пример для самостоятельного решения, он несколько сложнее. Ничего страшного, если кто-нибудь запутается. Полное решение и образец оформления в конце урока. Ваше решение может отличаться от моего решения.
В последней части рассмотрим некоторые особенности алгоритма Гаусса.
Первая особенность состоит в том, что иногда в уравнениях системы отсутствуют некоторые переменные, например:
Как правильно записать расширенную матрицу системы? Об этом моменте я уже рассказывал на уроке Правило Крамера. Матричный метод. В расширенной матрице системы на месте отсутствующих переменных ставим нули:
Кстати, это довольно легкий пример, поскольку в первом столбце уже есть один ноль, и предстоит выполнить меньше элементарных преобразований.
Вторая особенность состоит вот в чём. Во всех рассмотренных примерах на «ступеньки» мы помещали либо –1, либо +1. Могут ли там быть другие числа? В ряде случаев могут. Рассмотрим систему: .
Здесь на левой верхней «ступеньке» у нас двойка. Но замечаем тот факт, что все числа в первом столбце делятся на 2 без остатка – и другая двойка и шестерка. И двойка слева вверху нас устроит! На первом шаге нужно выполнить следующие преобразования: ко второй строке прибавить первую строку, умноженную на –1; к третьей строке прибавить первую строку, умноженную на –3. Таким образом, мы получим нужные нули в первом столбце.
Или еще такой условный пример: . Здесь тройка на второй «ступеньке» тоже нас устраивает, поскольку 12 (место, где нам нужно получить ноль) делится на 3 без остатка. Необходимо провести следующее преобразование: к третьей строке прибавить вторую строку, умноженную на –4, в результате чего и будет получен нужный нам ноль.
Метод Гаусса универсален, но есть одно своеобразие. Уверенно научиться решать системы другими методами (методом Крамера, матричным методом) можно буквально с первого раза – там очень жесткий алгоритм. Но вот чтобы уверенно себя чувствовать в методе Гаусса, следует «набить руку», и прорешать хотя бы 5-10 систем. Поэтому поначалу возможны путаница, ошибки в вычислениях, и в этом нет ничего необычного или трагического.
Дождливая осенняя погода за окном…. Поэтому для всех желающих более сложный пример для самостоятельного решения:
Пример 5
Решить методом Гаусса систему четырёх линейных уравнений с четырьмя неизвестными.
Такое задание на практике встречается не так уж и редко. Думаю, даже чайнику, который обстоятельно изучил эту страницу, интуитивно понятен алгоритм решения такой системы. Принципиально всё так же – просто действий больше.
Случаи, когда система не имеет решений (несовместна) или имеет бесконечно много решений, рассмотрены на уроке Несовместные системы и системы с общим решением. Там же можно закрепить рассмотренный алгоритм метода Гаусса.
Желаю успехов!
Решения и ответы:
Пример 2: Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.
Выполненные элементарные преобразования:
(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –1. Внимание! Здесь может возникнуть соблазн из третьей строки вычесть первую, крайне не рекомендую вычитать – сильно повышается риск ошибки. Только складываем!
(2) У второй строки сменили знак (умножили на –1). Вторую и третью строки поменяли местами. Обратите внимание, что на «ступеньках» нас устраивает не только единица, но еще и –1, что даже удобнее.
(3) К третьей строке прибавили вторую строку, умноженную на 5.
(4) У второй строки сменили знак (умножили на –1). Третью строку разделили на 14.
Обратный ход:
Ответ: .
Пример 4: Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:
Выполненные преобразования:
(1) К первой строке прибавили вторую. Таким образом, организована нужная единица на левой верхней «ступеньке».
(2) Ко второй строке прибавили первую строку, умноженную на 7. К третьей строке прибавили первую строку, умноженную на 6.
Со второй «ступенькой» всё хуже, «кандидаты» на неё – числа 17 и 23, а нам нужна либо единичка, либо –1. Преобразования (3) и (4) будут направлены на получение нужной единицы
(3) К третьей строке прибавили вторую, умноженную на –1.
(4) Ко второй строке прибавили третью, умноженную на –3.
Нужная вещь на второй ступеньке получена.
(5) К третьей строке прибавили вторую, умноженную на 6.
(6) Вторую строку умножили на –1, третью строку разделили на -83.
Обратный ход:
Ответ:
Пример 5: Решение: Запишем матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:
Выполненные преобразования:
(1) Первую и вторую строки поменяли местами.
(2) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –2. К четвертой строке прибавили первую строку, умноженную на –3.
(3) К третьей строке прибавили вторую, умноженную на 4. К четвертой строке прибавили вторую, умноженную на –1.
(4) У второй строки сменили знак. Четвертую строку разделили на 3 и поместили вместо третьей строки.
(5) К четвертой строке прибавили третью строку, умноженную на –5.
Обратный ход:
Ответ:
7.Ранг матрицы. Теорема Корнекера-Капелли.
8. Однородные системы
В рамках уроков метод Гаусса и Несовместные системы/системы с общим решениеммы рассматривали неоднородные системы линейных уравнений, где свободный член(который обычно находится справа) хотя бы одного из уравнений был отличен от нуля.
И сейчас, после хорошей разминки с рангом матрицы, мы продолжим шлифовать технику элементарных преобразований на однородной системе линейных уравнений.
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.
17 Системы линейных уравнений
§1. Системы линейных уравнений.
Система вида
(1)
называется системой m линейных уравнений с n неизвестными.
Здесь — неизвестные, — коэффициенты при неизвестных, — свободные члены уравнений.
Если все свободные члены уравнений равны нулю, система называется однородной. Решением системы называется совокупность чисел , при подстановке которых в систему вместо неизвестных все уравнения обращаются в тождества. Система называется совместной, если она имеет хотя бы одно решение. Совместная система, имеющая единственное решение, называется определенной. Две системы называются эквивалентными, если множества их решений совпадают.
Система (1) может быть представлена в матричной форме с помощью уравнения
(2)
где
.
§2. Совместность систем линейных уравнений.
Назовем расширенной матрицей системы (1) матрицу
Теорема Кронекера — Капелли. Система (1) совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы:
.
§3. Решение систем n линейных уравнений с n неизвестными.
Рассмотрим неоднородную систему n линейных уравнений с n неизвестными:
(3)
Теорема Крамера. Если главный определитель системы (3) , то система имеет единственное решение, определяемое по формулам:
т.е. ,
где — определитель, получаемый из определителя заменой -го столбца на столбец свободных членов.
Если , а хотя бы один из ≠0, то система решений не имеет.
Если , то система имеет бесконечно много решений.
Систему (3) можно решить, используя ее матричную форму записи (2). Если ранг матрицы А равен n, т.е. , то матрица А имеет обратную . Умножив матричное уравнение на матрицу слева, получим:
.
Последнее равенство выражает способ решения систем линейных уравнений с помощью обратной матрицы.
Пример. Решить систему уравнений с помощью обратной матрицы.
Решение. Матрица невырожденная, так как , значит, существует обратная матрица. Вычислим обратную матрицу:.
Тогда
,
т.е. .
Задание. Решить систему методом Крамера.
§4. Решение произвольных систем линейных уравнений.
Пусть дана неоднородная система линейных уравнений вида (1).
Предположим, что система совместна, т.е. выполнено условие теоремы Кронекера-Капелли: . Если ранг матрицы (числу неизвестных), то система имеет единственное решение. Если , то система имеет бесконечно много решений. Поясним.
Пусть ранг матрицы r(A)=r<n. Поскольку , то существует некоторый ненулевой минор порядка r. Назовем его базисным минором. Неизвестные, коэффициенты которых образуют базисный минор, назовем базисными переменными. Остальные неизвестные назовем свободными переменными. Переставим уравнения и перенумеруем переменные так, чтобы этот минор располагался в левом верхнем углу матрицы системы:
.
Первые r строк линейно независимы, остальные выражаются через них. Следовательно, эти строки (уравнения) можно отбросить. Получим:
Дадим свободным переменным произвольные числовые значения: . Оставим в левой части только базисные переменные, свободные перенесем в правую часть.
Получили систему r линейных уравнений с r неизвестными, определитель которой отличен от 0. Она имеет единственное решение.
Эта система называется общим решением системы линейных уравнений (1). Иначе: выражение базисных переменных через свободные называется общим решением системы. Из него можно получить бесконечное множество частных решений, придавая свободным переменным произвольные значения. Частное решение, полученное из общего при нулевых значениях свободных переменных называется базисным решением. Число различных базисных решений не превосходит . Базисное решение с неотрицательными компонентами называется опорным решением системы.
Пример.
, r=2.
Переменные — базисные, — свободные.
Сложим уравнения; выразим через :
— общее решение.
— частное решение при .
— базисное решение, опорное.
§5. Метод Гаусса.
Метод Гаусса — это универсальный метод исследования и решения произвольных систем линейных уравнений. Он состоит в приведении системы к диагональному (или треугольному) виду путем последовательного исключения неизвестных с помощью элементарных преобразований, не нарушающих эквивалентности систем. Переменная считается исключенной, если она содержится только в одном уравнении системы с коэффициентом 1.
Элементарными преобразованиями системы являются:
— умножение уравнения на число, отличное от нуля;
— сложение уравнения, умноженного на любое число, с другим уравнением;
— перестановка уравнений;
— отбрасывание уравнения 0 = 0.
Элементарные преобразования можно совершать не над уравнениями, а над расширенными матрицами получающихся эквивалентных систем.
Пример.
Решение. Выпишем расширенную матрицу системы:
.
Выполняя элементарные преобразования, приведем левую часть матрицы к единичному виду: на главной диагонали будем создавать единицы, а вне ее — нули.
Замечание. Если при выполнении элементарных преобразований получено уравнение вида 0 = к (где к0), то система несовместна.
Решение систем линейных уравнений методом последовательного исключения неизвестных можно оформлять в виде таблицы.
Левый столбец таблицы содержит информацию об исключенных (базисных) переменных. Остальные столбцы содержат коэффициенты при неизвестных и свободные члены уравнений.
В исходную таблицу записывают расширенную матрицу системы. Далее приступают к выполнению преобразований Жордана:
1. Выбирают переменную , которая станет базисной. Соответствующий столбец называют ключевым. Выбирают уравнение, в котором эта переменная останется, будучи исключенной из других уравнений. Соответствующую строку таблицы называют ключевой. Коэффициент , стоящий на пересечении ключевой строки и ключевого столбца, называют ключевым.
2. Элементы ключевой строки делят на ключевой элемент.
3. Ключевой столбец заполняют нулями.
4. Остальные элементы вычисляют по правилу прямоугольника. Составляют прямоугольник, в противоположных вершинах которого находятся ключевой элемент и пересчитываемый элемент; из произведения элементов, стоящих на диагонали прямоугольника с ключевым элементом, вычитают произведение элементов другой диагонали, полученную разность делят на ключевой элемент.
Пример. Найти общее решение и базисное решение системы уравнений:
Решение.
Базис |
|
|
|
|
| |
| 2 -1 -3 | 1 1 0 | -2 1 2 | 1 0 0 | -9 -2 2 | 4 4 2 |
| 3 -1 -3 | 0 1 0 | -3 1 2 | 1 0 0 | -7 -2 2 | 0 4 2 |
| -1,5 0,5 -1,5 | 0 1 0 | 0 0 1 | 1 0 0 | -4 -3 1 | 3 3 1 |
Общее решение системы :
Базисное решение: .
Перейти от одного базиса системы к другому позволяет преобразование однократного замещения: вместо одной из основных переменных в базис вводят одну из свободных переменных. Для этого в столбце свободной переменной выбирают ключевой элемент и выполняют преобразования по указанному выше алгоритму.
§6. Нахождение опорных решений
Опорным решением системы линейных уравнений называется базисное решение, не содержащее отрицательных компонент.
Опорные решения системы находят методом Гаусса при выполнении следующих условий.
1. В исходной системе все свободные члены должны быть неотрицательны: .
2. Ключевой элемент выбирают среди положительных коэффициентов.
3. Если при переменной, вводимой в базис, имеется несколько положительных коэффициентов, то в качестве ключевой строки берется та, в которой отношение свободного члена к положительному коэффициенту будет наименьшим.
Замечание 1. Если в процессе исключения неизвестных появится уравнение, в котором все коэффициенты неположительны, а свободный член , то система не имеет неотрицательных решений.
Замечание 2. Если в столбцах коэффициентов при свободных переменных нет ни одного положительного элемента, то переход к другому опорному решению невозможен.
Пример.
базис |
|
|
|
|
|
|
| ; |
| 11 -6 -8 | 4 -1 -3 | -39 11 29 | 3 -5 -5 | 0 1 0 | -1 1 1 | 0 15 1 | min; |
| 3 2 -8 | 1 2 -3 | -10 -18 29 | -2 0 -5 | 0 1 0 | 0 0 1 | 1 14 1 | min; |
| 3 -4 1 | 1 0 0 | -10 2 -1 | -2 4 -11 | 0 1 0 | 0 0 1 | 1 12 4 | min; ; |
| 1 0 0 |
|
|
| 0 1 0 | 0 0 1 |
| . |
если система линейных уравнений имеет единственное решение
Вы искали если система линейных уравнений имеет единственное решение? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и если система уравнений имеет единственное решение если, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «если система линейных уравнений имеет единственное решение».
Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как если система линейных уравнений имеет единственное решение,если система уравнений имеет единственное решение если,как решать слау,когда система имеет бесконечное множество решений,когда система имеет единственное решение,когда система не имеет решений,когда система уравнений не имеет решений,линейные уравнения система,метод решения слау,методы решения линейных уравнений,методы решения систем линейных уравнений,методы решения системы линейных уравнений,общее решение системы линейных уравнений,примеры системы линейных уравнений,примеры слау,решение линейных систем,решение систем линейных уравнений,решение системы линейных уравнений,решение слау,система имеет единственное решение когда,система линейная уравнений,система линейных уравнений имеет единственное решение если,система линейных уравнений примеры,система уравнений не имеет решений когда,системы линейных уравнений и методы их решения,системы линейных уравнений методы решения,системы линейных уравнений примеры,слау как решать,слау примеры,способы решения систем линейных уравнений. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и если система линейных уравнений имеет единственное решение. Просто введите задачу в окошко и нажмите «решить» здесь (например, как решать слау).
Где можно решить любую задачу по математике, а так же если система линейных уравнений имеет единственное решение Онлайн?
Решить задачу если система линейных уравнений имеет единственное решение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.
5. Системы линейных уравнений
Раздел 5. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ
Системы линейных уравнений
Основные понятия
Системой линейных алгебраических уравнений, содержащей т уравнений и п неизвестных, называется система вида
где числа аij, i=, j= называются коэффициентами системы, числа bi – свободными членами. Подлежат нахождению числа хп.
Такую систему удобно записывать в компактной матричной форме .
Здесь А – матрица коэффициентов системы, называемая основной матрицей:
,
– вектор-столбец из неизвестных хj, – вектор-столбец из свободных членов bi.
Расширенной матрицей системы называется матрица системы, дополненная столбцом свободных членов
.
Решением системы называется п значений неизвестных х1=с1, х2=с2, …, хп=сп, при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записать в виде матрицы-столбца .
Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.
Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.
Решить систему – это значит выяснить, совместна она или не совместна. Если система совместна, то найти ее общее решение.
Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.
Эквивалентные системы получаются, в частности, при элементарных преобразованиях системы при условии, что преобразования выполняются лишь над строками матрицы.
Система линейных уравнений называется однородной, если все свободные члены равны нулю:
Однородная система всегда совместна, так как х1=х2=…=хп=0 является решением системы. Это решение называется нулевым или тривиальным.
Решение систем линейных уравнений
Пусть дана произвольная система т линейных уравнений с п неизвестными
Теорема 1 (Кронекера-Капелли). Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы равен рангу основной матрицы.
Теорема 2. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.
Теорема 3. Если ранг совместной системы меньше числа неизвестных, то система имеет бесконечное множество решений.
П р и м е р. Исследовать на совместность систему
Решение. , r(A)=1; , r()=2, .
Таким образом, r(A) r(), следовательно, система несовместна.
Решение невырожденных систем линейных уравнений. Формулы Крамера
Пусть дана система п линейных уравнений с п неизвестными
или в матричной форме А∙Х=В.
Основная матрица А такой системы – квадратная. Определитель этой матрицы называется определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной.
Найдем решение данной системы уравнений в случае ∆0. умножив обе части уравнения А∙Х=В слева на матрицу А1, получим А1∙ А∙Х= А1∙В. Поскольку А1∙ А=Е и Е∙Х=Х, то Х= А1∙ В. Данный способ решения системы называют матричным.
Из матричного способа вытекают формулы Крамера , где ∆ – определитель основной матрицы системы, а ∆i – определитель, полученный из определителя ∆ путем замены i-го столбца коэффициентов столбцом из свободных членов.
П р и м е р. Решить систему
Решение. , 70, , . Значит, х1=, х2=.
Решение систем линейных уравнений методом Гаусса
Метод Гаусса состоит в последовательном исключении неизвестных.
Пусть дана система уравнений
Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.
где k ≤ п, аii 0, i=. Коэффициенты аii называются главными элементами системы.
На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.
Замечания:
Если ступенчатая система оказывается треугольной, т.е. k=n, то исходная система имеет единственное решение. Из последнего уравнения находим хп, из предпоследнего уравнения находим хп1, далее поднимаясь по системе вверх, найдем все остальные неизвестные.
На практике удобнее работать с расширенной матрицей системы, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент а11 был равен 1(уравнения переставить местами, либо разделить на а111).
П р и м е р. Решить систему методом Гаусса
Решение. В результате элементарных преобразований над расширенной матрицей системы
~~~
~
исходная система свелась к ступенчатой:
Поэтому общее решение системы: x2=5x4 13x3 3; x1=5x4 8x3 1.
Если положить, например, х3=х4=0, то найдем одно из частных решений этой системы х1=1, х2=3, х3=0, х4=0.
Систем однородных линейных уравнений
Пусть дана система линейных однородных уравнений
Очевидно, что однородная система всегда совместна, она имеет нулевое (тривиальное) решение.
Теорема 4. Для того, чтобы система однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы ранг ее основной матрицы был меньше числа неизвестных, т.е. r<n.
Теорема 5. Для того, чтобы однородная система п линейных уравнений с п неизвестными имела ненулевое решение, необходимо и достаточно, чтобы определитель ее основной матрицы был равен нулю, т.е. ∆=0.
Если система имеет ненулевые решения, то ∆=0.
П р и м е р. Решить систему
Решение. , r(A)=2 , п=3. Так как r<n, то система имеет бесконечное множество решений.
, . Стало быть, х1==2х3, х2==3х3 – общее решение.
Положив х3=0, получим одно частное решение: х1=0, х2=0, х3=0. Положив х3=1, получим второе частное решение: х1=2, х2=3, х3=1 и т.д.
Вопросы для контроля
Что такое система линейных алгебраических уравнений?
Поясните следующие понятия: коэффициент, свободный член, основная и расширенная матрицы.
Какими бывают системы линейных уравнений? Сформулируйте теорему Кронкера-Капелли (о совместности системы линейных уравнений).
Перечислите и поясните методы решения систем линейных уравнений.
5
2) Существование и единственность решения слау
Однородная система ЛАУ может иметь и нетривиальное решение. Существование нетривиального решения система линейных алгебраических уравнений эквивалентно линейной зависимости столбцов матрицы коэффициентов A, поскольку линейная зависимость предполагает существование чисел , которые не все равны нулю и такие, что справедливы равенства:
(6)
Теорема 1 (о базисном миноре). Базисные строки (столбцы) линейно независимы. Любая строка (столбец) матрицы является линейной комбинацией базисных строк (столбцов).
В силу данной теоремы линейная зависимость столбцов матрицы , будет иметь место только тогда, когда не все столбцы этой матрицы являются базисными, то есть когда порядокr базисного минора меньше числа её столбцов.
Теорема 2 Однородная система ЛАУ имеет нетривиальное решение тогда и только тогда, когда ранг матрицыменьше числаеё столбцов.
Следствие Квадратная однородная система ЛАУ имеет нетривиальные решения тогда и только тогда, когда определитель матрицы коэффициентов равен нулю.
То есть при рангматрицыбудет меньше числатогда и только тогда, когда.
В общем случае существование решения неоднородной СЛАУ определяется теоремой Кронекера-Капели (теорема 3).
Теорема 3 Для того, что бы линейная система ЛАУ являлось совместной, необходимо и достаточно, чтобы ранг расширенной матрицы этой системы был равен рангу её основной матрицы.
На вопрос о единственности решения СЛАУ может помочь найти ответ теорема о числе решений (теорема 4).
Теорема 4 Пусть для системы m линейных уравнений с неизвестными выполнено условие совместности, то есть рангматрицы коэффициентов системы равен рангу её расширенной матрицы. Тогда, если ранг матрицы системы равен числу неизвестных (), то система имеетединственное решение. Если ранг матрицы системы меньше числа неизвестных (), то система имеет бесконечно много решений, а именно: некоторымнеизвестным можно придавать произвольные значения, тогда оставшиесянеизвестных определится уже единственным образом.
Структура общего решения
Поскольку СЛАУ можно записать в матричной форме (5), то путём применения операций над векторами, вектор – столбец неизвестныхZ можно определить из выражения:
, (7)
где – обратная матрица.
После преобразований, решение СЛАУ при использовании матричного метода может быть найдено из соотношений:
(8)
или:
, ,
Данное решение СЛАУ называется методом Крамера.
Практическое использование этого метода связано с громоздкими вычислениями (для решения системы уравнений снеизвестными приходится вычислитьопределитель-го порядка). Кроме того, если коэффициент уравнений и свободные члены представляют собой лишь приближённые каких-либо измеримых физических величин или округляются в процессе вычислений, то использование формул Крамера может привести к большим ошибкам, а иногда бывает нецелесообразным.
Пример. Найдём решение СЛАУ:
1);;;;.
Система неоднородна, СЛАУ совместна; так как , то СЛАУ имеет единственное решение.
Лекция №7
Точность решения СЛАУ
Возмущение СЛАУ.
Норма линейного оператора и его матрицы.
Число обусловленности.
Возмущение СЛАУ
При постановке математической задачи, как правило, имеются параметры, которые не фиксированы и могут принимать произвольные значения из некоторых интервалов. В качестве таких параметров могут рассматриваться данные измерения, результаты решения каких-то других задач, результаты экспертных оценок и т.п., которые задаются приближённо. Если при каждом допустимом наборе значений параметров (входных данных математической задачи) задача имеет решение, то возникает зависимость решения от указанных параметров.
Результатом решения математической задачи является вычисление на основе входных данных некоторого набора числовых значений – выходных данных. Как входные, так и выходные данные можно рассматривать в качестве элементов соответствующих нормированных пространств.
Пусть представляют собой векторы входных данных некоторой математической задачи, а— соответствующие или решения, или выходные данные. Решение задачи непрерывно зависит от входных данных, если для любогои для любогосуществует такое, что приполучается, где— некоторая норма в.
Математическую задачу называют корректной, если её решение существует единственно и непрерывно зависит от входных данных.
Понятие корректной задачи может относиться к системам ЛАУ с невырожденной матрицей (), которые при этом имеют единственное решение.
Входными данными задачи решения СЛАУ следует считать элементы её матрицы и правые части уравнений (столбец свободных членов).
Столбец неизвестных и столбецможно трактовать как векторы– мерного арифметического пространства, в котором задана некоторая норма.
Изменение входных данных означает, что наряду с системой
(1)
и с её решением x, надо рассмотреть другую возмущённую систему
(2)
с матрицей и столбцом правых частей, которая отличается от исходной системы возмущением матрицы системы —и возмущением столбца свободных членов. Решением возмущённой системы будет некоторый столбец, отличающийся отна столбец, который называется возмущением решения.
Величины ,,— можно охарактеризовать как абсолютные погрешности соответственно матрицы системы, правой части и решения, если компоненты исходной системы рассматривать как точные. При этом относительные погрешности будут определяться как:
; ;(3)
Корректность задачи решения СЛАУ заключается в том, что малым относительным погрешностям матрицы системы и правой части отвечает малая относительная погрешность решения системы. При этом последнюю оценивают с помощью первых двух погрешностей.
Норма линейного оператора и его матрицы
Множество называется матричным пространством, если каждой паре его элементов поставлено в соответствие неотрицательное вещественное число, называемое расстоянием, причём выполнены следующие аксиомы:
1)