Формула а в степени в – ., ,

Формулы сокращенного умножения

Формулы сокращенного умножения.

Цели:

- Изучение формул сокращенного умножения: квадрата суммы и квадрата разности двух выражений; разности квадратов двух выражений; куба суммы и куба разности двух выражений; суммы и разности кубов двух выражений.

- Применение формул сокращенного умножения при решении примеров.

Для упрощения выражений, разложения многочленов на множители, приведения многочленов к стандартному виду используются формулы сокращенного умножения. Формулы сокращенного умножения нужно знать наизусть.

Пусть а, b   R. Тогда:

1. Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a + b)2 = a2 + 2ab + b2

2. Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a - b)

2 = a2 - 2ab + b2

3. Разность квадратов двух выражений равна произведению разности этих выражений и их суммы.

a2 - b2 = (a -b) (a+b)

4. Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

5. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

(a - b)3 = a3 - 3a2b + 3ab2 - b3

6. Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.

a3 + b3 = (a + b) (a

2 - ab + b2)

7. Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.

a3 - b3 = (a - b) (a2 + ab + b2)

Применение формул сокращенного умножения при решении примеров.

Пример 1.

Вычислить

а) (40+1)2

б) 982

Решение:

а) Используя формулу квадрата суммы двух выражений, имеем

(40+1)2 = 402 + 2 · 40 · 1 + 12 = 1600 + 80 + 1 = 1681

б) Используя формулу квадрата разности двух выражений, получим

982 = (100 – 2)2 = 1002 - 2 · 100 · 2 + 22 = 10000 – 400 + 4 = 9604

Пример 2.

Вычислить

Решение

Используя формулу разности квадратов двух выражений, получим

Пример 3.

Упростить выражение

(х - у)2 + (х + у)

2

Решение

Воспользуемся формулами квадрата суммы и квадрата разности двух выражений

(х - у)2 + (х + у)2 = х2 - 2ху + у2 + х2 + 2ху + у2 = 2х2 + 2у2

 

Формулы сокращенного умножения в одной таблице:

(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
a2 - b2 = (a - b) (a+b)
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a - b)3 = a3 - 3a2b + 3ab2 - b3
a3 + b3 = (a + b) (a2 - ab + b2)
a3 - b3 = (a - b) (a2 + ab + b2)

mirurokov.ru

СТЕПЕНЬ (функция СТЕПЕНЬ) - Служба поддержки Office

Примечание: Мы стараемся как можно оперативнее обеспечивать вас актуальными справочными материалами на вашем языке. Эта страница переведена автоматически, поэтому ее текст может содержать неточности и грамматические ошибки. Для нас важно, чтобы эта статья была вам полезна. Просим вас уделить пару секунд и сообщить, помогла ли она вам, с помощью кнопок внизу страницы. Для удобства также приводим ссылку на оригинал (на английском языке).

Предположим, что вам нужно вычислить очень маленький допуск для детали механизма или огромное расстояние между двумя галактиками. Для возведения числа в степень используйте функцию СТЕПЕНЬ.

Описание

Возвращает результат возведения числа в степень.

Синтаксис

СТЕПЕНЬ(число;степень)

Аргументы функции СТЕПЕНЬ описаны ниже.

  • Число.    Обязательный. Базовый номер. Это может быть любой вещественный номер.

  • Степень    Обязательный. Показатель степени, в которую возводится основание.

Замечание

Вместо функции СТЕПЕНЬ для возведения в степень можно использовать оператор ^, например: 5^2.

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Формула

Описание

Результат

=СТЕПЕНЬ(5;2)

Число 5 в квадрате.

24

=СТЕПЕНЬ(98,6;3,2)

Число 98,6, возведенное в степень 3,2.

2401077,222

=СТЕПЕНЬ(4;5/4)

Число 4, возведенное в степень 5/4.

5,656854249

support.office.com

Формулы степеней и радикалов

Формулы степеней:

1. Определение степени:

2. Число в нулевой степени:

a0 = 1 при условии, что a ≠ 0

3. Число в первой степени:

a1 = a

4. Преобразование отрицательной степени:

5. Произведение в степени:

при условии, что n - целое число или a и b - действительные числа и хотя бы одно из них больше нуля. В математической форме записи это выглядит вот так:

6. Произведение с одинаковыми основаниями:

an · am = an + m

7. Степень в степени:

8. Отношение в степени:

9. Отношение с одинаковыми основаниями:

10. Связь степени и логарифма:

Формулы радикалов (корней):

1. Связь между степенями и радикалами:

2. Отрицательная степень:

3. Корень от корня:

4. Корень от произведения:

5. Взаимное сокращение показателя корня и степени:

mathforyou.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *