Функция квадратичная парабола – Построить график функции y=ax2+bx+c (квадратичная функция или парабола) | Формулы и расчеты онлайн

Квадратичная функция - подготовка к ЕГЭ по Математике

Все знают, как выглядит парабола y = x2. В седьмом классе мы рисовали таблицу:

x -3 -2 -1 0 1 2 3
y 9 4 1 0 1 4 9

После этого по точкам строили график:

Параболу y = ax2 + bx + c мы не станем строить каждый раз «по точкам» — для выпускника школы это просто несолидно. Ведь нам надо знать закономерности поведения данной функции. А эти закономерности таковы.

1. Знак коэффициента a отвечает за направление ветвей. При a > 0 ветви направлены вверх, при a < 0 — вниз.

На рисунке приведены две параболы y = ax2 с равными по модулю, но противоположными по знаку значениями a.


2. Абсолютная величина коэффициента a отвечает за «раскрыв» параболы. Чем больше |a|, тем у́же парабола (больше прижата к оси Y). Наоборот, чем меньше |a|, тем шире парабола (больше прижата к оси X).

На рисунке приведены две параболы y = a1x2 и y = a2x2, у которых a2 > a1 > 0


3. Абсцисса вершины параболы y = ax2 + bx + c находится по формуле:


Для нахождения ординаты вершины y0 удобнее всего подставить x0 в уравнение параболы. Но вообще, полезно помнить, что


где D = b2 − 4ac — дискриминант.

4. Точки пересечения параболы y = ax2 + bx + c с осью X находятся с помощью решения квадратного уравнения ax2 + bx + c = 0. Если дискриминант равен нулю, то парабола касается оси X. Если дискриминант меньше нуля, то парабола не пересекает ось X.

5. Точка пересечения с осью Y находится легко: мы просто подставляем x = 0 в уравнение параболы. Получается точка (0, c).

Посмотрим, как расположена квадратичная функция (парабола) в зависимости от знака коэффициента а и дискриминанта D.

Где же в реальной жизни можно увидеть параболу (квадратичную функцию)?

Мяч, брошенный под углом к горизонту, летит по параболе. Зависимость его высоты от времени — квадратичная функция. Струя воды из фонтана или шланга, направленная под углом к горизонту, рисует в пространстве именно параболу. Но это не всё. Разберите карманный фонарик. Вы увидите, что за лампочкой расположено зеркальце, имеющее параболическую форму. Спутниковая антенна или антенна телескопа имеют форму параболы. Случайно ли это?

Оказывается, параболическое зеркало обладает интереснейшим свойством — весь поток света, падающий на его поверхность, оно собирает в одной точке, называемой фокусом параболы. Вот почему форма антенн — параболическая. И наоборот, если в фокусе параболы расположен источник света, то отражённые от зеркала лучи света будут параллельны. Поэтому карманный фонарик дает направленный луч света, хорошо видимый в темноте.

Решая задачи ЕГЭ с физическим или экономическим содержанием, мы часто будем замечать в них квадратичные зависимости одной переменной от другой. И конечно, будем пользоваться свойствами квадратичной функции.

 

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Квадратичная функция (парабола) [wiki.eduVdom.com]

Квадратичная функция - это функция, заданная формулой вида $у = ах^2 + bх + с$, где х - аргумент, $a, b, c \in \mathbb{R} , a \neq 0$.

Рассмотрим функцию, заданную формулой $у = ах^2 (a\neq 0)$.

Свойства функции $y = ах^2$:

  1. Если x=0, то y=0, то есть график функции проходит через начало координат.

  2. Если x\neq 0, то у>0 при а>0 и у<0 при а<0.

  3. График функции симметричен относительно оси y.

  4. При а>0 функция убывает на промежутке $(-\infty;\; 0]$ и возрастает на промежутке $[0;\; +\infty)$; при a<0 функция возрастает на промежутке $(-\infty;\;0]$ и убывает на промежутке $[0;\; +\infty)$.

  5. При $а>0\,y_{мин} = 0\text{ , при }а<0\,y_{макс} = 0$.

График функции $у = ах^2 + n$ получается из графика функции $у = ах^2$ параллельным переносом вдоль оси y на n единиц вверх при n>0 или на (-n) единиц вниз, если n<0.

График функции $y = a(x-m)^2$ получается из графика функции $у = ах^2$ параллельным переносом вдоль оси x на m единиц вправо при m>0 или на (-m) единиц влево, если m<0.

Вершина параболы - это точка пересечения параболы с её осью симметрии.

Вершина параболы $y = ax^2 + bx + c$ имеет координаты $(-\frac{b}{2a}\;;\;\frac{b^2-4ac}{4a})$.


Пример 1. На рисунке изображён график квадратичной функции y=f(x). Какие из следующих утверждений о данной функции неверны? Запишите их номера.

  1. Функция убывает на промежутке [1; +∞) .

  2. Наименьшее значение функции равно −4 .

  3. f(−2) < f(3) .

Видео-решение.

subjects/mathematics/квадратичная_функция.txt · Последние изменения: 2013/04/26 16:56 —

wiki.eduvdom.com

Квадратичная функция - это... Что такое Квадратичная функция?

  • квадратичная функция — — [[http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=23]] квадратичная функция Функция вида y= ax2 + bx + c (a ? 0). График К.ф. — парабола, вершина которой имеет координаты [ b/ 2a, (b2 4ac) /4a], при а>0 ветви параболы… …   Справочник технического переводчика

  • КВАДРАТИЧНАЯ ФУНКЦИЯ — КВАДРАТИЧНАЯ ФУНКЦИЯ, математическая ФУНКЦИЯ, значение которой зависит от квадрата независимой переменной, х, и задается, соответственно, квадратичным МНОГОЧЛЕНОМ, например: f(x) = 4х2 + 17 или f(x) = х2 + 3х + 2. см. также КВАДРАТНОЕ УРАВНЕНИЕ …   Научно-технический энциклопедический словарь

  • Квадратичная функция — Квадратичная функция  [quadratic function] — функция вида   y= ax2 + bx + c (a ≠ 0). График К.ф. — парабола, вершина которой имеет координаты [ b/ 2a,  (b2 4ac) /4a], при а> 0   ветви параболы направлены вверх, при a< 0 –вниз… …   Экономико-математический словарь

  • КВАДРАТИЧНАЯ ФУНКЦИЯ, КВАДРАТНЫЙ, КВАДРАТИЧНЫЙ — (quadratic) Функция, имеющая следующий вид: у=ах2+bх+с, где a≠0 и высшая степень х – квадрат. Квадратное уравнение у=ах2 +bх+с=0 может быть также решено с использованием следующей формулы: х= –b+ √ (b2–4ac) /2а. Эти корни являются действительными …   Экономический словарь

  • Аффинно-квадратичная функция — Аффинно квадратичной функцией на аффинном пространстве S называется всякая функция Q: S→K, имеющая в векторизованной форме вид Q(x)=q(x)+l(x)+c, где q квадратичная функция, l линейная функция, с константа. Содержание 1 Перенос начала отсчета 2… …   Википедия

  • Афинно-квадратичная функция — Аффинно квадратичной функцией на аффинном пространстве называется всякая функция , имеющая в векторизованной форме вид , где симметричная матрица, линейная функция, константа. Содержание …   Википедия

  • Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора. Содержание 1 Определение 2 Связанные определения …   Википедия

  • Функция потерь — – функция, которая в теории статистических решений характеризует потери при неправильном принятии решений на основе наблюдаемых данных. Если решается задача оценки параметра сигнала на фоне помех, то функция потерь является мерой расхождения… …   Википедия

  • целевая функция — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] целевая функция В экстремальных задачах — функция, минимум или максимум которой требуется найти. Это… …   Справочник технического переводчика

  • Целевая функция — [target function] в экстремальных задачах функция, минимум или максимум которой требуется найти. Это ключевое понятие оптимального программирования. Найдя экстремум Ц.ф. и, следовательно, определив значения управляемых переменных, которые к нему… …   Экономико-математический словарь

  • dic.academic.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *