Геометрия — Википедия
Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения[1].
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор.
Предмет геометрии
Геометрия занимается взаимным расположением тел, которое выражается в прикосновении или прилегании друг к другу, расположением «между», «внутри» и так далее; величиной тел, то есть понятиями о равенстве тел, «больше» или «меньше»; а также преобразованиями тел. Геометрическое тело представляет собой абстракцию ещё со времён Евклида, который полагал, что «линия есть длина без ширины», «поверхность есть то, что имеет длину и ширину». Точка представляет собой абстракцию, связанную с неограниченным уменьшением всех размеров тела, или пределом бесконечного деления. Расположение, размеры и преобразования геометрических фигур определяются пространственными отношениями [2].
Исследуя реальные предметы, геометрия рассматривает только их форму и взаимное расположение, отвлекаясь от других свойств предметов, таких как плотность, вес, цвет. Это позволяет перейти от пространственных отношений между реальными объектами к любым отношениям и формам, возникающим при рассмотрении однородных объектов, и сходным с пространственными. В частности, геометрия позволяет рассматривать расстояния между функциями[1].
Видео по теме
Классификация
Классификацию различных разделов геометрии предложил Феликс Клейн в своей «Эрлангенской программе» (1872). Согласно Клейну, каждый раздел изучает те свойства геометрических объектов, которые сохраняются (инвариантны) при действии некоторой группы преобразований, специфичной для каждого раздела. В соответствии с этой классификацией, в классической геометрии можно выделить следующие основные разделы.
- Евклидова геометрия, в которой предполагается, что размеры отрезков и углов при перемещении фигур на плоскости не меняются. Другими словами, это теория тех свойств фигур, которые сохраняются при их переносе, вращении и отражении.
- Планиметрия — раздел евклидовой геометрии, исследующий фигуры на плоскости.
- Стереометрия — раздел евклидовой геометрии, в котором изучаются фигуры в пространстве.
- Проективная геометрия, изучающую проективные свойства фигур, то есть свойства, сохраняющиеся при их проективных преобразованиях.
- Аффинная геометрия, изучающая свойства фигур, сохраняющиеся при аффинных преобразованиях.
- Начертательная геометрия — инженерная дисциплина, в основе которой лежит метод проекций. Этот метод использует две и более проекций (ортогональных или косоугольных), что позволяет представить трехмерный объект на плоскости.
Современная геометрия включает в себя следующие дополнительные разделы.
По используемым методам выделяют также такие инструментальные подразделы.
Аксиоматика
Аксиомы евклидовой геометрии, сформулированные в III—IV веке до н. э., составляли основу геометрии до второй половины XIX века, так как хорошо описывали физическое пространство и отождествлялись с ним[1]. Пяти постулатов Евклида было недостаточно для полного описания геометрии и в 1899 году Гильберт предложил свою систему аксиом. Гильберт разделил аксиомы на несколько групп: аксиомы принадлежности, конгруэнтности, непрерывности (в том числе аксиома Архимеда), полноты и параллельности. Позднее Шур заменил аксиомы конгруэнтности аксиомами движения, а вместо аксиомы полноты стали использовать аксиому Кантора. Система аксиом евклидовой геометрии позволяет доказать все известные школьные теоремы
Существуют и другие системы аксиом, в основе которых, помимо точки, прямой и плоскости, лежит не движение, а конгруэнтность, как у Гильберта, или расстояние, как у Кагана. Другая система аксиом связана с понятием вектора. Все они выводятся одна из другой, то есть аксиомы в одной системе можно доказать как теоремы в другой[3].
Для доказательства непротиворечивости и полноты аксиом евклидовой геометрии строят её арифметическую модель и показывают, что любая модель изоморфна арифметической, а значит они изоморфны между собой[4]. Независимость аксиом евклидовой геометрии показать сложнее из-за большого количества аксиом. Аксиома параллельности не зависит от других, так как на противоположном утверждении строится геометрия Лобачевского. Аналогично была показана независимость аксиомы Архимеда (в качестве координат вместо тройки вещественных чисел используется тройка комплексных чисел), аксиомы Кантора (в качестве координат вместо тройки любых вещественных чисел используются вещественные числа, построенные определённым образом), а также одной из аксиом принадлежности, которая фактически определяет размерность пространства (вместо трёхмерного пространства можно построить четырёхмерное, и любое многомерное пространство с конечным числом измерений) [5].
Постулаты Евклида
Постулаты ЕвклидаПостулаты Евклида представляют собой правила построения с помощью идеального циркуля и идеальной линейки[6]:
- Всякие две точки можно соединить прямой линией;
- Ограниченную прямую линию можно неограниченно продолжить;
- Из всякого центра всяким радиусом можно описать окружность;
- Все прямые углы равны между собой;
- Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то при неограниченном продолжении этих двух прямых они пересекутся с той стороны, где углы меньше двух прямых.
Другая формулировка пятого постулата (аксиомы параллельности), гласит
Аксиомы евклидовой геометрии
В «Энциклопедии элементарной математики» предлагается следующая система аксиом[3]:
- Аксиомы принадлежности:
- Через каждые две различные точки проходит прямая и притом одна;
- На каждой прямой имеется по крайней мере две точки;
- Существуют три точки, не лежащие на одной прямой;
- Через каждые три точки не лежащие на одной прямой проходит плоскость и притом только одна;
- На каждой плоскости имеется по крайней мере одна точка;
- Если две точки лежат на плоскости, то и проходящая через них прямая лежит на этой плоскости;
- Если две плоскости имеют общую точку, они имеют по крайней мере ещё одну общую точку;
- Существуют четыре точки, не лежащие на одной плоскости.
- Аксиомы порядка:
- Из любых трёх различных точек прямой одна и только одна лежит между двумя другими;
- Для всяких двух точек прямой существует на этой прямой такая третья точка, что вторая точка лежит между первой и третьей;
- Если прямая l, лежащая в плоскости ABC, не проходит ни через одну из точек A, B, C и содержит одну точку отрезка AB, то она имеет общую точку с хотя бы одним из отрезков AC, BC;
- Аксиомы движения:
- Всякое движение является взаимно однозначным отображением пространства на себя;
- Пусть f — произвольное движение. Тогда, если точки A, B, C расположены на одной прямой, причём C лежит между A и B, то точки f(A), f(B), f(C) также расположены на одной прямой, причём f(C) лежит между f(A) и f(B);
- Два движения, произведённые один за другим, равносильны некоторому одному движению;
- Для всяких двух реперов, взятых в определённом порядке, существует одно и только одно движение, переводящее первый репер во второй;
- Аксиомы непрерывности:
- Аксиома Архимеда. Пусть A0, A1, B — три точки, лежащие на одной прямой, причём точка A1 находится между A0 и B. Пусть далее f — движение, переводящее точку A0 в A1 и луч A0B в A1B. Положим f(A1)=A2, f(A2)=A3, …. Тогда существует такое натуральное число n, что точка B находится на отрезке An-1An.
- Аксиома Кантора. Пусть A1, A2, … и B1, B2, … — такие две последовательности точек, расположенных на одной прямой l, что для любого n точки An и Bn различны между собой и лежат на отрезке An-1Bn-1. Тогда на прямой l существует такая точка C, которая находится на отрезке AnBn при всех значениях n.
- Аксиома параллельности:
- Через точку A, не лежащую на прямой l, можно провести в их плоскости не более одной прямой, не пересекающей прямую l.
Если убрать из системы аксиомы 4-8, относящиеся к пространственной геометрии, то получится система аксиом евклидовой плоскости[3].
Геометрические преобразования
Преобразованием множества называют его взаимно-однозначное отображение на себя. В таком смысле этот термин используется в геометрии, хотя иногда его используют и как синоним отображения или отображения множества в себя.
Говоря о «геометрических преобразованиях», обычно имеют в виду некоторые конкретные типы преобразований, играющие фундаментальную роль в геометрии — движения, преобразования подобия, аффинные, проективные, круговые преобразования (в последних двух случаях плоскость или пространство дополняют бесконечно удаленными точками). Эту фундаментальную роль выявил немецкий математик Феликс Клейн в своей лекции в университете г. Эрланген в 1872 г., известной как Эрлангенская программа. Согласно концепции Клейна, геометрия изучает свойства фигур, сохраняющиеся при всех преобразованиях некоторой группы преобразований. Рассматривая группы преобразований указанных выше видов, получают разные геометрии — евклидову (для преобразований подобия), аффинную и т. д.
История
Муза геометрии, ЛуврТрадиционно считается, что родоначальниками геометрии как систематической науки являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в строгую научную дисциплину[2]. При этом античные геометры от набора рецептов перешли к установлению общих закономерностей, составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают написанные в III веке до н. э. «Начала» Евклида. Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом[2]. Первые же доказательства геометрических утверждений появились в работах Фалеса и использовали, по всей видимости, принцип наложения, когда фигуры, равенство которых необходимо доказать, накладывались друг на друга[8].
Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых, плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием. В Греции в работах Гиппарха и Менелая также появились тригонометрия и геометрия на сфере[2].
Средние века немного дали геометрии[1], и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода (трактат «Геометрия», 1637). Точкам пространства сопоставляются наборы чисел, это позволяет изучать отношения между геометрическими формами методами алгебры. Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Систематическое изложение аналитической геометрии было предложено Эйлером в 1748 году. В начале XVII века Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название проективной геометрии и был впервые обобщён Понселе в 1822 году. Ещё раньше, в 1799 году Монж развил начертательную геометрию, связанную напрямую с задачами черчения. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии, где фигуры и преобразования все ещё задаются в координатах, но уже произвольными достаточно гладкими функциями. Дифференциальная геометрия была систематизирована Монжем в 1795 году[2], её развитием, в частности теорией кривых и теорией поверхностей, занимался Гаусс. На стыке геометрии, алгебры и анализа возникли векторное исчисление, тензорное исчисление, метод дифференциальных форм[1].
В 1826 году Лобачевский, отказавшись от аксиомы параллельности Евклида построил неевклидову геометрию, названную его именем. Аксиома Лобачевского гласит, что через точку, не лежащую на прямой можно провести более одной прямой, параллельной данной. Лобачевский, используя эту аксиому вместе с другими положениями, построил новую геометрию, которая в силу отсутствия наглядности, оставалась гипотетической до 1868 года, когда было дано её полное обоснование. Лобачевский, таким образом, открыл принципы построения новых геометрических теорий и способствовал развитию аксиоматического метода[2].
Следующим шагом явилось определение абстрактного математического пространства. Проективные, аффинные и конформные преобразования, сохраняющиеся при этом свойства фигур, привели к созданию проективной, аффинной и конформной геометрий. Переход от трёхмерного пространства к n-мерному впервые был осуществлён в работах Грассмана и Кэли в 1844 году и привёл к созданию многомерной геометрии. Другим обобщением пространства стала риманова геометрия, предложенная Риманом в 1854 году[2]. Ф. Клейн в «Эрлангенской программе» систематизировал все виды однородных геометрий; согласно ему, геометрия изучает все те свойства фигур, которые инвариантны относительно преобразований из некоторой группы. При этом каждая группа задаёт свою геометрию. Так, изометрии (движения) задаёт евклидову геометрию, группа аффинных преобразований — аффинную геометрию.
В 70-х годах XIX века возникла теория множеств, с точки зрения которой фигура определяется как множество точек. Данный подход позволил по новому взглянуть на евклидову геометрию и проанализировать её основы, которые подверглись некоторым уточнениям в работах Гильберта[2].
Геометрия в философии и искусстве
Со времён Древней Греции в основе геометрии лежат философские понятия. Определяя точку как «то, что не имеет частей», подход к ней отличается у Пифагора, который отождествляет точку с числовой единицей и у которого точка имеет только положение в пространстве и не имеет размера, и у Демокрита, который строя атомистическую теорию, даёт точке «сверхчувственно малый» размер. К атомистическим представлениям восходят также определения линии и поверхности, где неделимыми являются «ширина» и «глубина», соответственно[6].
Геометрия является пятым из семи свободных искусств по уровню обучения. Ей предшествует тривиум, состоящий из Грамматики, Риторики и Диалектики, а также Арифметика — старшая наука в квадривиуме, к которому также относятся Музыка и Астрономия[9]. Марциан Капелла в своём трактате «Свадьба Философии и Меркурия» создал визуальные образы всех семи искусств и в том числе Геометрии. Искусства олицетворяли женщины с соответствующими атрибутами, которые сопровождались известными представителями сферы. Геометрия держит в своих руках глобус и циркуль, которым она может мерить, реже угольник, линейку или компасы. Её сопровождает Евклид[10][11].
В честь геометрии назван астероид (376) Геометрия, открытый в 1893 году.
Примечания
- ↑ 1 2 3 4 5 Геометрия // Математическая энциклопедия : в 5 т.. — М. : Советская Энциклопедия, 1982. — Т. 1.
- ↑ 1 2 3 4 5 6 7 8 БСЭ, 1971.
- ↑ 1 2 3 4 Геометрия, 1963, с. 32—41.
- ↑ Геометрия, 1963, с. 41—44.
- ↑ Геометрия, 1963, с. 44—48.
- ↑ 1 2 Геометрия, 1963, с. 12—17.
- ↑ Геометрия, 1963, с. 18—21.
- ↑ Геометрия, 1963, с. 12.
- ↑ Liberal Arts (англ.). Encyclopædia Britannica. Проверено 20 марта 2012. Архивировано 27 мая 2012 года.
- ↑ Семь свободных искусств. Simbolarium. Проверено 20 марта 2012. Архивировано 27 мая 2012 года.
- ↑ The Seven Liberal Arts. Catholic Encyclopedia. Проверено 20 марта 2013. Архивировано 3 апреля 2013 года.
Литература
- Комацу, Мацуо. Многообразие геометрии. — М. : Знание, 1981.
- Левитин, К. Е. Геометрическая рапсодия. — 3-е изд., перераб. и доп. — М. : ИД «Камерон», 2004. — 216 с. — ISBN 5-9594-0023-5.
- Шаль, Мишель. Исторический обзор происхождения и развития геометрических методов : в 2 т.. — М. : М. Катков, 1883.
- Граве Д. А. Геометрия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Геометрия // Газлифт — Гоголево. — М. : Советская энциклопедия, 1971. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 6).
- История математики : в 3 т. / под ред. А. П. Юшкевича. — М. : Наука, 1970. — Т. I : С древнейших времён до начала Нового времени.
- История математики : в 3 т. / под ред. А. П. Юшкевича. — М. : Наука, 1970. — Т. II : Математика XVII столетия.
- История математики : в 3 т. / под ред. А. П. Юшкевича. — М. : Наука, 1972. — Т. III : Математика XVIII столетия.
- Математика XIX века / ред. А. Н. Колмогоров, А. П. Юшкевич. — М. : Наука, 1981. — Т. 2 : Геометрия. Теория аналитических функций.
- Энциклопедия элементарной математики / под ред. П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. — М. : Физматгиз, 1963. — Кн. 4 : Геометрия. — 568 с.
- Энциклопедия элементарной математики / под ред. П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. — М. : Наука, 1966. — Кн. 5 : Геометрия. — 624 с.
Геометрия — Википедия
Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения[1].
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор.
Предмет геометрии
Геометрия занимается взаимным расположением тел, которое выражается в прикосновении или прилегании друг к другу, расположением «между», «внутри» и так далее; величиной тел, то есть понятиями о равенстве тел, «больше» или «меньше»; а также преобразованиями тел. Геометрическое тело представляет собой абстракцию ещё со времён Евклида, который полагал, что «линия есть длина без ширины», «поверхность есть то, что имеет длину и ширину». Точка представляет собой абстракцию, связанную с неограниченным уменьшением всех размеров тела, или пределом бесконечного деления. Расположение, размеры и преобразования геометрических фигур определяются пространственными отношениями[2].
Исследуя реальные предметы, геометрия рассматривает только их форму и взаимное расположение, отвлекаясь от других свойств предметов, таких как плотность, вес, цвет. Это позволяет перейти от пространственных отношений между реальными объектами к любым отношениям и формам, возникающим при рассмотрении однородных объектов, и сходным с пространственными. В частности, геометрия позволяет рассматривать расстояния между функциями[1].
Классификация
Классификацию различных разделов геометрии предложил Феликс Клейн в своей «Эрлангенской программе» (1872). Согласно Клейну, каждый раздел изучает те свойства геометрических объектов, которые сохраняются (инвариантны) при действии некоторой группы преобразований, специфичной для каждого раздела. В соответствии с этой классификацией, в классической геометрии можно выделить следующие основные разделы.
- Евклидова геометрия, в которой предполагается, что размеры отрезков и углов при перемещении фигур на плоскости не меняются. Другими словами, это теория тех свойств фигур, которые сохраняются при их переносе, вращении и отражении.
- Планиметрия — раздел евклидовой геометрии, исследующий фигуры на плоскости.
- Стереометрия — раздел евклидовой геометрии, в котором изучаются фигуры в пространстве.
- Проективная геометрия, изучающую проективные свойства фигур, то есть свойства, сохраняющиеся при их проективных преобразованиях.
- Аффинная геометрия, изучающая свойства фигур, сохраняющиеся при аффинных преобразованиях.
- Начертательная геометрия — инженерная дисциплина, в основе которой лежит метод проекций. Этот метод использует две и более проекций (ортогональных или косоугольных), что позволяет представить трехмерный объект на плоскости.
Современная геометрия включает в себя следующие дополнительные разделы.
По используемым методам выделяют также такие инструментальные подразделы.
Аксиоматика
Аксиомы евклидовой геометрии, сформулированные в III—IV веке до н. э., составляли основу геометрии до второй половины XIX века, так как хорошо описывали физическое пространство и отождествлялись с ним[1]. Пяти постулатов Евклида было недостаточно для полного описания геометрии и в 1899 году Гильберт предложил свою систему аксиом. Гильберт разделил аксиомы на несколько групп: аксиомы принадлежности, конгруэнтности, непрерывности (в том числе аксиома Архимеда), полноты и параллельности. Позднее Шур заменил аксиомы конгруэнтности аксиомами движения, а вместо аксиомы полноты стали использовать аксиому Кантора. Система аксиом евклидовой геометрии позволяет доказать все известные школьные теоремы[3].
Существуют и другие системы аксиом, в основе которых, помимо точки, прямой и плоскости, лежит не движение, а конгруэнтность, как у Гильберта, или расстояние, как у Кагана. Другая система аксиом связана с понятием вектора. Все они выводятся одна из другой, то есть аксиомы в одной системе можно доказать как теоремы в другой[3].
Для доказательства непротиворечивости и полноты аксиом евклидовой геометрии строят её арифметическую модель и показывают, что любая модель изоморфна арифметической, а значит они изоморфны между собой[4]. Независимость аксиом евклидовой геометрии показать сложнее из-за большого количества аксиом. Аксиома параллельности не зависит от других, так как на противоположном утверждении строится геометрия Лобачевского. Аналогично была показана независимость аксиомы Архимеда (в качестве координат вместо тройки вещественных чисел используется тройка комплексных чисел), аксиомы Кантора (в качестве координат вместо тройки любых вещественных чисел используются вещественные числа, построенные определённым образом), а также одной из аксиом принадлежности, которая фактически определяет размерность пространства (вместо трёхмерного пространства можно построить четырёхмерное, и любое многомерное пространство с конечным числом измерений)[5].
Постулаты Евклида
Постулаты ЕвклидаПостулаты Евклида представляют собой правила построения с помощью идеального циркуля и идеальной линейки[6]:
- Всякие две точки можно соединить прямой линией;
- Ограниченную прямую линию можно неограниченно продолжить;
- Из всякого центра всяким радиусом можно описать окружность;
- Все прямые углы равны между собой;
- Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то при неограниченном продолжении этих двух прямых они пересекутся с той стороны, где углы меньше двух прямых.
Другая формулировка пятого постулата (аксиомы параллельности), гласит[7]: Через точку вне прямой в их плоскости можно провести не более одной прямой, не пересекающей данную прямую.
Аксиомы евклидовой геометрии
В «Энциклопедии элементарной математики» предлагается следующая система аксиом[3]:
- Аксиомы принадлежности:
- Через каждые две различные точки проходит прямая и притом одна;
- На каждой прямой имеется по крайней мере две точки;
- Существуют три точки, не лежащие на одной прямой;
- Через каждые три точки не лежащие на одной прямой проходит плоскость и притом только одна;
- На каждой плоскости имеется по крайней мере одна точка;
- Если две точки лежат на плоскости, то и проходящая через них прямая лежит на этой плоскости;
- Если две плоскости имеют общую точку, они имеют по крайней мере ещё одну общую точку;
- Существуют четыре точки, не лежащие на одной плоскости.
- Аксиомы порядка:
- Из любых трёх различных точек прямой одна и только одна лежит между двумя другими;
- Для всяких двух точек прямой существует на этой прямой такая третья точка, что вторая точка лежит между первой и третьей;
- Если прямая l, лежащая в плоскости ABC, не проходит ни через одну из точек A, B, C и содержит одну точку отрезка AB, то она имеет общую точку с хотя бы одним из отрезков AC, BC;
- Аксиомы движения:
- Всякое движение является взаимно однозначным отображением пространства на себя;
- Пусть f — произвольное движение. Тогда, если точки A, B, C расположены на одной прямой, причём C лежит между A и B, то точки f(A), f(B), f(C) также расположены на одной прямой, причём f(C) лежит между f(A) и f(B);
- Два движения, произведённые один за другим, равносильны некоторому одному движению;
- Для всяких двух реперов, взятых в определённом порядке, существует одно и только одно движение, переводящее первый репер во второй;
- Аксиомы непрерывности:
- Аксиома Архимеда. Пусть A0, A1, B — три точки, лежащие на одной прямой, причём точка A1 находится между A0 и B. Пусть далее f — движение, переводящее точку A0 в A1 и луч A0B в A1B. Положим f(A1)=A2, f(A2)=A3, …. Тогда существует такое натуральное число n, что точка B находится на отрезке An-1An.
- Аксиома Кантора. Пусть A1, A2, … и B1, B2, … — такие две последовательности точек, расположенных на одной прямой l, что для любого n точки An и Bn различны между собой и лежат на отрезке An-1Bn-1. Тогда на прямой l существует такая точка C, которая находится на отрезке AnBn при всех значениях n.
- Аксиома параллельности:
- Через точку A, не лежащую на прямой l, можно провести в их плоскости не более одной прямой, не пересекающей прямую l.
Если убрать из системы аксиомы 4-8, относящиеся к пространственной геометрии, то получится система аксиом евклидовой плоскости[3].
Геометрические преобразования
Преобразованием множества называют его взаимно-однозначное отображение на себя. В таком смысле этот термин используется в геометрии, хотя иногда его используют и как синоним отображения или отображения множества в себя.
Говоря о «геометрических преобразованиях», обычно имеют в виду некоторые конкретные типы преобразований, играющие фундаментальную роль в геометрии — движения, преобразования подобия, аффинные, проективные, круговые преобразования (в последних двух случаях плоскость или пространство дополняют бесконечно удаленными точками). Эту фундаментальную роль выявил немецкий математик Феликс Клейн в своей лекции в университете г. Эрланген в 1872 г., известной как Эрлангенская программа. Согласно концепции Клейна, геометрия изучает свойства фигур, сохраняющиеся при всех преобразованиях некоторой группы преобразований. Рассматривая группы преобразований указанных выше видов, получают разные геометрии — евклидову (для преобразований подобия), аффинную и т. д.
История
Муза геометрии, ЛуврТрадиционно считается, что родоначальниками геометрии как систематической науки являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в строгую научную дисциплину[2]. При этом античные геометры от набора рецептов перешли к установлению общих закономерностей, составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают написанные в III веке до н. э. «Начала» Евклида. Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом[2]. Первые же доказательства геометрических утверждений появились в работах Фалеса и использовали, по всей видимости, принцип наложения, когда фигуры, равенство которых необходимо доказать, накладывались друг на друга[8].
Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых, плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием. В Греции в работах Гиппарха и Менелая также появились тригонометрия и геометрия на сфере[2].
Средние века немного дали геометрии[1], и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода (трактат «Геометрия», 1637). Точкам пространства сопоставляются наборы чисел, это позволяет изучать отношения между геометрическими формами методами алгебры. Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Систематическое изложение аналитической геометрии было предложено Эйлером в 1748 году. В начале XVII века Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название проективной геометрии и был впервые обобщён Понселе в 1822 году. Ещё раньше, в 1799 году Монж развил начертательную геометрию, связанную напрямую с задачами черчения. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии, где фигуры и преобразования все ещё задаются в координатах, но уже произвольными достаточно гладкими функциями. Дифференциальная геометрия была систематизирована Монжем в 1795 году[2], её развитием, в частности теорией кривых и теорией поверхностей, занимался Гаусс. На стыке геометрии, алгебры и анализа возникли векторное исчисление, тензорное исчисление, метод дифференциальных форм[1].
В 1826 году Лобачевский, отказавшись от аксиомы параллельности Евклида построил неевклидову геометрию, названную его именем. Аксиома Лобачевского гласит, что через точку, не лежащую на прямой можно провести более одной прямой, параллельной данной. Лобачевский, используя эту аксиому вместе с другими положениями, построил новую геометрию, которая в силу отсутствия наглядности, оставалась гипотетической до 1868 года, когда было дано её полное обоснование. Лобачевский, таким образом, открыл принципы построения новых геометрических теорий и способствовал развитию аксиоматического метода[2].
Следующим шагом явилось определение абстрактного математического пространства. Проективные, аффинные и конформные преобразования, сохраняющиеся при этом свойства фигур, привели к созданию проективной, аффинной и конформной геометрий. Переход от трёхмерного пространства к n-мерному впервые был осуществлён в работах Грассмана и Кэли в 1844 году и привёл к созданию многомерной геометрии. Другим обобщением пространства стала риманова геометрия, предложенная Риманом в 1854 году[2]. Ф. Клейн в «Эрлангенской программе» систематизировал все виды однородных геометрий; согласно ему, геометрия изучает все те свойства фигур, которые инвариантны относительно преобразований из некоторой группы. При этом каждая группа задаёт свою геометрию. Так, изометрии (движения) задаёт евклидову геометрию, группа аффинных преобразований — аффинную геометрию.
В 70-х годах XIX века возникла теория множеств, с точки зрения которой фигура определяется как множество точек. Данный подход позволил по новому взглянуть на евклидову геометрию и проанализировать её основы, которые подверглись некоторым уточнениям в работах Гильберта[2].
Геометрия в философии и искусстве
Со времён Древней Греции в основе геометрии лежат философские понятия. Определяя точку как «то, что не имеет частей», подход к ней отличается у Пифагора, который отождествляет точку с числовой единицей и у которого точка имеет только положение в пространстве и не имеет размера, и у Демокрита, который строя атомистическую теорию, даёт точке «сверхчувственно малый» размер. К атомистическим представлениям восходят также определения линии и поверхности, где неделимыми являются «ширина» и «глубина», соответственно[6].
Геометрия является пятым из семи свободных искусств по уровню обучения. Ей предшествует тривиум, состоящий из Грамматики, Риторики и Диалектики, а также Арифметика — старшая наука в квадривиуме, к которому также относятся Музыка и Астрономия[9]. Марциан Капелла в своём трактате «Свадьба Философии и Меркурия» создал визуальные образы всех семи искусств и в том числе Геометрии. Искусства олицетворяли женщины с соответствующими атрибутами, которые сопровождались известными представителями сферы. Геометрия держит в своих руках глобус и циркуль, которым она может мерить, реже угольник, линейку или компасы. Её сопровождает Евклид[10][11].
В честь геометрии назван астероид (376) Геометрия, открытый в 1893 году.
Примечания
- ↑ 1 2 3 4 5 Геометрия // Математическая энциклопедия : в 5 т.. — М. : Советская Энциклопедия, 1982. — Т. 1.
- ↑ 1 2 3 4 5 6 7 8 БСЭ, 1971.
- ↑ 1 2 3 4 Геометрия, 1963, с. 32—41.
- ↑ Геометрия, 1963, с. 41—44.
- ↑ Геометрия, 1963, с. 44—48.
- ↑ 1 2 Геометрия, 1963, с. 12—17.
- ↑ Геометрия, 1963, с. 18—21.
- ↑ Геометрия, 1963, с. 12.
- ↑ Liberal Arts (англ.). Encyclopædia Britannica. Проверено 20 марта 2012. Архивировано 27 мая 2012 года.
- ↑ Семь свободных искусств. Simbolarium. Проверено 20 марта 2012. Архивировано 27 мая 2012 года.
- ↑ The Seven Liberal Arts. Catholic Encyclopedia. Проверено 20 марта 2013. Архивировано 3 апреля 2013 года.
Литература
- Комацу, Мацуо. Многообразие геометрии. — М. : Знание, 1981.
- Левитин, К. Е. Геометрическая рапсодия. — 3-е изд., перераб. и доп. — М. : ИД «Камерон», 2004. — 216 с. — ISBN 5-9594-0023-5.
- Шаль, Мишель. Исторический обзор происхождения и развития геометрических методов : в 2 т.. — М. : М. Катков, 1883.
- Граве Д. А. Геометрия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Геометрия // Газлифт — Гоголево. — М. : Советская энциклопедия, 1971. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 6).
- История математики : в 3 т. / под ред. А. П. Юшкевича. — М. : Наука, 1970. — Т. I : С древнейших времён до начала Нового времени.
- История математики : в 3 т. / под ред. А. П. Юшкевича. — М. : Наука, 1970. — Т. II : Математика XVII столетия.
- История математики : в 3 т. / под ред. А. П. Юшкевича. — М. : Наука, 1972. — Т. III : Математика XVIII столетия.
- Математика XIX века / ред. А. Н. Колмогоров, А. П. Юшкевич. — М. : Наука, 1981. — Т. 2 : Геометрия. Теория аналитических функций.
- Энциклопедия элементарной математики / под ред. П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. — М. : Физматгиз, 1963. — Кн. 4 : Геометрия. — 568 с.
- Энциклопедия элементарной математики / под ред. П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. — М. : Наука, 1966. — Кн. 5 : Геометрия. — 624 с.
Аналитическая геометрия — Википедия
Аналити́ческая геоме́трия — раздел геометрии, в котором геометрические фигуры и их свойства исследуются средствами алгебры.
В основе этого метода лежит так называемый метод координат, впервые применённый Декартом в 1637 году. Каждому геометрическому соотношению этот метод ставит в соответствие некоторое уравнение, связывающее координаты фигуры или тела. Такой метод «алгебраизации» геометрических свойств доказал свою универсальность и плодотворно применяется во многих естественных науках и в технике[1]. В математике аналитическая геометрия является также основой для других разделов геометрии — например, дифференциальной, алгебраической, комбинаторной и вычислительной геометрии.
Идея координат и уравнения кривой была не чужда ещё древним грекам. Архимед, и особенно Аполлоний Пергский, в своих сочинениях приводили так называемые симптомы конических сечений, которые в ряде случаев совпадают с нашими уравнениями. Однако дальнейшего развития эта идея тогда не получила по причине невысокого уровня древнегреческой алгебры и слабого интереса к кривым, отличным от прямой и окружности.
Потом в Европе использовал координатное изображение (для функции, зависящей от времени) Николай Орезмский (XIV век), который называл координаты, по аналогии с географическими, долготой и широтой. К этому времени развитое понятие о координатах уже существовало в астрономии и географии. Решающий шаг был сделан после того, как Виет (XVI век) сконструировал символический язык для записи уравнений и положил начало системной (символической) алгебре.
Около 1637 года Ферма распространил через Мерсенна мемуар «Введение в изучение плоских и телесных мест», где выписал (в символике Виета) уравнения различных кривых 2-го порядка в прямоугольных координатах. Для упрощения вида уравнений он широко использовал преобразование координат. Ферма наглядно показал, насколько новый подход проще и плодотворней чисто геометрического. Однако мемуар Ферма широкой известностью не пользовался. Гораздо большее влияние имела «Геометрия» Декарта[2][3], вышедшая в том же 1637 году, которая независимо и гораздо более полно развивала те же идеи.
Декарт включил в геометрию более широкий класс кривых, в том числе «механические» (трансцендентные, вроде спирали), и провозгласил, что у каждой кривой есть определяющее уравнение. Он построил такие уравнения для алгебраических кривых и провёл их классификацию (позже основательно переделанную Ньютоном). Декарт подчеркнул, хотя и не доказал, что основные характеристики кривой не зависят от выбора системы координат.
Система координат у Декарта была перевёрнута по сравнению с современной (ось ординат горизонтальна), и отрицательные координаты не рассматривались. Термины «абсцисса» и «ордината» изредка встречались у разных авторов, хотя в широкое употребление их ввёл только Лейбниц в конце XVII века, вместе с термином «координаты». Название «Аналитическая геометрия» утвердилось в самом конце XVIII века.
Декарт поместил в «Геометрию» множество примеров, иллюстрирующих огромную мощь нового метода, и получил немало результатов, неизвестных древним. Возможные пространственные применения он также упомянул, но эта идея не получила у него развития.
Аналитический метод Декарта немедленно взяли на вооружение ван Схоутен, Валлис и многие другие видные математики. Они комментировали и дополняли идеи «Геометрии», исправляли её недочёты, применяли новый метод в других задачах. Например, Валлис впервые рассмотрел конические сечения как плоские кривые (1655 год), причём, в отличие от Декарта, он уже использовал отрицательные абсциссы и косоугольные координаты.
Ньютон не только опирался на координатный метод в своих работах по анализу, но и продолжил геометрические исследования Декарта. Он классифицировал кривые 3-го порядка, выделив 4 типа и 58 видов; позже он добавил ещё 14. Эти результаты были получены около 1668 года, опубликованы вместе с его «Оптикой» в 1704 году. Система координат Ньютона уже ничем не отличается от современной. Для каждой кривой определяются диаметр, ось симметрии, вершины, центр, асимптоты, особые точки и т. п.
В своих «Началах» Ньютон старался всё доказывать в манере древних, без координат и бесконечно малых; однако несколько применений новых методов там всё же имеется. Гораздо бо́льшую роль аналитическая геометрия играет в его «Всеобщей арифметике», хотя там Ньютон в большинстве случаев не посчитал нужным привести доказательства, чем обеспечил работой на долгие годы целую армию комментаторов.
В первой половине XVIII века в основном продолжалось изучение алгебраических кривых высших порядков; Стирлинг обнаружил 4 новых типа, не замеченных Ньютоном. Были выявлены и классифицированы особые точки.
Клеро в 1729 году представил Парижской академии «Исследования о кривых двоякой кривизны». Эта книга по существу положила начало трем геометрическим дисциплинам: аналитической геометрии в пространстве, дифференциальной геометрии и начертательной геометрии.
Общую и очень содержательную теорию кривых и поверхностей (преимущественно алгебраических) предложил Эйлер. В своём «Введении в анализ бесконечно малых» (1748) он дал классификацию кривых 4-го порядка и показал, как определить радиус кривизны. Там, где это удобно, он использовал косоугольные или полярные координаты. Отдельная глава посвящена неалгебраическим кривым.
Во второй половине XVIII века аналитическая геометрия, получив мощную поддержку зрелого анализа, завоевала новые вершины (Лагранж, Монж), однако рассматривается уже скорее как аппарат дифференциальной геометрии.
Основные разделы аналитической геометрии (согласно книге Н. В. Ефимова).
- ↑ Погорелов А. В., 1968, с. 7.
- ↑ Stillwell, John. Analytic Geometry // Mathematics and its History. — Second Edition. — Springer Science + Business Media Inc., 2004. — P. 105. — «the two founders of analytic geometry, Fermat and Descartes, were both strongly influenced by these developments.». — ISBN 0-387-95336-1.
- ↑ Cooke, Roger. The Calculus // The History of Mathematics: A Brief Course. — Wiley-Interscience, 1997. — P. 326. — «The person who is popularly credited with being the discoverer of analytic geometry was the philosopher René Descartes (1596–1650), one of the most influential thinkers of the modern era.». — ISBN 0-471-18082-3.
- Бортаковский А. С., Пантелеев А. В. Аналитическая геометрия в примерах и задачах: Учеб. пособие. — М.: Высш. шк., 2005. — 496 с. (Серия «Прикладная математика»).
- Веселов А. П., Троицкий Е. В. Лекции по аналитической геометрии. — СПб.: Лань, 2003. — 160 с.
- Делоне Б. Н., Райков Д. А. Аналитическая геометрия, в двух томах. — М., Л.: Гостехиздат, 1948, 1949.
- Ильин В. А., Позняк Э. Г. Аналитическая геометрия. — М.: ФИЗМАТЛИТ, 2002. — 240 с.
- История математики под редакцией А. П. Юшкевича в трёх томах.
- Канатников А. Н., Крищенко А. П. Аналитическая геометрия. — М.: Издательство МГТУ им. Н.Э. Баумана, 2002. — 388 с. — ISBN 5-7038-1671-8.
- Мордухай-Болтовской Д. Д. Из прошлого аналитической геометрии // Труды института истории естествознании Акад. наук СССР, 1952, т. 4, с. 217-235.
- Погорелов А. В. Аналитическая геометрия. — 3-е изд.. — М.: Наука, 1968. — 176 с.
Геометрическая фигура — Википедия
Материал из Википедии — свободной энциклопедии
У этого термина существуют и другие значения, см. Фигура. Фигуры на плоскости.Геометрическая фигура (от лат. figura) — термин, формально применимый к произвольному множеству точек.
Обычно фигурой на плоскости называют замкнутые множества, которые ограничены конечным числом линий. При этом допускаются вырождения, например: угол, луч и точка считаются геометрическими фигурами.
Если все точки фигуры лежат в некоторой плоскости — она называется плоской и она может быть задана уравнением g(x,y)=0{\displaystyle g(x,y)=0}.
Порядок (степень) фигуры — это порядок (степень) уравнения, которым она задана.[1]
Если Φ — фигура, состоящая из всех точек плоскости, удовлетворяющих уравнению f(x,y,z)=0{\displaystyle f(x,y,z)=0}, то данное уравнение — уравнение фигуры, оно задает фигуру Φ.[1]
- ↑ 1 2 Милованов М. В., Тышкевич Р. И., Феденко А. С. Часть 1 // Алгебра и аналитическая геометрия. — Минск: Вышэйшая школа, 1984. — С. 221. — 305 с.
Проективная геометрия — Википедия
Проективная геометрия — раздел геометрии, изучающий проективные плоскости и пространства. Главная особенность проективной геометрии состоит в принципе двойственности, который прибавляет изящную симметрию во многие конструкции.
Проективная геометрия может изучаться как с чисто геометрической точки зрения, так с аналитической (с помощью однородных координат) и с алгебраической, рассматривая проективную плоскость как структуру над полем. Часто, и исторически, вещественная проективная плоскость рассматривается как Евклидова плоскость с добавлением «прямой в бесконечности».
Тогда как свойства фигур, с которыми имеет дело Евклидова геометрия, являются метрическими (конкретные величины углов, отрезков, площадей), а эквивалентность фигур равнозначна их конгруэнтности (то есть когда фигуры могут быть переведены одна в другую посредством движения с сохранением метрических свойств), существуют более «глубоко лежащие» свойства геометрических фигур, которые сохраняются преобразованиями более общего типа, чем движение. Проективная геометрия занимается изучением свойств фигур, инвариантных при классе проективных преобразований, а также самих этих преобразований.
Проективная геометрия дополняет Евклидову, предоставляя красивые и простые решения для многих задач, осложнённых присутствием параллельных прямых. Особенно проста и изящна проективная теория конических сечений.
Хотя некоторые результаты, которые теперь причислены к проективной геометрии, восходят к работе таких древнегреческих геометров, как Папп Александрийский, проективная геометрия как таковая родилась в XVII веке из прямой перспективы в живописи и архитектурном черчении. Идея бесконечно далёких точек, в которых пересекаются параллельные прямые, появилась независимо у французского архитектора Жерара Дезарга и у немецкого астронома Иоганна Кеплера. Дезарг даже предложил, что может существовать прямая, состоящая исключительно из бесконечно удалённых точек.
В XIX веке интерес к этой области возродился благодаря трудам Жана-Виктора Понселе и Мишеля Шаля. Понселе вывел проективное пространство из Евклидова, добавив прямую в бесконечности, на которой пересекаются все плоскости, параллельные данной, и доказал принцип дуальности. Шаль продолжил и значительно углубил труды Понселе. Позже фон Штаудт создал чисто синтетическую аксиоматизацию, объединяющую эти прямые с остальными.
В конце XIX века Феликс Клейн предложил использовать для проективной геометрии однородные координаты, которые ранее ввели Мёбиус, Плюккер, и Фейербах.
Основные, оставленные без определения в стандартной аксиоматизации, понятия проективной геометрии — это точка и прямая. Совокупность точек на прямой называется рядом, а совокупность прямых, проходящих через точку — пучком. Совокупность точек на прямых в пучке A, пересекающихся с прямой BC, определяет плоскость ABC. Принцип двойственности гласит, что любая конструкция проективной геометрии в n-мерном пространстве остаётся верной, если во всех случаях заменить (k)-мерные конструкции на (n—k-1)-мерные. Так, любая конструкция в проективной плоскости остаётся верной, если заменить точки на прямые и прямые на точки.
Преобразование ряда прямой X в пучок точки x, не находящейся в этом ряду, или обратно, идентифицирует каждую точку в ряду с пересекающей её прямой из пучка и пишется X ⌅ x. Последовательность из нескольких таких преобразований (из ряда в пучок, потом обратно в ряд, и так далее) называется проективностью. Перспективность — это последовательность из двух проективностей (пишется X ⌆ X′). Перспективность двух прямых проходит сквозь центр O, а перспективность двух точек — сквозь ось o. Точка инвариантна по отношению к проективности, если проективность преобразует её в ту же точку.
Треугольник — это три точки, соединённые попарно прямыми. Полный четырёхугольник — это четыре точки (вершины) в одной плоскости, из которых никакие три не коллинеарны, соединённые попарно прямыми. Пересечение двух из этих прямых, не являющееся вершиной, называется диагональной точкой. Полный четырёхгранник определяется аналогично, но с точками вместо прямых и прямыми вместо точек. Аналогично можно определить полный n-угольник и полный n-гранник.
Два треугольника перспективны если они могут быть соединены с помощью перспективности, то есть их грани пересекаются на коллинеарных точках (перспективность сквозь прямую) или их вершины соединены конкурентными прямыми (перспективность сквозь точку).
Есть три главных подхода к проективной геометрии: независимая аксиоматизация, дополнение Евклидовой геометрии, и структура над полем.
Аксиоматизация[править | править код]
Проективное пространство можно определить с помощью разного набора аксиом. Коксетер предоставляет следующие:
- Существует прямая и точка не на ней.
- На каждой прямой есть по крайней мере три точки.
- Через две точки можно провести ровно одну прямую.
- Если A, B, C, и D — различные точки и AB и CD пересекаются, то AC и BD пересекаются.
- Если ABC — плоскость, то существует по крайней мере одна точка не в плоскости ABC.
- Две различные плоскости пересекаются по крайней мере в двух точках.
- Три диагональные точки полного четырёхугольника не коллинеарны.
- Если три точки на прямой X инвариантны по отношению к проективности φ, то все точки на X инвариантны по отношению к φ.
Проективная плоскость (без третьего измерения) определяется несколько другими аксиомами:
- Через две точки можно провести ровно одну прямую.
- Любые две прямые пересекаются.
- Существует четыре точки, из которых нет трёх коллинеарных.
- Три диагональные точки полных четырёхугольников не коллинеарны.
- Если три точки на прямой X инвариантны по отношению к проективности φ, то все точки на X инвариантны по отношению к φ.
- Теорема Дезарга: Если два треугольника перспективны сквозь точку, то они перспективны сквозь прямую.
При наличии третьего измерения, теорема Дезарга может быть доказана без введения идеальных точки и прямой.
Дополнение Евклидовой геометрии[править | править код]
Исторически, проективное пространство было впервые определено, как дополнение евклидова пространства идеальным элементом — бесконечно удалённой плоскостью. Каждая точка на этой плоскости соответствует направлению в пространстве и является местом пересечения всех прямых этого направления.
Структура над полем[править | править код]
n-мерное проективное пространство над полем F определяется с помощью системы однородных координат над F, то есть множества ненулевых (n+1)-векторов из элементов F. Точка и прямая определяются как множество векторов, отличающихся умножением на константу. Точка x находится на прямой X если скалярное произведение X ⋅ x = 0. Таким образом, имея прямую X, мы можем определить линейное уравнение X ⋅ x = 0, определяющее ряд точек на X. Из этого следует, что точки x, y, и z коллинеарны, если X ⋅ x = X ⋅ y = X ⋅ z = 0 для какой-нибудь прямой X.
- Буземан Г., Келли П. Проективная геометрия и проективные метрики. M., 1957.
- Бэр Р. Линейная алгебра и проективная геометрия. М., 1955.
- Вольберг А. О. Основные идеи проективной геометрии. М.–Л.: Учпедгиз, 1949.
- Глаголев Н. А. Проективная геометрия. М.–Л., 1936.
- Курант Р., Роббинс Г. Что такое математика, Глава IV. 2001
- Хартсхорн Р. Основы проективной геометрии. М., 1970.
- Юнг Дж. В. Проективная геометрия. М.: ИЛ, 1949.
Евклидова геометрия — Википедия
Материал из Википедии — свободной энциклопедии
Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
Элементарная геометрия — геометрия, определяемая в основном группой перемещений (изометрий) и группой подобия. Однако содержание элементарной геометрии не исчерпывается указанными преобразованиями. К элементарной геометрии также относят преобразование инверсии, вопросы сферической геометрии, элементы геометрических построений, теорию измерения геометрических величин и другие вопросы.
Элементарную геометрию часто называют евклидовой геометрией, так как первоначальное и систематическое её изложение, хотя и недостаточно строгое, было в «Началах» Евклида. Первая строгая аксиоматика элементарной геометрии была дана Гильбертом. Элементарная геометрия изучается в средней общеобразовательной школе.
Задача аксиоматизации элементарной геометрии состоит в построении системы аксиом так, чтобы все утверждения евклидовой геометрии следовали из этих аксиом чисто логическим выводом без наглядности чертежей.
В «Началах» Евклида была дана следующая система аксиом:
- От всякой точки до всякой точки можно провести прямую.
- Ограниченную прямую можно непрерывно продолжать по прямой.
- Из всякого центра всяким радиусом может быть описан круг.
- Все прямые углы равны между собой.
- Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых углов, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых углов.
Эта система была достаточна для того, чтобы один математик понял другого, но в доказательствах неявно использовались и другие интуитивно очевидные утверждения, в частности так называемая теорема Паша, которая не может быть выведена из постулатов Евклида.
В 1899 году Гильберт предложил первую достаточно строгую аксиоматику евклидовой геометрии. Попытки улучшения евклидовой аксиоматики предпринимались до Гильберта Пашем, Шуром[en], Пеано, Веронезе, однако подход Гильберта, при всей его консервативности в выборе понятий, оказался более успешным.
Существуют и другие современные аксиоматики, наиболее известные:
Существует несколько конкурирующих систем обозначений.
- Точки обычно обозначаются прописными латинскими буквами A,B,C,…{\displaystyle A,B,C,\dots }.
- Прямые обычно обозначаются строчными латинскими буквами a,b,c,…{\displaystyle a,b,c,\dots }.
- Расстояние между точками P{\displaystyle P} и Q{\displaystyle Q} обычно обозначается PQ{\displaystyle PQ} или |PQ|{\displaystyle |PQ|}.
- Отрезок между точками P{\displaystyle P} и Q{\displaystyle Q} обычно обозначается [PQ]{\displaystyle [PQ]} или PQ¯{\displaystyle {\overline {PQ}}}.
- Луч из точки P{\displaystyle P} через точку Q{\displaystyle Q} обычно обозначается [PQ){\displaystyle [PQ)} или PQ→{\displaystyle {\overrightarrow {PQ}}}.
- Прямая через точки P{\displaystyle P} и Q{\displaystyle Q} обычно обозначается (PQ){\displaystyle (PQ)} или PQ↔{\displaystyle {\overleftrightarrow {PQ}}}.
- Треугольник с вершинами P{\displaystyle P}, Q{\displaystyle Q} и R{\displaystyle R} обычно обозначается △PQR{\displaystyle \triangle PQR} или [PQR]{\displaystyle [PQR]}.
- Площадь фигуры F{\displaystyle F} обычно обозначается S(F){\displaystyle S(F)} или |F|{\displaystyle |F|}.
- Угол, образованный лучами [OP){\displaystyle [OP)} и [OQ){\displaystyle [OQ)}, обычно обозначается ∠POQ{\displaystyle \angle POQ}.
- Величина угла ∠POQ{\displaystyle \angle POQ} обычно обозначается ∡POQ{\displaystyle \measuredangle POQ}.
- При этом для краткости величина угла часто обозначается строчной греческой буквой α,β,γ,…{\displaystyle \alpha ,\beta ,\gamma ,\dots }.
Основания геометрии — Википедия
Материал из Википедии — свободной энциклопедии
Основания геометрии — область математики, изучающая аксиоматические системы евклидовой геометрии, а также различных неевклидовых геометрий. Основные вопросы состоят в полноте, независимости и непротиворечивости аксиоматических систем. Основания геометрии также связаны с вопросом преподавания геометрии.
Основания геометрии стали изучаться после появления геометрии Лобачевского. Первой задачей стала формализация и пополнение системы аксиом евклидовой геометрии.
Аксиоматика Евклида не была полной, и в доказательствах Евклид пользовался неявно аксиомами, которые не представлены в его списке аксиом. Например, Евклид использовал без доказательства то, что две окружности с центрами на расстоянии их радиуса пересекаются в двух точках.
Из неявно используемых аксиом можно назвать следующие:
Родоначальником оснований геометрии следует считать Морица Паша. В своей книге «Vorlesungen über neuere Geometrie», опубликованной в 1882 году, Паш создал формальные системы, свободные от каких-либо интуитивных влияний. Он впервые использовал так называемое «неопределяемое понятие» (нем. Kernbegriffe) в дополнение к аксиомами (нем. Kernsätzen). Работы Паша повлияли на многих других математиков, в частности, Гильберта, Пеано и Пьери.
Аксиоматика Евклида — первая и не полная система. Она состояла из определений
- Точка есть то, что не имеет частей. (Σημεῖόν ἐστιν, οὗ μέρος οὐθέν — букв. «Точка есть то, часть чего ничто»)
- Линия — длина без ширины.
- Края же линии — точки.
- Прямая линия есть та, которая равно лежит на всех своих точках. (Εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφ’ ἑαυτῆς σημείοις κεῖται)
- Поверхность есть то, что имеет только длину и ширину.
- Края же поверхности — линии.
- Плоская поверхность есть та, которая равно лежит на всех своих линиях.
и постулатов
- От всякой точки до всякой точки можно провести прямую.
- Ограниченную прямую можно непрерывно продолжать по прямой.
- Из всякого центра всяким радиусом может быть описан круг.
- Все прямые углы равны между собой.
- Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.
- Аксиоматика Гильберта — самая популярная и наиболее консервативная полная система аксиом Евклидовой геометрии, построенная на основе аксиом Евклида. Состоит из 20 аксиом и поделена на 5 групп.
- Аксиоматика Тарского.
- Аксиоматика Вейля — оперирует неопределяемыми понятиями точки и свободного вектора. Прямая и плоскость определяются как множества точек.
- Аксиомы Биркгофа — система аксиом, использующая вещественные числа как готовый блок, и как результат очень компактная, всего 4 аксиомы.
- Аксиоматика Бахмана — построение геометрии на основе понятия симметрии.[1]
- Аксиоматика Александрова — система аксиом, схожая с Гильбертовской, но без чрезмерной формализации.
- ↑ Фридрих Бахман. Построение геометрии на основе понятия симметрии. — 1969.
- Александров А. Д. Основания геометрии. — 1987.
- Гильберт Д. Основания геометрии. — 1948. — (Классики естествознания. Математика, механика, физика, астрономия).
- Н. В. Ефимов. Высшая геометрия. — 7-е изд. — М.: Физматлит, 2004. — ISBN 5-9221-0267-2.
- Норден А. П. (ред.). Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского. — ГИТТЛ, 1956. — (Классики естествознания, Книга 113).
- Погорелов А. В. Основания геометрии. — Наука, 1979.