Как в равнобедренном треугольнике найти третью сторону – Сторона равнобедренного треугольника | Онлайн калькуляторы, расчеты и формулы на GELEOT.RU

Как найти неизвестную сторону треугольника


Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти неизвестную сторону треугольника

 

 

a, b, c — стороны произвольного треугольника

α, β, γ — противоположные углы

 

 

Формула  длины через две стороны и угол (по теореме косинусов), (a):

Формула  стороны треугольника по теореме косинусов

* Внимательно, при подстановке в формулу, для тупого угла (α>90), cosα принимает отрицательное значение

 

 

Формула  длины через сторону и два угла (по теореме синусов), (a):

Формула  стороны по теореме синусов

 



Подробности
Автор: Administrator logo

www-formula.ru

Две стороны и угол треугольника

Зная две стороны в треугольнике и угол между ними, можно с помощью теоремы косинусов вычислить третью сторону треугольника. Для этого нужно извлечь квадратный корень из суммы квадратов известных сторон и разности с их удвоенным произведением на косинус угла между ними. (рис.76) a^2=b^2+c^2-2bc cos⁡α a=√(b^2+c^2-2bc cos⁡α )

Угол β или γ можно рассчитать через ту же теорему косинусов, зная две, образующие их стороны, при этом один из них – последний, проще найти, отняв два известных от 180 градусов. cos⁡β=(a^2+c^2-b^2)/2ac=(b^2+c^2-2bc cos⁡α+c^2-b^2)/(2c√(b^2+c^2-2bc cos⁡α ))=(2c^2-2bc cos⁡α)/(2c√(b^2+c^2-2bc cos⁡α ))=(c-b cos⁡α)/√(b^2+c^2-2bc cos⁡α ) cos⁡γ=(a^2+b^2-c^2)/2ab=(b^2+c^2-2bc cos⁡α+b^2-c^2)/(2b√(b^2+c^2-2bc cos⁡α ))=(b-c cos⁡α)/√(b^2+c^2-2bc cos⁡α )

Медиана треугольника рассчитывается по вполне однозначной формуле, тогда как если нужно найти медианы через две стороны и угол между ними, то требуются преобразования. m_a=√(2b^2+2c^2-a^2 )/2=√(2b^2+2c^2-b^2-c^2+2bc cos⁡α )/2=√(b^2+c^2+2bc cos⁡α )/2 m_b=√(2a^2+2c^2-b^2 )/2=√(2b^2+2c^2-4bc cos⁡α+2c^2-b^2 )/2=√(b^2+4c^2-4bc cos⁡α )/2 m_c=√(2a^2+2b^2-c^2 )/2=√(2b^2+2c^2-4bc cos⁡α+2b^2-c^2 )/2=√(4b^2+c^2-4bc cos⁡α )/2

Для расчета биссектрис в произвольном треугольнике также существуют стандартные формулы, из которых только одна может быть преобразована и упрощена для двух сторон и угла между ними. l_c=√(ab(a+b+c)(a+b-c))/(a+b) l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)=√(bc((b-c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-b^2-c^2+2bc cos⁡α ) )/(b+c)=(bc√(2(1+cos⁡α ) ))/(b+c)

Чтобы найти высоту, нужно знать все три стороны в треугольнике. Подставив их в формулу так, чтобы сторона, на которую опущена искомая высота была в знаменателе, рассчитываются их величины. h_a=(2√(p(p-a)(p-b)(p-c) ))/a h_b=(2√(p(p-a)(p-b)(p-c) ))/b h_c=(2√(p(p-a)(p-b)(p-c) ))/c

Вычислить среднюю линию треугольника можно, зная лишь ту сторону, которой она параллельна, так как сторона будет в два раза больше. В случае с неизвестной стороной, можно подставить в формулу радикал,выведенный по теореме косинусов. M_a=a/2=√(b^2+c^2-2bc cos⁡α )/2 M_b=b/2 M_c=c/2

На пересечении биссектрис в треугольнике расположен центр окружности, которую можно в него вписать. Радиус такой окружности рассчитывается по следующей формуле(рис.75.5) r=√(((p-a)(p-b)(p-c))/p)

Центр описанной вокруг треугольника окружности в свою очередь расположен в точке пересечения медиатрисс, и его формула значительно видоизменена в сравнении с радиусом вписанной окружности. (рис.75.6) R=abc/(4√(p(p-a)(p-b)(p-c)))

geleot.ru

Два угла и сторона треугольника C

Для того чтобы рассчитать в треугольнике все возможные показатели, необходимо, как минимум, иметь данные о его сторонах. Зная два угла и сторону а, можно найти остальные две стороны и угол, построив высоту в таком треугольнике. (рис. 76.1) Высота разделит произвольный треугольник на два прямоугольных, в которых катетами будет высота и часть известной стороны x или y, а гипотенузами – неизвестные стороны a и b. Кроме того, что мы задаем известную сторону a, как сумму двух катетов x и y, тригонометрия полученных треугольников, определяет высоту с одной стороны как произведение y на тангенс β, а с другой стороны как произведение x на тангенс γ. Приравнивая эти выражения друг к другу, можно составить систему уравнений, из которых могут быть найдены части x и y, а затем неизвестные стороны первоначального треугольника a и b. {█(x+y=a@y tan⁡β=x tan⁡γ )┤{█(x=a-y@y(tan⁡β+tan⁡γ )=a tan⁡γ )┤{█(x=a-y@y=(a tan⁡γ)/(tan⁡β+tan⁡γ ))┤ b=x/cos⁡γ , c=y/cos⁡β h_a=y tan⁡β

Можно также найти сразу две другие высоты треугольника, опущенные на стороны b и c соответственно. (рис. 76.2) h_b=a sin⁡β h_c=a sin⁡γ

Третий угол можно найти, зная, что сумма всех углов в треугольнике равна 180 градусам. α=180°-β-γ

Теперь, зная все стороны, углы и высоты, можно найти все остальные параметры треугольника. Вычислить периметр можно, сложив все три стороны, а площадь – умножив половину любой стороны на опущенную на нее высоту. P=a+b+c S=(ah_a)/2

Если провести в треугольнике медианы, то каждая из них разделит сторону, на которую она опущена, на две равные части. Для того, чтобы вычислить медиану в треугольнике, необходимо знать все три стороны. Формула медианы заключается в том, чтобы сложить удвоенные квадраты двух нетронутых сторон, отнять квадрат стороны, на которую опущена медиана, извлечь из этого выражения квадратный корень и разделить его на два. (рис. 75.1) m_c=√(2a^2+2b^2-c^2 )/2 m_a=√(2b^2+2c^2-a^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2

Чтобы найти биссектрисы треугольника, которые делят пополам его углы, также необходимо знать все три стороны треугольника. Формула биссектрисы выглядит немного сложнее, чем формула медианы, но достаточно проста в расчетах. (рис.75.2) l_c=√(ab(a+b+c)(a+b-c))/(a+b) l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)

Средняя линия треугольника – это прямая, проведенная параллельно одной из его сторон. Ее особенность заключается в том, что она делит стороны на которые опирается на две равные части, и сама равна половине стороны, ей параллельной. (рис.75.7) M_a=a/2 M_b=b/2 M_c=c/2

Также в произвольном треугольнике через стороны можно найти радиус окружности, которую можно вписать в треугольник или описать около него. Радиус вписанной окружности будет начинаться в точке пересечения биссектрис треугольника и опускаться на любую из сторон под прямым углом. Радиус описанной окружности начинается в точке пересечения медиатрисс треугольника и заканчивается в любой из его вершин. (рис. 75.5, 75.6) r=√(((p-a)(p-b)(p-c))/p) R=abc/(4√(p(p-a)(p-b)(p-c)))

geleot.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *