Кинетическая энергия — Википедия
Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек[1]. Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[2]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как
- T=∑mivi22{\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}},
где индекс i{\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[3]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[4]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T{\displaystyle T}, Ekin{\displaystyle E_{kin}}, K{\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).
Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвящённых понятию «живой силы»[5].
Кинетическая энергия в классической механике[править | править код]
Случай одной материальной точки[править | править код]
По определению, кинетической энергией материальной точки массой m{\displaystyle m} называется величина
- T=mv22{\displaystyle T={{mv^{2}} \over 2}},
при этом предполагается, что скорость точки v{\displaystyle v} всегда значительно меньше скорости света. С использованием понятия импульса (p→=mv→{\displaystyle {\vec {p}}=m{\vec {v}}}) данное выражение примет вид T=p2/2m{\displaystyle \ T=p^{2}/2m}.
Если F→{\displaystyle {\vec {F}}} — равнодействующая всех сил, приложенных к точке, выражение второго закона Ньютона запишется как F→=ma→{\displaystyle {\vec {F}}=m{\vec {a}}}. Скалярно умножив его на перемещение материальной точки ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} и учитывая, что a→=dv→/dt{\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t}, причём d(v2)/dt=d(v→⋅v→)/dt=2v→⋅dv→/dt{\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t}, получим F→ds→=d(mv2/2)=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T}.
Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина T{\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения.
Случай абсолютно твёрдого тела[править | править код]
При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:
- T=Mv22+Iω22.{\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}
Здесь M{\displaystyle \ M} — масса тела, v{\displaystyle \ v} — скорость центра масс, ω→{\displaystyle {\vec {\omega }}} и I{\displaystyle I} — угловая скорость тела и его момент инерции относительно мгновенной оси, проходящей через центр масс[6].
Кинетическая энергия в гидродинамике[править | править код]
В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа ρ=dM/dV{\displaystyle \rho ={\rm {d}}M/{\rm {d}}V}. Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью v→{\displaystyle {\vec {v}}}, то есть плотность кинетической энергии wT=dT/dV{\displaystyle w_{T}={\rm {d}}T/{\rm {d}}V} (Дж/м3), запишется:
- wT=ρvαvα2,{\displaystyle w_{T}=\rho {\frac {v_{\alpha }v_{\alpha }}{2}},}
где по повторяющемуся индексу α=x,y,z{\displaystyle {\alpha }=x,y,z}, означающему соответствующую проекцию скорости, предполагается суммирование.
Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса
- wT¯=12ρvαvα¯=Es+Est+Et,{\displaystyle {\overline {w_{T}}}={\frac {1}{2}}{\overline {\rho v_{\alpha }v_{\alpha }}}=E_{s}+E_{st}+E_{t},}
где Es=ρ¯vα¯vα¯/2{\displaystyle E_{s}={\overline {\rho }}\,{\overline {v_{\alpha }}}\,{\overline {v_{\alpha }}}/2} — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, Et=ρ¯vα′vα′¯/2+ρ′vα′vα′¯/2{\displaystyle E_{t}={\overline {\rho }}\,{\overline {v’_{\alpha }\,v’_{\alpha }}}/2+{\overline {\rho ‘v’_{\alpha }v’_{\alpha }}}/2} — плотность кинетической энергии, связанной с неупорядоченным движением (« плотность кинетической энергии турбулентности»[7], часто называемой просто «энергией турбулентности»), а Est=Sαvα¯{\displaystyle E_{st}=S_{\alpha }{\overline {v_{\alpha }}}} — плотность кинетической энергии, связанная с турбулентным потоком вещества (Sα=ρ′vα′¯{\displaystyle S_{\alpha }={\overline {\rho ‘v’_{\alpha }}}} — плотность флуктуационного потока массы, или «плотность турбулентного импульса»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея: кинетическая энергия упорядоченного движения Es{\displaystyle E_{s}} зависит от выбора системы координат, в то время как кинетическая энергия турбулентности Et{\displaystyle E_{t}} от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии.
Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.
В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором (p^=−jℏ∇{\displaystyle {\hat {p}}=-j\hbar \nabla }, j{\displaystyle \ j} — мнимая единица):
- T^=p^22m=−ℏ22mΔ{\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }
где ℏ{\displaystyle \hbar } — редуцированная постоянная Планка, ∇{\displaystyle \nabla } — оператор набла, Δ{\displaystyle \Delta } — оператор Лапласа. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера[8].
Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как
- T=mc21−v2/c2−mc2,{\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}
где m{\displaystyle \ m} — масса покоя, v{\displaystyle \ v} — скорость движения в выбранной инерциальной системе отсчёта, c{\displaystyle \ c} — скорость света в вакууме (mc2{\displaystyle mc^{2}} — энергия покоя). Как и в классическом случае, имеет место соотношение F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T}, получаемое посредством умножения на ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде F→=m⋅d(v→/1−v2/c2)/dt{\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t}).
При скоростях, много меньших скорости света (v≪c{\displaystyle v\ll c}) имеем 1−v2/c2≈1−v2/2c2{\displaystyle {\sqrt {1-v^{2}/c^{2}}}\approx 1-v^{2}/2c^{2}} и выражение для T{\displaystyle \ T} переходит в классическую формулу T=1/2⋅mv2{\displaystyle \ T=1/2\cdot mv^{2}}.
- Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
- Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
- Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
- Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[9][10].
Физический смысл кинетической энергии[править | править код]
Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[2]:
- A12=T2−T1.{\displaystyle \ A_{12}=T_{2}-T_{1}.}
Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} между состояниями 1 и 2).
Соотношение кинетической и внутренней энергии[править | править код]
Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.
То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.
- ↑ 1 2 3 4 Айзерман, 1980, с. 49.
- ↑ 1 2 Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.
- ↑ Тарг С. М. Кинетическая энергия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
- ↑ Мах Э. Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
- ↑ Голубева О. В. Теоретическая механика. — М.: «Высшая школа», 1968. — С. 243—245.
- ↑ 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
- ↑ Блохинцев Д. И. Основы квантовой механики, 5-е изд. Наука, 1976. — 664 с., см. § 26.
- ↑ Айзерман, 1980, с. 54.
- ↑ Сорокин В. С. «Закон сохранения движения и мера движения в физике» // УФН, 59, с. 325—362, (1956)
</noinclude>
Эквивалентность массы и энергии — Википедия
Эта статья включает описание термина «энергия покоя»
Эта статья включает описание термина «E=mc 2»; см. также другие значения.
Эквивале́нтность ма́ссы и эне́ргии — физическая концепция теории относительности, согласно которой полная энергия физического объекта (физической системы, тела) равна его (её) массе, умноженной на размерный множитель квадрата скорости света в вакууме:
E=mc2{\displaystyle \ E=mc^{2}}, | (1) |
где E{\displaystyle E} — энергия объекта, m{\displaystyle m} — его масса, c{\displaystyle c} — скорость света в вакууме, равная 299 792 458 м/с.
В зависимости от того, что понимается под терминами «масса» и «энергия», данная концепция может быть интерпретирована двояко:
1) с одной стороны, концепция означает, что масса тела (инвариантная масса, называемая также массой покоя)[1] равна (с точностью до постоянного множителя c²)[2] энергии, «заключённой в нём», то есть его энергии, измеренной или вычисленной в сопутствующей системе отсчёта (системе отсчёта покоя), так называемой энергии покоя, или в широком смысле внутренней энергии этого тела[3],
E0=mc2{\displaystyle E_{0}=mc^{2}}, | (2) |
где E0{\displaystyle E_{0}} — энергия покоя тела, m{\displaystyle m} — его масса покоя;
2) с другой стороны, можно утверждать, что любому виду энергии (не обязательно внутренней) физического объекта (не обязательно тела) соответствует некая масса; например, для любого движущегося объекта было введено понятие релятивистской массы, равной (с точностью до множителя c²) полной энергии этого объекта (включая кинетическую)[4],
mrelc2=E{\displaystyle \ m_{rel}c^{2}=E}, | (3) |
где E{\displaystyle E} — полная энергия объекта, mrel{\displaystyle m_{rel}} — его релятивистская масса.
Формула на небоскрёбе Тайбэй 101 во время одного из мероприятий Всемирного года физики (2005)Первая интерпретация не является лишь частным случаем второй. Хотя энергия покоя является частным случаем энергии, а m{\displaystyle m} практически равна mrel{\displaystyle m_{rel}} в случае нулевой или малой скорости движения тела, но m{\displaystyle m} имеет выходящее за рамки второй интерпретации физическое содержание: эта величина является скалярным (то есть выражаемым одним числом) инвариантным (неизменным при смене системы отсчёта) множителем в определении 4-вектора энергии-импульса, аналогичным ньютоновской массе и являющимся её прямым обобщением[5], и к тому же m{\displaystyle m} является модулем 4-импульса. Дополнительно, именно m{\displaystyle m} (а не mrel{\displaystyle m_{rel}}) является единственным скаляром, который не только характеризует инертные свойства тела при малых скоростях, но и через который эти свойства могут быть достаточно просто записаны для любой скорости движения тела[6].
Таким образом, m{\displaystyle m} — инвариантная масса — физическая величина, имеющая самостоятельное и во многом более фундаментальное значение[7].
В современной теоретической физике концепция эквивалентности массы и энергии используется в первом смысле[8]. Главной причиной, почему приписывание массы любому виду энергии считается чисто терминологически неудачным и поэтому практически вышло из употребления в стандартной научной терминологии, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого подхода может запутывать[9] и в конечном итоге оказывается неоправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорится о массе, имеется в виду инвариантная масса. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. Этот термин подчёркивает увеличение инертных свойств движущегося тела вместе с его энергией, что само по себе вполне содержательно[10].
В наиболее универсальной форме принцип был сформулирован впервые Альбертом Эйнштейном в 1905 году, однако представления о связи энергии и инертных свойств тела развивались и в более ранних работах других исследователей.
В современной культуре формула E=mc2{\displaystyle E=mc^{2}} является едва ли не самой известной из всех физических формул, что обусловливается её связью с устрашающей мощью атомного оружия. Кроме того, именно эта формула является символом теории относительности и широко используется популяризаторами науки[11].
Эквивалентность инвариантной массы и энергии покоя[править | править код]
Исторически принцип эквивалентности массы и энергии был впервые сформулирован в своей окончательной форме при построении специальной теории относительности Альбертом Эйнштейном. Им было показано, что для свободно движущейся частицы, а также свободного тела и вообще любой замкнутой системы частиц, выполняются следующие соотношения[12]:
E2−p→2c2=m2c4p→=Ev→c2{\displaystyle \ E^{2}-{\vec {p}}^{\,2}c^{2}=m^{2}c^{4}\qquad {\vec {p}}={\frac {E{\vec {v}}}{c^{2}}}}, | (1.1) |
где E{\displaystyle E}, p→{\displaystyle {\vec {p}}}, v→{\displaystyle {\vec {v}}}, m{\displaystyle m} — энергия, импульс, скорость и инвариантная масса системы или частицы, соответственно, c{\displaystyle c} — скорость света в вакууме. Из этих выражений видно, что в релятивистской механике, даже когда в нуль обращаются скорость и импульс тела (массивного объекта), его энергия в нуль не обращается[13], оставаясь равной некоторой величине, определяемой массой тела:
E0=mc2{\displaystyle E_{0}=mc^{2}}. | (1.2) |
Эта величина носит название энергии покоя,[14] и данное выражение устанавливает эквивалентность массы тела этой энергии. На основании этого факта Эйнштейном был сделан вывод, что масса тела является одной из форм энергии[3] и что тем самым законы сохранения массы и энергии объединены в один закон сохранения[15].
Энергия и импульс тела являются компонентами 4-вектора энергии-импульса (четырёхимпульса)[16] (энергия — временной, импульс — пространственными) и соответствующим образом преобразуются при переходе из одной системы отсчёта в другую, а масса тела является лоренц-инвариантом, оставаясь при переходе в другие системы отсчёта постоянной, и имея смысл модуля вектора четырёхимпульса.
Следует также отметить, что несмотря на то, что энергия и импульс частиц аддитивны[17], то есть для системы частиц имеем:
E=∑iEip→=∑ip→i{\displaystyle \ E=\sum _{i}E_{i}\qquad {\vec {p}}=\sum _{i}{\vec {p}}_{i}} | (1.3) |
масса частиц аддитивной не является,[12] то есть масса системы частиц, в общем случае, не равна сумме масс составляющих её частиц.
Таким образом, энергия (неинвариантная, аддитивная, временная компонента четырёхимпульса) и масса (инвариантный, неаддитивный модуль четырёхимпульса) — это две разные физические величины.[7]
Эквивалентность инвариантной массы и энергии покоя означает, что в сопутствующей системе отсчёта, в которой свободное тело покоится, его энергия (с точностью до множителя c2{\displaystyle c^{2}}) равна его инвариантной массе[7][18].
Четырёхимпульс равен произведению инвариантной массы на четырёхскорость тела.
pμ=mUμ{\displaystyle p^{\mu }=m\,U^{\mu }\!}, | (1.4) |
Это соотношение следует считать аналогом в специальной теории относительности классического определения импульса через массу и скорость.
После того, как Эйнштейн предложил принцип эквивалентности массы и энергии, стало очевидно, что понятие массы может интерпретироваться двояко. С одной стороны, это инвариантная масса, которая — именно в силу инвариантности — совпадает с той массой, что фигурирует в классической физике, с другой — можно ввести так называемую релятивистскую массу, эквивалентную полной (включая кинетическую) энергии физического объекта[4]:
- mrel=Ec2,{\displaystyle m_{\mathrm {rel} }={\frac {E}{c^{2}}},}
где mrel{\displaystyle m_{\mathrm {rel} }} — релятивистская масса, E{\displaystyle E} — полная энергия объекта.
Для массивного объекта (тела) эти две массы связаны между собой соотношением:
- mrel=m1−v2c2,{\displaystyle m_{\mathrm {rel} }={\frac {m}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}},}
где m{\displaystyle m} — инвариантная («классическая») масса, v{\displaystyle v} — скорость тела.
Соответственно,
- E=mrelc2=mc21−v2c2.{\displaystyle E=m_{\mathrm {rel} }{c^{2}}={\frac {mc^{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}
Энергия и релятивистская масса — это одна и та же физическая величина (неинвариантная, аддитивная, временная компонента четырёхимпульса).[7]
Эквивалентность релятивистской массы и энергии означает, что во всех системах отсчёта энергия физического объекта (с точностью до множителя c2{\displaystyle c^{2}}) равна его релятивистской массе[7][19].
Введённая таким образом релятивистская масса является коэффициентом пропорциональности между трёхмерным («классическим») импульсом и скоростью тела[4]:
- p→=mrelv→.{\displaystyle {\vec {p}}=m_{\mathrm {rel} }{\vec {v}}.}
Аналогичное соотношение выполняется в классической физике для инвариантной массы, что также приводится как аргумент в пользу введения понятия релятивистской массы. Это в дальнейшем привело к тезису, что масса тела зависит от скорости его движения[20].
В процессе создания теории относительности обсуждались понятия продольной и поперечной массы массивной частицы (тела). Пусть сила, действующая на тело, равна скорости изменения релятивистского импульса. Тогда связь силы F→{\displaystyle {\vec {F}}} и ускорения a→=dv→/dt{\displaystyle {\vec {a}}=d{\vec {v}}/dt} существенно изменяется по сравнению с классической механикой:
- F→=dp→dt=ma→1−v2/c2+mv→⋅(v→a→)/c2(1−v2/c2)3/2.{\displaystyle {\vec {F}}={\frac {d{\vec {p}}}{dt}}={\frac {m{\vec {a}}}{\sqrt {1-v^{2}/c^{2}}}}+{\frac {m{\vec {v}}\cdot ({\vec {v}}{\vec {a}})/c^{2}}{(1-v^{2}/c^{2})^{3/2}}}.}
Если скорость перпендикулярна силе, то F→=mγa→,{\displaystyle {\vec {F}}=m\gamma {\vec {a}},} а если параллельна, то F→=mγ3a→,{\displaystyle {\vec {F}}=m\gamma ^{3}{\vec {a}},} где γ=1/1−v2/c2{\displaystyle \gamma =1/{\sqrt {1-v^{2}/c^{2}}}} — релятивистский фактор. Поэтому mγ=mrel{\displaystyle m\gamma =m_{\mathrm {rel} }} называют поперечной массой, а mγ3{\displaystyle m\gamma ^{3}} — продольной.
Утверждение о том, что масса зависит от скорости, вошло во многие учебные курсы и в силу своей парадоксальности приобрело широкую известность среди неспециалистов. Однако в современной физике избегают использовать термин «релятивистская масса», используя вместо него понятие энергии, а под термином «масса» понимая инвариантную массу (покоя). В частности, выделяются следующие недостатки введения термина «релятивистская масса»[8]:
- неинвариантность релятивистской массы относительно преобразований Лоренца;
- синонимичность понятий энергия и релятивистская масса, и, как следствие, избыточность введения нового термина;
- наличие различных по величине продольной и поперечной релятивистских масс и невозможность единообразной записи аналога второго закона Ньютона в виде
- mreldv→dt=F→;{\displaystyle m_{\mathrm {rel} }{\frac {d{\vec {v}}}{dt}}={\vec {F}};}
- методологические сложности преподавания специальной теории относительности, наличие специальных правил, когда и как следует пользоваться понятием «релятивистская масса» во избежание ошибок;
- путаница в терминах «масса», «масса покоя» и «релятивистская масса»: часть источников просто массой называют одно, часть — другое.
Несмотря на указанные недостатки, понятие релятивистской массы используется и в учебной,[21] и в научной литературе. Следует, правда, отметить, что в научных статьях понятие релятивистской массы используется по большей части только при качественных рассуждениях как синоним увеличения инертности частицы, движущейся с околосветовой скоростью.
В классической физике гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, и его величина определяется гравитационной массой тела[22], которая с высокой степенью точности равна по величине инертной массе, о которой шла речь выше, что позволяет говорить о просто массе тела[23].
В релятивистской физике гравитация подчиняется законам общей теории относительности, в основе которой лежит принцип эквивалентности, заключающийся в неотличимости явлений, происходящих локально в гравитационном поле, от аналогичных явлений в неинерциальной системе отсчёта, движущейся с ускорением, равным ускорению свободного падения в гравитационном поле. Можно показать, что данный принцип эквивалентен утверждению о равенстве инертной и гравитационной масс[24].
В общей теории относительности энергия играет ту же роль, что и гравитационная масса в классической теории. Действительно, величина гравитационного взаимодействия в этой теории определяется так называемым тензором энергии-импульса, являющимся обобщением понятия энергии[25].
В простейшем случае точечной частицы в центрально-симметричном гравитационном поле объекта, масса которого много больше массы частицы, сила, действующая на частицу, определяется выражением[8]:
- F→=−GMEc2(1+β2)r→−(r→β→)β→r3,{\displaystyle {\vec {F}}=-GM{\frac {E}{c^{2}}}{\frac {(1+\beta ^{2}){\vec {r}}-({\vec {r}}{\vec {\beta }}){\vec {\beta }}}{r^{3}}},}
где G — гравитационная постоянная, M — масса тяжёлого объекта, E — полная энергия частицы, β=v/c,{\displaystyle \beta =v/c,} v — скорость частицы, r→{\displaystyle {\vec {r}}} — радиус-вектор, проведённый из центра тяжёлого объекта в точку нахождения частицы. Из этого выражения видна главная особенность гравитационного взаимодействия в релятивистском случае по сравнению с классической физикой: оно зависит не только от массы частицы, но и от величины и направления её скорости. Последнее обстоятельство, в частности, не позволяет ввести однозначным образом некую эффективную гравитационную релятивистскую массу, сводившую бы закон тяготения к классическому виду[8].
Предельный случай безмассовой частицы[править | править код]
Важным предельным случаем является случай частицы, масса которой равна нулю. Примером такой частицы является фотон — частица-переносчик электромагнитного взаимодействия[26]. Из приведённых выше формул следует, что для такой частицы справедливы следующие соотношения:
- E=pc,v=c.{\displaystyle E=pc,\qquad v=c.}
Таким образом, частица с нулевой массой вне зависимости от своей энергии всегда движется со скоростью света. Для безмассовых частиц введение понятия «релятивистской массы» в особой степени не имеет смысла, поскольку, например, при наличии силы в продольном направлении скорость частицы постоянна, а ускорение, следовательно, равно нулю, что требует бесконечной по величине эффективной массы тела. В то же время, наличие поперечной силы приводит к изменению направления скорости, и, следовательно, «поперечная масса» фотона имеет конечную величину.
Аналогично бессмысленно для фотона вводить эффективную гравитационную массу. В случае центрально-симметричного поля, рассмотренного выше, для фотона, падающего вертикально вниз, она будет равна E/c2{\displaystyle E/c^{2}}, а для фотона, летящего перпендикулярно направлению на гравитационный центр, — 2E/c2{\displaystyle 2E/c^{2}}[8].
Полученная А. Эйнштейном эквивалентность массы тела запасённой в теле энергии стала одним из главных практически важных результатов специальной теории относительности. Соотношение E0=mc2{\displaystyle E_{0}=mc^{2}} показало, что в веществе заложены огромные (благодаря квадрату скорости света) запасы энергии, которые могут быть использованы в энергетике и военных технологиях[28].
Количественные соотношения между массой и энергией[править | править код]
В международной системе единиц СИ отношение энергии и массы E/m{\displaystyle E/m} выражается в джоулях на килограмм, и оно численно равно квадрату значения скорости света c{\displaystyle c} в метрах в секунду:
- Em=c2=(299 792 458 m/s)2{\displaystyle {\frac {E}{m}}=c^{2}=({\text{299 792 458 m/s}})^{2}} = 89 875 517 873 681 764 Дж/кг (≈9,0⋅1016 джоулей на килограмм).
Таким образом, 1 грамм массы эквивалентен следующим значениям энергии:
В ядерной физике часто применяется значение отношения энергии и массы, выраженное в мегаэлектронвольтах на атомную единицу массы — ≈931,494 МэВ/а.е.м.
Примеры взаимопревращения энергии покоя и кинетической энергии[править | править код]
Энергия покоя способна переходить в кинетическую энергию частиц в результате ядерных и химических реакций, если в них масса вещества, вступившего в реакцию, больше массы вещества, получившегося в результате. Примерами таких реакций являются[8]:
- e−+e+→2γ.{\displaystyle e^{-}+e^{+}\rightarrow 2\gamma .}
- 2e−+4p+→24He+2νe+Ekin.{\displaystyle 2e^{-}+4p^{+}\rightarrow {}_{2}^{4}\mathrm {He} +2\nu _{e}+E_{\mathrm {kin} }.}
- 92235U+01n→3693Kr+56140Ba+3 01n.{\displaystyle {}_{92}^{235}\mathrm {U} +{}_{0}^{1}n\rightarrow {}_{36}^{93}\mathrm {Kr} +{}_{56}^{140}\mathrm {Ba} +3~{}_{0}^{1}n.}
- Ch5+2O2→CO2+2h3O.{\displaystyle \mathrm {CH} _{4}+2\mathrm {O} _{2}\rightarrow \mathrm {CO} _{2}+2\mathrm {H} _{2}\mathrm {O} .}
В этой реакции выделяется порядка 35,6 МДж тепловой энергии на кубический метр метана, что составляет порядка 10−10 от его энергии покоя. Таким образом, в химических реакциях преобразование энергии покоя в кинетическую энергию значительно ниже, чем в ядерных. На практике этим вкладом в изменение массы прореагировавших веществ в большинстве случаев можно пренебречь, так как оно обычно лежит вне пределов возможности измерений.
Важно отметить, что в практических применениях превращение энергии покоя в энергию излучения редко происходит со стопроцентной эффективностью. Теоретически совершенным превращением было бы столкновение материи с антиматерией, однако в большинстве случаев вместо излучения возникают побочные продукты и вследствие этого только очень малое количество энергии покоя превращается в энергию излучения.
Существуют также обратные процессы, увеличивающие энергию покоя, а следовательно и массу. Например, при нагревании тела увеличивается его внутренняя энергия, в результате чего возрастает масса тела[29]. Другой пример — столкновение частиц. В подобных реакциях могут рождаться новые частицы, массы которых существенно больше, чем у исходных. «Источником» массы таких частиц является кинетическая энергия столкновения.
История и вопросы приоритета
срочно нужна помощь по физике что такое кинетическая и потенциальная энергия тела
Кинетическая энергия — энергия движущегося тела. (От греческого слова kinema — движение) . По определению кинетическая энергия покоящегося в данной системе отсчета тела обращается в ноль. Потенциальная энергия — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы [1]. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Единицей измерения энергии в СИ является Джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.
Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела: Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли) . Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями. Такие силы называются консервативными.
Могу объяснить просто: если натянуть резинку в рогатке, то она (резинка) станет обладать относительно большой кинетической энергией, а её отпустить и стрельнуть, например, камнем, то он (камень) получит кинетическую энергию от потенциальной энергии резинки. Всё просто: потенциальная энергия — это когда тело обладает энергией, которая увеличивается с увеличением, например, высоты или длины (любое тело всегда обладает потенциальной энергией). Кинетческая энергия всегда связана с движением (любое тело обладает кинетической энергией молекул).