Логарифмические неравенства примеры как решать: Логарифмические неравенства — подготовка к ЕГЭ по Математике

Содержание

Как решить логарифмическое неравенство

Логарифмическое неравенство может встретиться вам в 13 задании ЕГЭ по математике. При решении логарифмического неравенства важно правильно определить область допустимых значений (ОДЗ). Как же решить логарифмическое неравенство? Давайте разберем основные правила.

  1. Как найти ОДЗ (область допустимых значений) логарифмического неравенства
  2. Решение логарифмического неравенства с основанием больше 1
  3. Решение логарифмического неравенства с основанием от 0 до 1
  4. Решение логарифмического неравенства с переменным основанием: классический подход и метод рационализации

Как найти ОДЗ (область допустимых значений) логарифмического неравенства

 

Простейшее логарифмическое неравенство можно записать в виде:знак можно заменить на <, ≤ или ≥.

В логарифмическом неравенстве вначале решения нам важно определить область допустимых значений (ОДЗ).Далее мы смотрим на основание логарифма – a. Напомним, что основание логарифма должно быть положительным, и не должно равняться единице.

Если у логарифма в неравенстве  а > 1, то знак неравенства не меняется.

Если у логарифма в неравенстве 0 < а < 1, то знак неравенства меняется на противоположный.

Рассмотрим, как это работает на практике.

Решение логарифмического неравенства с основанием больше 1

Вначале определяем ОДЗ:  2х + 4 > 0

Решаем это простейшее неравенство и получаем х > -2.

Таким образом область допустимых значений данного неравенства х > -2.

Далее решаем непосредственно логарифмическое неравенство. Так как основание логарифмов (основание = 2) в неравенстве больше единицы, знак неравенства сохраняется:Так как логарифмы в неравенстве имеют одинаковое основание, то мы их можем просто отбросить и решить неравенство вида

Теперь вспоминаем про нашу ОДЗ и определяем окончательный ответ.Отметим полученные значения на числовой оси:

Решение логарифмического неравенства с основанием от 0 до 1

Теперь разберем то же самое неравенство, только основание логарифма будет равно ½. Таким образом, получим:

Определяем ОДЗ, как и в прошлом примере, х > -2.

Далее смотрим на основание логарифма. В данном случае основание равно ½, т.е. находится в области от 0 < а < 1. В этом случае знак исходного неравенства меняется на противоположный. Получим:

Решаем полученное неравенство. Так как основания у логарифмов в обеих частях равны, то их можно отбросить, в результате чего получим:Вспоминаем про ОДЗ и определяем окончательный ответ.Отметим полученные точки на числовой оси:Таким образом, решением нашего неравенства является:

Такие неравенства являются простыми, так как основания логарифмов, которые присутствовали в наших неравенствах, были четко определены.

Решение логарифмического неравенства с переменным основанием

А что делать, если основание логарифма, который присутствует в неравенстве, содержит Х? То есть нельзя четко сказать а > 1 или 0 < а < 1. Такое логарифмическое неравенство называется логарифмическим неравенством с переменным основанием. Решить его можно двумя способами – с помощью определения логарифма с переменным основанием и методом рационализации.

Давайте рассмотрим оба способа. И для наглядности решим одно логарифмическое неравенство двумя этими способами.

Итак, мы имеем неравенство

Решение логарифмического неравенства с переменным основанием: классический подход

Как правило, в школе учат решать логарифмические неравенства с переменным основанием только с помощью определения логарифма, поэтому-то его и назвали классическим подходом.

Выше мы говорили о том, что при решении неравенств, содержащих логарифмы, необходимо обращать внимание на основание логарифма, которое может быть либо больше единицы, либо меньше единицы, но при этом больше ноля. И в зависимости от этого определяем знак неравенства.

С помощью такого подхода можно решить и логарифмическое неравенство с переменным основанием, то есть с основанием, которое содержит Х, и о котором невозможно сказать больше оно единицы или меньше. В этом случае нам просто нужно рассмотреть два случая: когда исходное неравенство больше единицы, и когда исходное неравенство меньше единицы, но больше ноля.

Вернемся к нашему примеру.Для начала нам нужно преобразовать данное неравенство в такой вид, где слева и справа будут логарифмы с одинаковым основанием. Для этого вспомним такое свойство логарифмов, как логарифмическая единица:То есть в нашем примере правую часть можно преобразовать следующим образом:Таким образом наше неравенство примет вид:

Теперь нам нужно рассмотреть два случая, когда основание логарифма больше единицы и, когда основание логарифма меньше единицы, но больше нуля. При этом не забываем про область допустимых значений.
Отметим полученные точки на числовой оси:Таким образом, решением исходного неравенства является (-2/3;6) .

Решение логарифмического неравенства с переменным основанием: метод рационализации

 Метод рационализации заключается в том, что исходное неравенство видаВместо V может стоять знак: >, <, ≤ или ≥.

Далее неравенство можно переписать в виде:

В этом случае необходимо поставить тот же знак, что и в изначальном неравенстве.

Далее нам необходимо учесть область допустимых значений:

Применим метод рационализации для решения нашего неравенства:Первое, что нам нужно сделать, это привести его к виду

Для этого снова воспользуемся свойством логарифмов – логарифмическая единица:Теперь перепишем неравенство, используя метод рационализации:

Нам необходимо учесть ОДЗ, тогда получим следующую систему:Первое неравенство системы решим методом интервалов:Таким образом, решение первого неравенства -2 < х < 6

Решение второго неравенства: х > -4½

Решение третьего неравенства: х < 7

Решение четвертого неравенства: х ≠ 6

Совместим решения всех неравенств на числовой оси:

На приведенном примере мы разобрали, как решить логарифмическое неравенство двумя способами. Часто решение методом рационализации бывает более коротким, соответственно, на него вы потратите гораздо меньше драгоценного времени, отведенного на ЕГЭ. Потому рекомендуем потренироваться в решении логарифмических неравенств этим методом, чтобы без затруднения воспользоваться им на ЕГЭ.

 

Как решать логарифмические неравенства: формулы, примеры

Логарифмическое неравенство – это неравенство, в котором неизвестная величина находится под знаком логарифма.

Формулы логарифмических неравенств

1. Значение логарифма больше нуля (loga x > 0) при условии, что и основание, и подлогарифмическое выражение находятся по одному сторону от числа 1. Здесь могут быть два варианта:

  • a>1 и x>1
  • 0<a<1 и 0<x<1

Соответственно, если a и x стоят по разные стороны от единицы, значение логарифма logax отрицательно.

2. Для логарифмического неравенства loga f(x) > b справедливо:

  • f(x) < ab при 0<a<1
  • f(x) > ab при a>1

Аналогичным образом, для logaf(x) < b верно:

  • f(x) > ab при
    0<a<1
  • f(x) < ab при a>1

3. Неравенство вида loga f(x) > loga g(x) сводится к:

  • 0 < f(x) < g(x) при 0<a<1
  • f(x) > g(x) > 0 при a>1

Подобным образом, для loga f(x) < loga g(x) можно утверждать:

  • f (x) > g(x) > 0 при 0<a<1
  • 0 < f(x) < g(x) при a>1

Примеры заданий

Задача 1
Решите неравенство log0,7(x-3) > 3.

Решение:
Основание логарифма больше нуля, но меньше единицы (0<0,7<1). Применив соответствующую формулу (f(x) < ab при 0<a<1), получаем:
(x-3) < 0,73
(x-3) < 0,343
x<3,343

Одновременно с этим подлогарифмическое выражение любого логарифма должно быть больше нуля. Следовательно, (x-3) > 0, а значит, x>3.

Таким образом, совместив оба условия определяем x∈(3;3,343).

Задача 2
Решите неравенство log28 < log2x.

Решение:
Т.к. основание логарифма больше единицы, для заданного неравенства верно: 0<8<x. То есть x∈(8;∞).

Методическая разработка «Решение логарифмических неравенств»

Ключём к решению логарифмических неравенств являются свойства логарифмической функции. Эти свойства следует знать!

hello_html_m3387275.pnghello_html_4bec70ee.png 1. Область определения: hello_html_m6150f03a.png

;

2. Область значений: hello_html_m241928b2.png;

3. При hello_html_13571987.png монотонно возрастает, т.е. если t2 > t1, то log a t2 >log a t1 При hello_html_m5b5394c6.png монотонно убывает, т.е. если t2 > t1 то log a t2 < log a t1.

Именно монотонность логарифмической функции позволяет решать простейшие логарифмические неравенства

.

Рассмотрим решение логарифмического неравенства, когда основание логарифма а > 1.

Неравенство необходимо решать, применяя равносильные преобразования. Вот схема. hello_html_m3589abdd.png Как эта система получилась? По условию logaf(x) > logag(x) Мы знаем что, при а > 1 функция монотонно возрастает. Отсюда: f(x) > g(x). (1-ая строка системы)

При этом необходимо не забыть про ОДЗ, т. к. под логарифмом могут стоять строго положительные выражения. ОДЗ представляется системой:

hello_html_354295ac.png Учитывая hello_html_m193830f5.png

, для соблюдения ОДЗ достаточно защитить меньшее из чисел. Получаем исходное неравенство равносильно системе.

Итак вместо логарифмического неравенства будем решать простое неравенство (линейное, квадратное и т. д.), т.е. освободились от знака loga.

Пример 1. Решить неравенство log2(2х + 2) > log2 x. Решение. Основания одинаковые и больше 1.По схеме ( 1) получаем: первый аргумент больше второго, по ОДЗ оба они больше нуля. Для соблюдения ОДЗ достаточно защитить меньшее из них неравенством больше нуля. hello_html_m725eb32e.png hello_html_51eb73f7.png

Ответ: hello_html_m50a4548c.png

Рассмотрим логарифмическое неравенство, когда основание логарифма  0< a <1, т.е. hello_html_3846e013.png

Поскольку 0<a<1, то функция монотонно убывает. Отсюда:

logaf(x) > logag(x) => f(x) < g(x).

При этом необходимо не забыть про ОДЗ, т. к. под логарифмом могут стоять строго положительные выражения. ОДЗ представляется системой hello_html_354295ac.png

Учитывая f(x) < g(x), для соблюдения ОДЗ достаточно защитить меньшее из чисел. Получаем, исходное неравенство равносильно системе: hello_html_m2c70ee0.png

Пример 2. Решить неравенство: hello_html_2d915e94.png Решение. Основания одинаковые и меньше 1.По схеме (2) получаем: первый аргумент меньше второго, по ОДЗ оба они больше нуля. Для соблюдения ОДЗ достаточно защитить меньшее из них.

hello_html_3a807ea3.png hello_html_m15968dbd.png

Ответ: нет решений

Все остальные более сложные логарифмические неравенства сводятся к простейшим.

Алгоритм решения:

1. Уравнять основания логарифмов;

2. Сравнить подлогарифмические выражения:

— при hello_html_13571987.png

 сохранить знак неравенства;

— при hello_html_m5b5394c6.png изменить знак неравенства на противоположный;

3. Учесть ОДЗ.

Пример 3. Решите неравенство:   hello_html_mf786fc6.png

Решение. Основания логарифмов равны и меньше единицы, По схеме (2) получаем: первый аргумент меньше второго, по ОДЗ оба они больше нуля. Для соблюдения ОДЗ достаточно защитить меньшее из них. Имеем систему hello_html_m54684d7.png

Пример 4. Решить неравенство: hello_html_1cadbe7.png

Решение. В левой части log , а в правой число. Приведем к виду logaf(x) ≥ logag(x). Для этого число в правой части представим в виде логарифма с тем же основанием, что логарифм в левой части, т.е.

hello_html_3ee84a69.png применили

Итак, имеем неравенство: hello_html_m18999bce.png

Основание логарифмов равны и меньше единицы, По схеме (2) получаем: первый аргумент меньше второго, по ОДЗ оба они больше нуля. Для соблюдения ОДЗ достаточно защитить меньшее. Имеем систему:

hello_html_3cbb9135.png

hello_html_31ab09.png hello_html_m6f0a11ba.png Ответ: hello_html_m275c8fed.png

Пример 5. Решить неравенство log8(x2-4x+3)<1. Решение. В левой части log8t , а в правой 1. Приведем к виду logaf(x) < logag(x). Представим 1 в виде логарифма с тем же основанием, что логарифм в правой части, т.е. 1 = log88, тогда неравенство примет вид: log8

(x2 – 4x + 3) < log88. Основание логарифмов равны и больше единицы, По схеме (1) получаем: первый аргумент меньше второго, по ОДЗ оба они больше нуля. Так как мы защищаем меньшее, то получим систему: hello_html_m6bfc6f9f.png

Логарифмические неравенства, сводящиеся к простейшим

Более сложные логарифмические неравенства сводятся к простейшим методами, аналогичными используемым при решении логарифмических уравнений.

Пример 1. Решить неравенство: hello_html_7da25e26.png

hello_html_m55c98205.png Согласно свойству логарифма преобразуем в левой части сумму логарифмов с одинаковым основанием в логарифм произведения:

hello_html_m594ff595.png

Нам известно, что число hello_html_193e4b4c.png. Поэтому в равносильном неравенстве знак исходного неравенства сохраняется.

hello_html_m3855e206.png

Пример 2. Решить неравенство: hello_html_m6b1a62e3.png

Решение: ОДЗ: х > 0. Видим два логарифма, но с разными основаниями. Приведем второй член к основанию 5. Получили неравенство:

hello_html_m776cb5dd.png Очевидна замена: hello_html_1ed84cd2.png

hello_html_mad31016.png Вернемся к исходным переменным:

-1 ≤ log5 x ≤ 3 . -1* -log55 ≤ log5 x ≤ 3* log55

log55-1log5 x ≤ log553 hello_html_1c6e14db.png

hello_html_m25fa8107.png Решение. Преобразуем к простейшему логарифмическому неравенству. Видим два логарифма, основания разные; и в левой и в правой части есть числа.   Перейдем  к основанию 2 в выражении, стоящем в правой части данного неравенства, а числа запишем в виде логарифма: hello_html_15c5c915.png Основания одинаковые и больше 1.Функция log2 t – возрастающая, поэтому первый аргумент больше второго, по ОДЗ оба они больше нуля. Для соблюдения ОДЗ достаточно защитить меньшее. Теперь перейдем к равносильной системе:

hello_html_5f6eb424.png

   Если в неравенстве встречается логарифмическая функция, содержащая неизвестное в основании, то, как правило, следует рассматривать два случая: 1) когда основание больше 1, 2) когда основание положительно, но меньше 1.

Пример 4. Решить неравенство log x–3(x2-4x+3)<0.

Решение. Преобразуем правую часть в логарифм с требуемым основанием: =Имеем неравенство:

log x–3(x2 – 4x + 3) < log x–31. (простейшее неравенство) Так как основание логарифма содержит переменную, то рассмотрим два случая  x-3>1  и  0<x-3<1. Если основание логарифма больше 1, то функция – возрастающая, поэтому первый аргумент меньше второго, по ОДЗ оба они больше нуля. Для соблюдения ОДЗ достаточно защитить меньшее. Теперь перейдем к равносильной системе:

hello_html_617e8b46.pngСовмещаем промежутки и видим, что данная система не имеет решений.

Рассмотрим второй случай, если 0 < x-3 < 1. Функция log(x-3)t – убывающая, поэтому, знак неравенства меняется. Для соблюдения ОДЗ достаточно защитить меньшее из аргументов. В этом случае получаем систему:

hello_html_dcff03a.png

Пример 5. Решить неравенство 

Решение. ОДЗ: х >0. Так как выражения, стоящие в левой и правой частях неравенства положительны, то для решения прологарифмируем обе части по основанию 10. Получим равносильное исходному неравенство:

hello_html_m66ee5e96.png, пользуясь свойствами логарифмов lgx * lgx > 1

hello_html_m7661010a.png. Обозначим  t = lg x и решим неравенство: .  hello_html_252c16f.pnghello_html_747a341d.png

Учитывая ОДЗ х > 0 hello_html_m631fa392.png Ответ: (0; 0,1)(10;+).

Пример 6. Решить неравенство hello_html_m76709e71.png

Решение. ОДЗ: х > -2. Если привести к простейшему виду logaf(x) > logag(x) не получим облегченного неравенства. Попробуем записать в виде:

log2(x + 2) > —x + 1. Это логарифмическо-линейное неравенство. Можно попробовать графический метод. Лучше использовать монотонность функции. В левой части монотонно возрастающая функция: f(x) = log2(x + 2), а в правой – монотонно убывающая: g(x) = —x + 1. Значит уравнение log2(x + 2) = —x + 1 имеет не более одного корня. Подбором находим что х = 0 есть корень этого уравнения . Проверим f(2)=2, a g(2)= -1. Значит правее х = 1 функция f(x) = log2(x + 2) больше чем g(x) = -x + 1. Ответ: х > 1.

Пример 7. Решите неравенство

Решение. ОДЗ: 

Очень часто бывает довольно несложное неравенство обычными преобразованиями трудно решить. Вот в таких случаях нам помогает универсальный метод — метод интервалов.

Нам надо избавиться от переменного основания, так как знак логарифмического выражения зависит как от аргумента, так и от основания. Пусть перейдем к основанию 2. Тогда имеем . Оно равносильно неравенству

Рассмотрим функцию y = (3x + 7)

Находим нули функции:

3x + 7 = 0 или

или

(x + 2)2 = 0

x = -2 (кратность равна 2)

Второе неравенство дает  

2x + 5 1 x .

Видим х = -2 имеет кратность 3. Нули функции отметим на координатной прямой. Учитывая кратность нулей методом «тыка» находим знак функции.

hello_html_m434b0323.pngОтвет:

У метода интервалов есть свои минусы. Потому что не всегда удобно определять знаки на промежутках, тем более когда они малы, когда на них нет целых значений.

Пример 8. Решите неравенство

Решение. В этом случае применим метод равносильных преобразований. Это неравенство равносильно совокупности двух систем:

hello_html_4e93d0f4.pnghello_html_693c96ab.pngПервая система равносильно совокупности двух систем:

hello_html_m2099462d.png

Итак решением первой системы будет промежуток (3 ; hello_html_m2dab7418.png).

Также вторая система равносильно совокупности двух систем:

hello_html_5e632485.png

Решением второй системы будет промежуток hello_html_28efca7e.png

Таким образом, решением исходного неравенства hello_html_28efca7e.png; x > 3.

Ответ. (2,5; 2,6]; (3; hello_html_m2dab7418.png)

Логарифмические неравенства повышенной сложности

Решите неравенство.

Заметим, что

Получим:

ОДЗ неравенства:

Сделаем замену

Тогда

Получим:

разделим обе части на

представим как

По методу замены множителя, множитель можно заменить на

Мы записали, что

Решив неравенство методом интервалов, получим:

Для переменной х:

Ответ:

Логарифмические неравенства. Примеры и методы решения

Вам кажется, что до ЕГЭ еще есть время, и вы успеете подготовиться? Быть может, это и так. Но в любом случае, чем раньше школьник начинает подготовку, тем успешнее он сдает экзамены. Сегодня мы решили посвятить статью логарифмическим неравенствам. Это одно из заданий, а значит, возможность получить дополнительный балл.

логарифмические неравенства

Вы уже знаете, что такое логарифм(log)? Мы очень надеемся, что да. Но даже если у вас нет ответа на этот вопрос, это не проблема. Понять, что такое логарифм очень просто.

log

Почему именно 4? В такую степень нужно возвести число 3, чтобы получилось 81. Когда вы поняли принцип, можно приступать и к более сложным вычислениям.

Неравенства вы проходили еще несколько лет назад. И с тех пор они постоянно встречаются вам в математике. Если у вас проблемы с решением неравенств, ознакомьтесь с соответствующим разделом.
Теперь, когда мы познакомились с понятиями по отдельности, перейдем к их рассмотрению в общем.

Логарифмические неравенства (определение)

Самое простое логарифмическое неравенство.

log-неравенства

Простейшие логарифмические неравенства не ограничиваются этим примером, есть еще три, только с другими знаками. Зачем это нужно? Чтобы полнее понять, как решать неравенство с логарифмами. Теперь приведем более применимый пример, все еще достаточно простой, сложные логарифмические неравенства оставим на потом.

логарифмические неравенства

 

Как это решить? Все начинается с ОДЗ. О нем стоит знать больше, если хочется всегда легко решать любое неравенство.

Что такое ОДЗ? ОДЗ для логарифмических неравенств

Аббревиатура расшифровывается как область допустимых значений. В заданиях для ЕГЭ нередко всплывает данная формулировка. ОДЗ пригодится вам не только в случае логарифмических неравенств.

Посмотрите еще раз на вышеприведенный пример. Мы будем рассматривать ОДЗ, исходя из него, чтобы вы поняли принцип, и решение логарифмических неравенств не вызывало вопросов. Из определения логарифма следует что, 2х+4 должно быть больше нуля. В нашем случае это означает следующее.

неравенство

Это число по определению должно быть положительным. Решите неравенство, представленное выше. Это можно сделать даже устно, здесь явно, что X не может быть меньше 2. Решение неравенства и будет определением области допустимых значений.
Теперь перейдем к решению простейшего логарифмического неравенства.

логарифмические неравенства

Отбрасываем из обеих частей неравенства сами логарифмы. Что в результате у нас остается? Простое неравенство.

отбразываем

Решить его несложно. X должен быть больше -0,5. Теперь совмещаем два полученных значения в систему. Таким образом,

логарифмические неравенства2

Это и будет область допустимых значений для рассматриваемого логарифмического неравенства.

Зачем вообще нужно ОДЗ? Это возможность отсеять неверные и невозможные ответы. Если ответ не входит в область допустимых значений, значит, ответ попросту не имеет смысла. Это стоит запомнить надолго, так как в ЕГЭ часто встречается необходимость поиска ОДЗ, и касается она не только логарифмических неравенств.

Алгоритм решения логарифмического неравенства

Решение состоит из нескольких этапов. Во-первых, необходимо найти область допустимых значений. В ОДЗ будет два значения, это мы рассмотрели выше. Далее нужно решить само неравенство. Методы решения бывают следующими:

  • метод замены множителей;
  • декомпозиции;
  • метод рационализации.

В зависимости от ситуации стоит применять один из вышеперечисленных методов. Перейдем непосредственно к решению. Раскроем наиболее популярный метод, который подходит для решения заданий ЕГЭ практически во всех случаях. Далее мы рассмотрим метод декомпозиции. Он может помочь, если попалось особенно «заковыристое» неравенство. Итак, алгоритм решения логарифмического неравенства.

Примеры решения :

логарифмические неравенства3

Мы не зря взяли именно такое неравенство! Обратите внимание на основание. Запомните: если оно больше единицы, знак остается прежним при нахождении области допустимых значений; в противном случае нужно изменить знак неравенства.

В результате мы получаем неравенство:

неравенства с логарифмами

Теперь приводим левую часть к виду уравнения, равному нулю. Вместо знака «меньше» ставим «равно», решаем уравнение. Таким образом, мы найдем ОДЗ. Надеемся, что с решением такого простого уравнения у вас не будет проблем. Ответы -4 и -2. Это еще не все. Нужно отобразить эти точки на графике, расставить «+» и «-». Что нужно для этого сделать? Подставить в выражение числа из интервалов. Где значения положительны, там ставим «+».

Ответ: х не может быть больше -4 и меньше -2.

Мы нашли область допустимых значений только для левой части, теперь нужно найти область допустимых значений правой части. Это не в пример легче. Ответ: -2. Пересекаем обе полученные области.

И только теперь начинаем решать само неравенство.

неравенства с логарифмами

Упростим его, насколько возможно, чтобы решать было легче.

логарифмические неравенства5

Снова применяем метод интервалов в решении. Опустим выкладки, с ним уже и так все понятно по предыдущему примеру. Ответ.

неравенства с лог

Но этот метод подходит, если логарифмическое неравенство имеет одинаковые основания.

Решение логарифмических уравнений и неравенств с разными основаниями предполагает изначальное приведение к одному основанию. Далее применяйте вышеописанный метод. Но есть и более сложный случай. Рассмотрим один из самых сложных видов логарифмических неравенств.

Логарифмические неравенства с переменным основанием

Как решать неравенства с такими характеристиками? Да, и такие могут встретиться в ЕГЭ. Решение неравенств нижеследующим способом тоже полезно скажется на вашем образовательном процессе. Разберемся в вопросе подробным образом. Отбросим теорию, перейдем сразу к практике. Чтобы решать логарифмические неравенства, достаточно однажды ознакомиться с примером.

логарифмы с неравенствами решать

Чтобы решить логарифмическое неравенство представленного вида, необходимо привести правую часть к логарифму с тем же основанием. Принцип напоминает равносильные переходы. В итоге неравенство будет выглядеть следующим образом.

log1

Собственно, остается создать систему неравенств без логарифмов. Используя метод рационализации, переходим к равносильной системе неравенств. Вы поймете и само правило, когда подставите соответствующие значения и проследите их изменения. В системе будут следующие неравенства.

логарифмические неравенства6

Воспользовавшись методом рационализации при решении неравенств нужно помнить следующее: из основания необходимо вычесть единицу,  х по определению логарифма из обеих частей неравенства вычитается (правое из левого), два выражения перемножаются и выставляются под исходным знаком по отношению к нулю.

Дальнейшее решение осуществляется методом интервалов, здесь все просто. Вам важно понять отличия в методах решения, тогда все начнет легко получаться.

В логарифмических неравенствах много нюансов. Простейшие из них решать достаточно легко. Как сделать так, чтобы решать каждое из них без проблем? Все ответы вы уже получили в этой статье. Теперь впереди вас ждет длительная практика. Постоянно практикуйтесь в решении самых разных задач в рамках экзамена и сможете получить наивысший балл. Успехов вам в вашем непростом деле!

Похожие статьи

Рекомендуем почитать:

Как решать С3. Урок 5. ЕГЭ по математике 2014. Логарифмические неравенства с переменным основанием — решения.егэцентр.рф

Решение простейших логарифмических неравенств и неравенств, где основание логарифма фиксировано, мы рассматривали в прошлом уроке.

А что делать, если в основании логарифма стоит переменная?

Тогда нам на помощь придет рационализация неравенств. Чтобы понять, как это работает, давайте рассмотрим, например, неравенство:

$$\log_{2x} x^2 > \log_{2x} x.$$

Как положено, начнем с ОДЗ.

ОДЗ

$$\left[ \begin{array}{l}x>0,\\ 2x ≠ 1. \end{array}\right.$$

Решение неравенства

Давайте рассуждать, как если бы мы решали неравенство с фиксированным основанием. Если основание больше единицы, избавляемся от логарифмов, и знак неравенства не меняется, если меньше единицы — меняется.

Запишем это в виде системы:

$$\left[ \begin{array}{l} \left\{ \begin{array}{l}2x>1,\\ x^2 > x; \end{array}\right. \\ \left\{ \begin{array}{l}2x<1,\\ x^2 < x; \end{array}\right. \end{array} \right.$$

Для дальнейших рассуждений перенесем все правые части неравенств влево.

$$\left[ \begin{array}{l} \left\{ \begin{array}{l}2x-1>0,\\ x^2 -x>0; \end{array}\right. \\ \left\{ \begin{array}{l}2x-1<0,\\ x^2 -x<0; \end{array}\right. \end{array} \right.$$

Что у нас получилось? Получилось, что нам нужно, чтобы выражения `2x-1` и `x^2 — x` были одновременно либо положительными, либо отрицательными. Такой же результат получится, если мы решим неравенство:

$$(2x-1)(x^2 — x) >0.$$

Это неравенство так же как и исходная система верно, если оба множителя либо положительны, либо отрицательны. Получается можно от логарифмического неравенства перейти к рациональному (учтя при этом ОДЗ).

Сформулируем метод рационализации логарифмических неравенств
$$\log_{f(x)} g(x) \vee \log_{f(x)} h(x) \Leftrightarrow (f(x) — 1)(g(x)-h(x)) \vee 0,$$ где `\vee` — это любой знак неравенства. (Для знака `>` мы только что проверили справедливость формулы. Для остальных предлагаю проверить самостоятельно — так запомнится лучше).

Вернемся к решению нашего неравенства. Разложив на скобки (чтобы было лучше видно нули функции), получим

$$(2x-1)x(x — 1) >0.$$

Метод интервалов даст следующую картину:

(Поскольку неравенство строгое и концы интервалов нас не интересуют, они не закрашены.) Как видно, полученные интервалы удовлетворяют ОДЗ. Получили ответ: `(0,\frac{1}{2}) \cup (1,∞)`.

Пример второй. Решение логарифмического неравенства с переменным основанием

$$\log_{2-x} 3 \leqslant \log_{2-x} x.$$

ОДЗ

 $$\left\{\begin{array}{l}2-x > 0,\\ 2-x ≠ 1, \\ x > 0. \end{array}\right.$$

$$\left\{\begin{array}{l}x < 2,\\ x ≠ 1, \\ x > 0. \end{array}\right.$$

Решение неравенства

По только что полученному нами правилу рационализации логарифмических неравенств, получим, что данное неравенство тождественно (с учетом ОДЗ) следующему:

$$(2-x -1 ) (3-x) \leqslant 0.$$

$$(1-x) (3-x) \leqslant 0.$$

Совместив это решение с ОДЗ, получим ответ: `(1,2)`.

Третий пример. Логарифм от дроби

$$\log_x\frac{4x+5}{6-5x} \leqslant -1.$$

Дробь нам добавила чуть больше сложности в нахождении ОДЗ и не более того. `-1` нужно представить как логарифм с основанием `x`.

ОДЗ

$$\left\{\begin{array}{l} \dfrac{4x+5}{6-5x}>0, \\ x>0,\\ x≠ 1.\end{array} \right.$$

Поскольку система относительно сложная, давайте сразу нанесем решение неравенств на числовую ось:

Таки образом, ОДЗ: `(0,1)\cup \left(1,\frac{6}{5}\right)`.

Решение неравенства

Представим `-1` в виде логарифма с основанием `x`.

$$\log_x\frac{4x+5}{6-5x} \leqslant \log_x x^{-1}.$$

С помощью рационализации логарифмического неравенства получим рациональное неравенство:

$$(x-1)\left(\frac{4x+5}{6-5x} -\frac{1}{x}\right)\leqslant0,$$

$$(x-1)\left(\frac{4x^2+5x — 6+5x}{x(6-5x)}\right)\leqslant0,$$

$$(x-1)\left(\frac{2x^2+5x — 3}{x(6-5x)}\right)\leqslant0.$$

Совместив решение с ОДЗ, получим ответ: `\left[\frac{1}{2},1\right)`.

Четвертый пример. Решение логарифмического неравенства

$$\log_{x^2} (x+2) < 1.$$

ОДЗ

$$\left\{\begin{array}{l} x≠ ±1,\\ x≠0, \\ x>-2. \end{array}\right.$$

Решение неравенства

$$\log_{x^2} (x+2) < \log_{x^2} x^2,$$

$$(x^2-1) (x+2 — x^2) <0,$$

$$(x^2 -1) ( x^2 -x -2) >0,$$

$$(x-1)(x+1) ( x-2)(x+1)>0,$$

Совместив с ОДЗ, получим ответ: `(-2,-1)\cup(-1,0)\cup (0,1)\cup (2,∞)`.

Задания для тренировки

Решите неравенства:

  • `\log_{x^{-2}}(x+2) > -1`,
  • `\log_{\frac{16}{25-x^2}} \left(\dfrac{14}{24 — 2x -x^2} \right)>1`,
  • `\log_5 \sqrt{3x+4} — \log_x 5 >1` (на закуску :).

На этом все. Все вопросы в комментарии, и обязательно оставляйте лайки, чтобы ресурс развивался и дальше!

 

Решайте неравенства с помощью программы «Пошаговое решение математических задач»


Введите полиномиальное неравенство вместе с переменной, для которой необходимо решить, и нажмите кнопку «Решить».

В главе 2 мы установили правила решения уравнений с использованием чисел арифметики. Теперь, когда мы изучили операции с числами со знаком, мы будем использовать те же правила для решения уравнений, содержащих отрицательные числа. Мы также изучим методы решения и построения графиков неравенств с одним неизвестным.

РЕШЕНИЕ УРАВНЕНИЙ ДЛЯ ЗАПИСАННЫХ ЧИСЕЛ

ЗАДАЧИ

По завершении этого раздела вы сможете решать уравнения, содержащие числа со знаком.

Пример 1 Решите относительно x и проверьте: x + 5 = 3

Решение

Используя те же процедуры, что и в главе 2, мы вычитаем 5 из каждой части уравнения, получая

Пример 2 Решите относительно x и проверьте: — 3x = 12

Решение

Разделив каждую сторону на -3, получаем

Всегда проверяйте исходное уравнение.

Другой способ решения уравнения
3x — 4 = 7x + 8
— сначала вычесть 3x из обеих сторон, получив
-4 = 4x + 8,
, затем вычесть 8 с обеих сторон и получить
-12 = 4x ,
Теперь разделите обе стороны на 4, получив
— 3 = x или x = — 3.

Сначала удалите круглые скобки. Затем следуйте процедуре, описанной в главе 2.

ЛИТЕРАЛЬНЫЕ УРАВНЕНИЯ

ЗАДАЧИ

По завершении этого раздела вы должны уметь:

  1. Определите буквальное уравнение.
  2. Примените ранее изученные правила для решения буквальных уравнений.

Уравнение, состоящее из более чем одной буквы, иногда называют буквальным уравнением . Иногда возникает необходимость решить такое уравнение для одной из букв через другие. Пошаговая процедура, описанная и использованная в главе 2, остается действительной после удаления любых символов группировки.

Пример 1 Решить относительно c: 3 (x + c) — 4y = 2x — 5c

Решение

Сначала удалите круглые скобки.

Здесь мы отмечаем, что, поскольку мы решаем для c, мы хотим получить c с одной стороны и все другие члены с другой стороны уравнения. Таким образом, получаем

Помните, abx — это то же самое, что 1abx.
Делим на коэффициент при x, который в данном случае равен ab.

Решите уравнение 2x + 2y — 9x + 9a, сначала вычтя 2.v с обеих сторон. Сравните полученное решение с полученным в примере.

Иногда форму ответа можно изменить. В этом примере мы могли бы умножить числитель и знаменатель ответа на (- l) (это не меняет значения ответа) и получить

Преимущество последнего выражения перед первым в том, что в ответе не так много отрицательных знаков.

Умножение числителя и знаменателя дроби на одно и то же число — это использование фундаментального принципа дробей.

Наиболее часто используемые буквальные выражения — это формулы из геометрии, физики, бизнеса, электроники и т. Д.

Пример 4 — формула для площади трапеции. Решите для c.

Трапеция имеет две параллельные стороны и две непараллельные стороны. Параллельные стороны называются основаниями.
Удаление скобок не означает их простое стирание. Мы должны умножить каждый член в круглых скобках на коэффициент, стоящий перед скобками.
Менять форму ответа не обязательно, но вы должны уметь распознать правильный ответ, даже если форма не та.

Пример 5 — это формула, дающая проценты (I), полученные за период D дней, когда известны основная сумма (p) и годовая ставка (r). Найдите годовую ставку, когда известны сумма процентов, основная сумма и количество дней.

Решение

Задача требует решения для р.

Обратите внимание, что в этом примере r оставлено с правой стороны, и поэтому вычисления были проще. При желании мы можем переписать ответ по-другому.

ГРАФИЧЕСКИЕ НЕРАВЕНСТВА

ЗАДАЧИ

По завершении этого раздела вы должны уметь:

  1. Используйте символ неравенства, чтобы обозначить относительное положение двух чисел на числовой прямой.
  2. График неравенств на числовой прямой.

Мы уже обсуждали набор рациональных чисел как числа, которые могут быть выражены как отношение двух целых чисел. Существует также набор чисел, называемых иррациональными числами , , которые нельзя выразить как отношение целых чисел. В этот набор входят такие номера, как и так далее. Набор, состоящий из рациональных и иррациональных чисел, называется действительными числами.

Для любых двух действительных чисел a и b всегда можно утверждать, что Часто нас интересует только то, равны ли два числа или нет, но бывают ситуации, когда мы также хотим представить относительный размер чисел, которые не равный.

Символы представляют собой символы неравенства или отношения порядка и используются для отображения относительных размеров значений двух чисел. Обычно мы читаем этот символ как «больше чем». Например, a> b читается как «a больше, чем b». Обратите внимание: мы заявили, что обычно читаем

а


Какое положительное число можно добавить к 2, чтобы получить 5?


Проще говоря, это определение утверждает, что a меньше b, если мы должны что-то добавить к a, чтобы получить b.Конечно, «что-то» должно быть положительным.

Если вы думаете о числовой прямой, вы знаете, что добавление положительного числа эквивалентно перемещению вправо по числовой прямой. Это приводит к следующему альтернативному определению, которое может быть легче визуализировать.

Пример 1 3


Мы также можем написать 6> 3.

Пример 2 -4


Мы также можем написать 0> — 4.

Пример 3 4> — 2, потому что 4 находится справа от -2 в числовой строке.


Пример 4 — 6


Математическое утверждение x

Вы понимаете, почему невозможно найти наибольшее число меньше трех?

На самом деле, назвать число x, которое является наибольшим числом меньше 3, невозможно. Однако это может быть указано в числовой строке.Для этого нам нужен символ, обозначающий значение такого оператора, как x

Символы (и) в числовой строке указывают на то, что конечная точка не включена в набор.

Пример 5 График x

Решение


Обратите внимание, что на графике есть стрелка, указывающая на то, что линия продолжается без конца влево.

На этом графике представлено каждое действительное число меньше 3.

Пример 6 График x> 4 на числовой прямой.

Решение


На этом графике представлены все действительные числа больше 4.

Пример 7 График x> -5 на числовой прямой.

Решение


На этом графике представлены все действительные числа больше -5.

Пример 8 Постройте числовой график, показывающий, что x> — 1 и x

Решение


Выписка x> — 1 и x

На этом графике представлены все действительные числа от -1 до 5.

Пример 9 График — 3

Решение

Если мы хотим включить конечную точку в набор, мы используем другой символ, :. Мы читаем эти символы как «равно или меньше» и «равно или больше».

Пример 10 x>; 4 указывает число 4 и все действительные числа справа от 4 в числовой строке.

Символы [и] в числовой строке указывают, что конечная точка включена в набор.

Вы обнаружите, что такое использование круглых и квадратных скобок согласуется с их использованием в будущих курсах математики.

На этом графике представлены число 1 и все действительные числа больше 1.

На этом графике представлено число 1 и все действительные числа, меньшие или равные — 3.

Пример 13 Напишите алгебраическое утверждение, представленное следующим графиком.

Пример 14 Напишите алгебраическое утверждение для следующего графика.

На этом графике представлены все действительные числа от -4 до 5 , включая от -4 до 5.

Пример 15 Напишите алгебраическое выражение для следующего графика.

Этот график включает 4, но не -2.

Пример 16 График на числовой прямой.

Решение

В этом примере возникает небольшая проблема. Как мы можем указать в числовой строке ? Если мы оценим суть дела, то другой человек может неправильно истолковать это утверждение. Не могли бы вы сказать, представляет ли точка или, может быть, ? Поскольку цель графика — прояснить, всегда обозначает конечную точку .

График используется для передачи утверждения. Вы всегда должны называть нулевую точку, чтобы показать направление, а также конечную точку или точки, если быть точным.

РЕШЕНИЕ НЕРАВЕНСТВА

ЗАДАЧИ

По завершении этого раздела вы сможете решить неравенства с одним неизвестным.

Решение неравенств обычно включает те же основные правила, что и уравнения. Есть одно исключение, которое мы скоро обнаружим. Однако первое правило аналогично тому, что используется при решении уравнений.

Если одно и то же количество добавляется к каждой стороне неравенства , результаты будут неравными в том же порядке.

Пример 1 Если 5

Пример 2 Если 7

Мы можем использовать это правило для решения некоторых неравенств.

Пример 3 Решить относительно x: x + 6

Решение

Если мы прибавим -6 к каждой стороне, мы получим

Изобразив это решение на числовой прямой, получим

Обратите внимание, что процедура такая же, как и при решении уравнений.

Теперь мы воспользуемся правилом сложения, чтобы проиллюстрировать важную концепцию, касающуюся умножения или деления неравенств.

Предположим, что x> a.

Теперь добавьте — x к обеим сторонам по правилу сложения.

Помните, добавление одинаковой величины к обеим сторонам неравенства не меняет его направления.

Теперь добавьте -a с обеих сторон.

Последний оператор — a> -x можно переписать как — x <-a.Поэтому мы можем сказать: «Если x> a, то — x

Если неравенство умножается или делится на отрицательное число , результаты будут неравными в порядке , противоположном .

Например: Если 5> 3, то -5

Пример 5 Решите относительно x и изобразите решение: -2x> 6

Решение

Чтобы получить x в левой части, мы должны разделить каждый член на — 2. Обратите внимание, что, поскольку мы делим на отрицательное число, мы должны изменить направление неравенства.

Обратите внимание, что как только мы делим на отрицательную величину, мы должны изменить направление неравенства.

Обратите внимание на этот факт. Каждый раз, когда вы делите или умножаете на отрицательное число, вы должны изменять направление символа неравенства. Это единственное различие между решением уравнений и решением неравенств.

Когда мы умножаем или делим на положительное число, изменений нет.Когда мы умножаем или делим на отрицательное число, направление неравенства меняется. Будьте осторожны — это источник многих ошибок.

После того, как мы удалили круглые скобки и остались только отдельные члены в выражении, процедура поиска решения почти такая же, как в главе 2.

Давайте теперь рассмотрим пошаговый метод из главы 2 и отметим разницу при решении неравенств.

Первый Исключите дроби, умножив все члены на наименьший общий знаменатель всех дробей.(Без изменений, когда мы умножаем на положительное число.)
Второй Упростите, объединив одинаковые члены с каждой стороны неравенства. (Без изменений)
Третий Сложите или вычтите количества, чтобы получить неизвестное с одной стороны и числа с другой. (Без изменений)
Четвертый Разделите каждый член неравенства на коэффициент неизвестной. Если коэффициент положительный, неравенство останется прежним. Если коэффициент отрицательный, неравенство будет отменено.(Это важное различие между уравнениями и неравенствами.)

Единственное возможное отличие заключается в последнем шаге.

Что нужно делать при делении на отрицательное число?

Не забудьте пометить конечную точку.

РЕЗЮМЕ

Ключевые слова

  • Буквенное уравнение — это уравнение, состоящее из более чем одной буквы.
  • Символы — это символы неравенства или отношения порядка .
  • a a находится слева от b в строке действительного числа.
  • Двойные символы : указывают, что конечные точки включены в набор решений .

Процедуры

  • Чтобы решить буквальное уравнение для одной буквы через другие, выполните те же шаги, что и в главе 2.
  • Чтобы решить неравенство, используйте следующие шаги:
    Шаг 1 Исключите дроби, умножив все члены на наименьший общий знаменатель всех дробей.
    Шаг 2 Упростите, объединив одинаковые термины с каждой стороны неравенства.
    Шаг 3 Сложите или вычтите величины, чтобы получить неизвестное с одной стороны и числа с другой.
    Шаг 4 Разделите каждый член неравенства на коэффициент неизвестной. Если коэффициент положительный, неравенство останется прежним. Если коэффициент отрицательный, неравенство будет отменено.
    Шаг 5 Проверьте свой ответ.
,

Исчисление I — логарифмическое дифференцирование

Онлайн-заметки Павла

Ноты Быстрая навигация Скачать

  • Перейти к
  • Ноты
  • Проблемы с практикой
  • Проблемы с назначением
  • Показать / Скрыть
  • Показать все решения / шаги / и т. Д.
  • Скрыть все решения / шаги / и т. Д.
  • Разделы
  • Производные инструменты высшего порядка
  • Применение производных финансовых инструментов Введение
  • Разделы
  • Пределы
  • Применение производных инструментов
  • Классы
  • Алгебра
  • Исчисление I
  • Исчисление II
  • Исчисление III
  • Дифференциальные уравнения
  • Дополнительно
  • Алгебра и триггерный обзор
  • Распространенные математические ошибки
  • Праймер комплексных чисел
  • Как изучать математику
  • Шпаргалки и таблицы
  • Разное
  • Свяжитесь со мной
  • Справка и настройка MathJax
  • Мои студенты
  • Notes Загрузки
  • Полная книга
  • Текущая глава
  • Текущий раздел
  • Practice Problems Загрузок
  • Полная книга — Только проблемы
  • Полная книга — Решения
  • Текущая глава — Только проблемы
  • Текущая глава — Решения
  • Текущий раздел — Только проблемы
  • Текущий раздел — Решения
  • Проблемы с назначением Загрузок
  • Полная книга
  • Текущая глава
  • Текущий раздел
  • Прочие товары
  • Получить URL для загружаемых элементов
  • Распечатать страницу в текущем виде (по умолчанию)
  • Показать все решения / шаги и распечатать страницу
  • Скрыть все решения / шаги и распечатать страницу
  • Дом
  • Классы
  • Алгебра
    • Отборочные
      • Целочисленные экспоненты
      • Рациональные экспоненты
      • Радикалы
      • Полиномы
      • Факторинговые многочлены
      • Рациональные выражения
      • Комплексные числа
    • Решение уравнений и неравенств
      • Решения и наборы решений
      • Линейные уравнения
      • Приложения линейных уравнений
      • Уравнения с более чем одной переменной
      • Квадратные уравнения — Часть I
      • Квадратные уравнения — Часть II
      • Квадратные уравнения: сводка
      • Приложения квадратных уравнений
      • Уравнения, сводимые к квадратичным в форме
      • Уравнения с радикалами
      • Линейные неравенства
      • Полиномиальные неравенства
      • Рациональные неравенства
      • Уравнения абсолютных значений
      • Абс
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *