Метод крамера гаусса и – Метод Крамера для решения СЛАУ: алгоритм, примеры задач

Метод Крамера

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:

  1. Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $\Delta\neq 0$.
  2. Для каждой переменной $x_i$($i=\overline{1,n}$) необходимо составить определитель $\Delta_{x_i}$, полученный из определителя $\Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
  3. Найти значения неизвестных по формуле $x_i=\frac{\Delta_{x_{i}}}{\Delta}$ ($i=\overline{1,n}$).

Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.

Пример №1

Решить СЛАУ $\left\{\begin{aligned} & 3x_1+2x_2=-11;\\ & -x_1+5x_2=15. \end{aligned}\right.$ методом Крамера.

Решение

Матрица системы такова: $ A=\left( \begin{array} {cc} 3 & 2\\ -1 & 5 \end{array} \right) $. Определитель этой матрицы $\Delta=\left| \begin{array} {cc} 3 & 2\\ -1 & 5 \end{array}\right|=3\cdot 5-2\cdot(-1)=17$. Как вычисляется определитель второго порядка можете глянуть здесь.

Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $\Delta_{x_1}$ и $\Delta_{x_2}$. Определитель $\Delta_{x_1}$ получаем из определителя $\Delta=\left| \begin{array} {cc} 3 & 2\\ -1 & 5 \end{array}\right|$ заменой первого столбца (именно первый столбец содержит коэффициенты при $x_1$) столбцом свободных членов $\left(\begin{array} {c} -11\\ 15\end{array}\right)$:

$$ \Delta_{x_1}=\left|\begin{array}{cc}-11&2\\15&5\end{array}\right|=-55-30=-85. $$

Аналогично, заменяя второй столбец в $\Delta=\left|\begin{array}{cc}3&2\\-1&5\end{array}\right|$ столбцом свободных членов, получим:

$$ \Delta_{x_2}=\left|\begin{array} {cc} 3 & -11\\ -1 & 15\end{array}\right|=45-11=34. $$

Теперь можно найти значения неизвестных $x_1$ и $x_2$.

$$x_1=\frac{\Delta_{x_1}}{\Delta}=\frac{-85}{17}=-5;\;x_2=\frac{\Delta_{x_2}}{\Delta}=\frac{34}{17}=2.$$

В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:

$$\left\{\begin{aligned} & 3x_1+2x_2=3\cdot(-5)+2\cdot{2}=-11;\\ & -x_1+5x_2=-(-5)+5\cdot{2}=15. \end{aligned}\right.$$

Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.

Ответ: $x_1=-5$, $x_2=2$.

Пример №2

Решить СЛАУ $ \left\{\begin{aligned} & 2x_1+x_2-x_3=3;\\ & 3x_1+2x_2+2x_3=-7;\\ & x_1+x_3=-2. \end{aligned} \right.$, используя метод Крамера.

Решение

Определитель системы: $\Delta=\left| \begin{array} {ccc} 2 & 1 & -1\\ 3 & 2 & 2 \\ 1 & 0 & 1 \end{array}\right|=4+2+2-3=5$. Как вычисляется определитель третьего порядка можете глянуть здесь.

Заменяя первый столбец в $\Delta$ столбцом свободных членов, получим $\Delta_{x_1}$:

$$ \Delta_{x_1}=\left| \begin{array} {ccc} 3 & 1 & -1\\ -7 & 2 & 2 \\ -2 & 0 & 1 \end{array}\right|=6-4-4+7=5. $$

Заменяя второй столбец в $\Delta$ столбцом свободных членов, получим $\Delta_{x_2}$:

$$ \Delta_{x_2}=\left| \begin{array} {ccc} 2 & 3 & -1\\ 3 & -7 & 2 \\ 1 & -2 & 1 \end{array}\right|=-14+6+6-7-9+8=-10. $$

Заменяя третий столбец в $\Delta$ столбцом свободных членов, получим $\Delta_{x_3}$:

$$ \Delta_{x_3}=\left| \begin{array} {ccc} 2 & 1 & 3\\ 3 & 2 & -7 \\ 1 & 0 & -2 \end{array}\right|=-8-7-6+6=-15. $$

Учитывая все вышеизложенное, имеем:

$$ x_1=\frac{\Delta_{x_1}}{\Delta}=\frac{5}{5}=1;\; x_2=\frac{\Delta_{x_2}}{\Delta}=\frac{-10}{5}=-2; \; x_3=\frac{\Delta_{x_3}}{\Delta}=\frac{-15}{5}=-3. $$

Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:

$$\left\{\begin{aligned} & 2x_1+x_2-x_3=2\cdot{1}+(-2)-(-3)=3;\\ & 3x_1+2x_2+2x_3=3\cdot{1}+2\cdot(-2)+2\cdot(-3)=-7;\\ & x_1+x_3=1+(-3)=-2. \end{aligned} \right.$$

Проверка пройдена, решение системы уравнений методом Крамера найдено верно.

Ответ: $x_1=1$, $x_2=-2$, $x_3=-3$.

Пример №3

Решить СЛАУ $\left\{\begin{aligned} & 2x_1+3x_2-x_3=15;\\ & -9x_1-2x_2+5x_3=-7. \end{aligned}\right.$ используя метод Крамера.

Решение

Матрица системы $ \left( \begin{array} {ccc} 2 & 3 & -1\\ -9 & -2 & 5 \end{array} \right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:

$$ \left \{ \begin{aligned} & 2x_1+3x_2=x_3+15;\\ & -9x_1-2x_2=-5x_3-7. \end{aligned} \right. $$

Теперь матрица системы $ \left( \begin{array} {cc} 2 & 3 \\ -9 & -2 \end{array} \right) $ стала квадратной, и определитель её $\Delta=\left| \begin{array} {cc} 2 & 3\\ -9 & -2 \end{array}\right|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:

Определители

Ответ можно записать в таком виде: $\left\{\begin{aligned} & x_1=\frac{13x_3-9}{23};\\ & x_2=\frac{-x_3+121}{23};\\ & x_3\in R. \end{aligned}\right.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.

Примечание

В подобных примерах возможна ситуация, когда после переноса переменной (или переменных) в правые части уравнений, определитель системы равняется нулю. В этом случае можно перенести в правую часть иную переменную (или переменные). Например, рассмотрим СЛАУ $\left\{\begin{aligned} & 2x_1-5x_2+10x_3=14;\\ & -4x_1+10x_2-7x_3=5. \end{aligned}\right.$. Если перенести в правые части уравнений $x_3$, получим: $ \left\{\begin{aligned} &2x_1-5x_2=-10x_3+14;\\ &-4x_1+10x_2=7x_3+5. \end{aligned}\right.$. Определитель данной системы $\Delta=\left| \begin{array} {cc} 2 & -5\\ -4 & 10 \end{array}\right|=20-20=0$. Однако если перенести в правые части уравнений переменную $x_2$, то получим систему $ \left\{\begin{aligned} &2x_1+10x_3=5x_2+14;\\ &-4x_1-7x_3=-10x_2+5. \end{aligned}\right.$, определитель которой $\Delta=\left| \begin{array} {cc} 2 & 10\\ -4 & -7 \end{array}\right|=-14+40=26$ не равен нулю. Дальнейшее решение аналогично рассмотренному в примере №3.

Пример №4

Решить СЛАУ $\left\{\begin{aligned} &x_1-5x_2-x_3-2x_4+3x_5=0;\\ &2x_1-6x_2+x_3-4x_4-2x_5=0; \\ &-x_1+4x_2+5x_3-3x_4=0. \end{aligned}\right.$ методом Крамера.

Решение

Матрица системы $\left(\begin{array} {ccccc} 1 & -5 & -1 & -2 & 3 \\ 2 & -6 & 1 & -4 & -2 \\ -1 & 4 & 5 & -3 & 0 \end{array}\right)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:

$$ \left\{\begin{aligned} & x_1-5x_2-x_3=2x_4-3x_5;\\ & 2x_1-6x_2+x_3=4x_4+2x_5; \\ & -x_1+4x_2+5x_3=3x_4. \end{aligned}\right.$$ Определители

Ответ таков: $\left\{\begin{aligned} & x_1=\frac{-17x_4+144x_5}{19};\\ & x_2=\frac{-15x_4+41x_5}{19};\\ & x_3=\frac{20x_4-4x_5}{19}; \\ & x_4\in R; \; x_5\in R. \end{aligned}\right.$ Переменные $x_1$, $x_2$, $x_3$ – базисные, переменные $x_4$, $x_5$ – свободные.

Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.

math1.ru

Метод Крамера решения систем линейных уравнений

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения  и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.


Пример 1. Решить систему линейных уравнений:

.                         (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.


Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Условия:

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

Условия:

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Условия:

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.


Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:


Пример 2.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8.  Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Другое по теме «Системы уравнений и неравенств»

Начало темы «Линейная алгебра»

Поделиться с друзьями

function-x.ru

Метод Крамера

Метод Крамера или так называемое правило Крамера – это способ поиска неизвестных величин из систем уравнений. Его можно использовать только если число искомых значений эквивалентно количеству алгебраических уравнений в системе, то есть образуемая из системы основная матрица должна быть квадратной и не содержать нулевых строчек, а также если её детерминант не должен являться нулевым.

Теорема 1

Теорема Крамера Если главный определитель $D$ основной матрицы, составленной на основе коэффициентов уравнений, не равен нулю, то система уравнений совместна, причём решение у неё существует единственное. Решение такой системы вычисляется через так называемые формулы Крамера для решения систем линейных уравнений: $x_i = \frac{D_i}{D}$

В чем заключается метод Крамера

Суть метода Крамера в следующем:

  1. Чтобы найти решение системы методом Крамера, первым делом вычисляем главный определитель матрицы $D$. Когда вычисленный детерминант основной матрицы при подсчёте методом Крамера оказался равен нулю, то система не имеет ни одного решения или имеет нескончаемое количество решений. В этом случае для нахождения общего или какого-либо базисного ответа для системы рекомендуется применить метод Гаусса.
  2. Затем нужно заменить крайний столбец главной матрицы на столбец свободных членов и высчитать определитель $D_1$.
  3. Повторить то же самое для всех столбцов, получив определители от $D_1$ до $D_n$, где $n$ — номер крайнего справа столбца.
  4. После того как найдены все детерминанты $D_1$…$D_n$, можно высчитать неизвестные переменные по формуле $x_i = \frac{D_i}{D}$.

Приёмы для вычисления определителя матрицы

Для вычисления определителя матрицы с размерностью больше чем 2 на 2, можно использовать несколько способов:

  • Правило треугольников, или правило Саррюса, напоминающее это же правило. Суть метода треугольников в том, что при вычислении определителя произведения всех чисел, соединённых на рисунке красной линией справа, записываются со знаком плюс, а все числа, соединённые аналогичным образом на рисунке слева – со знаком минус. B то, и другое правило подходит для матриц размером 3 х 3. В случае же правила Саррюса сначала переписывается сама матрица, а рядом с ней рядом переписываются ещё раз её первый и второй столбец. Через матрицу и эти дополнительные столбцы проводятся диагонали, члены матрицы, лежащие на главной диагонали или на параллельной ей записываются со знаком плюс, а элементы, лежащие на побочной диагонали или параллельно ей — со знаком минус.

Рисунок 1. Правило треугольников для вычисления определителя для метода Крамера

  • С помощью метода, известного как метод Гаусса, также иногда этот метод называют понижением порядка определителя. В этом случае матрица преобразуется и приводится к треугольному виду, а затем перемножаются все числа, стоящие на главной диагонали. Следует помнить, что при таком поиске определителя нельзя домножать или делить строчки или столбцы на числа без вынесения их как множителя или делителя. В случае поиска определителя возможно только вычитать и складывать строки и столбы между собой, предварительно помножив вычитаемую строку на ненулевой множитель. Также при каждой перестановке строчек или столбцов матрицы местами следует помнить о необходимости смены конечного знака у матрицы.
  • При решении методом Крамера СЛАУ с 4 неизвестными, лучше всего будет применять именно метод Гаусса для поиска и нахождения определителей или опредлять детерминант через поиск миноров.

Решение систем уравнений методом Крамера

Применим метод Крамера для системы из 2 уравнений и двумя искомыми величинами:

$\begin{cases} a_1x_1 + a_2x_2 = b_1 \\ a_3x_1 + a_4x_2 = b_2 \\ \end{cases}$

Отобразим её в расширенной форме для удобства:

$A = \begin{array}{cc|c} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_1 \\ \end{array}$

Найдём определитель основной матрицы, также называемый главным определителем системы:

$D = \begin{array}{|cc|} a_1 & a_2 \\ a_3 & a_4 \\ \end{array} = a_1 \cdot a_4 – a_3 \cdot a_2$

Если главный определитель не равен нулю, то для решения слау методом Крамера необходимо высчитать ещё парочку определителей от двух матриц с заменёнными столбцами основной матрицы на строчку свободных членов:

$D_1 = \begin{array}{|cc|} b_1 & a_2 \\ b_2 & a_4 \\ \end{array} = b_1 \cdot a_4 – b_2 \cdot a_4$

$D_2 = \begin{array}{|cc|} a_1 & b_1 \\ a_3 & b_2 \\ \end{array} = a_1 \cdot b_2 – a_3 \cdot b_1$

Теперь найдём неизвестные $x_1$ и $x_2$:

$x_1 = \frac {D_1}{D}$

$x_2 = \frac {D_2}{D}$

Пример 1

Метод Крамера для решения СЛАУ с основной матрицей 3 порядка (3 x 3) и тремя искомыми.

Решите систему уравнений:

$\begin{cases} 3x_1 – 2x_2 + 4x_3 = 21 \\ 3x_1 +4x_2 + 2x_3 = 9\\ 2x_1 – x_2 — x_3 = 10 \\ \end{cases}$

Сосчитаем главный детерминант матрицы пользуясь вышеизложенным под пунктом номер 1 правилом:

$D = \begin{array}{|ccc|} 3 & -2 & 4 \\3 & 4 & -2 \\ 2 & -1 & 1 \\ \end{array} = 3 \cdot 4 \cdot (-1) + 2 \cdot (-2) \cdot 2 + 4 \cdot 3 \cdot (-1) – 4 \cdot 4 \cdot 2 – 3 \cdot (-2) \cdot (-1) — (-1) \cdot 2 \cdot 3 = — 12 – 8 -12 -32 – 6 + 6 = — 64$

А теперь три других детерминанта:

$D_1 = \begin{array}{|ccc|} 21 & 2 & 4 \\ 9 & 4 & 2 \\ 10 & 1 & 1 \\ \end{array} = 21 \cdot 4 \cdot 1 + (-2) \cdot 2 \cdot 10 + 9 \cdot (-1) \cdot 4 – 4 \cdot 4 \cdot 10 – 9 \cdot (-2) \cdot (-1) — (-1) \cdot 2 \cdot 21 = — 84 – 40 – 36 – 160 – 18 + 42 = — 296$

$D_2 = \begin{array}{|ccc|} 3 & 21 & 4 \\3 & 9 & 2 \\ 2 & 10 & 1 \\ \end{array} = 3 \cdot 9 \cdot (- 1) + 3 \cdot 10 \cdot 4 + 21 \cdot 2 \cdot 2 – 4 \cdot 9 \cdot 2 – 21 \cdot 3 \cdot (-1) – 2 \cdot 10 \cdot 3 = — 27 + 120 + 84 – 72 + 63 – 60 = 108$

$D_3 = \begin{array}{|ccc|} 3 & -2 & 21 \\ 3 & 4 & 9 \\ 2 & 1 & 10 \\ \end{array} = 3 \cdot 4 \cdot 10 + 3 \cdot (-1) \cdot 21 + (-2) \cdot 9 \cdot 2 – 21 \cdot 4 \cdot 2 — (-2) \cdot 3 \cdot 10 — (-1) \cdot 9 \cdot 3 = 120 – 63 – 36 – 168 + 60 + 27 = — 60$

Найдём искомые величины:

$x_1 = \frac{D_1} {D} = \frac{- 296}{-64} = 4 \frac{5}{8}$

$x_2 = \frac{D_1} {D} = \frac{108} {-64} = — 1 \frac {11} {16}$

$x_3 = \frac{D_1} {D} = \frac{-60} {-64} = \frac {15} {16}$

spravochnick.ru

Лекция 3. Понятие системы линейных уравнений. Метод Гаусса. Метод Крамера.

Элементы линейной алгебры.

Лекция 3. Понятие СЛУ. Метод Гаусса. Метод Крамера

Лекция 3. Понятие системы линейных уравнений. Метод Гаусса. Метод Крамера.

1.1 Понятие системы линейных уравнений.

Определение 1. Системой линейных уравнений, содержащей m уравнений и n неизвестных, называется система вида

где числа aij – называются коэффициентами системы, числа bij – свободными членами.

Определение 2. Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Определение 3. Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

В последенем случае каждое решение системы называется частным решением системы. Совокупность всех частных решений называется общим решением.

Решить систему – это значит выяснить, совместна она или несовместна. Если совместна, найти ее общее решение.

1.2 Решение систем линейных уравнений. Метод Гаусса.

Пусть дана система m линейных уравнений с n неизвестными:

Матрица А = , составленная из коэффициентов при неизвестных хi (i = 1,2,…n), называется матрицей системы.

Матрица B = , составленная из коэффициентов при неизвестных и свободных членов, называется расширенной матрицей.

Определение 4. Матрица А называется матрицей треугольного вида, если все ее элементы выше (ниже) главной диагонали равны нулю.

Например, А = или В = — матрицы треугольного вида.

Метод Гаусса удобно использовать при решении систем с большим количеством уравнений. Этот метод заключается в последоваетльном исключении неизвестных. Систему линейных уравнений приводят к системе с треугольной матрицей с помощью эквивалентных преобразований. Затем из полученной системы переменные находят с помощью последовательных подстановок.

К эквивалентным преобразованиям относят следующие:

  • умножение и деление коэффициентов и свободных членов на одно и тоже число, отличное от нуля.

  • Сложение и вычитание уравнений.

  • Перестановка уравнений.

  • Исключение из системы уравнений, в которых все коэффициенты равны нулю.

Пример 1

Решить систему линейных уравнений методом Гаусса:

Выпишем расширенную матрицу системы:

Для упрощения вычислений поменяем первую и вторую строки местами:

Умножим первую строку на –3 и сложим ее со второй строкой. Первую строку умножим на –4 и сложим с третьей сторокой, получим эквивалентную матрицу:

Умножим вторую строку на –1:

Умножим вторую строку на 5 и сложим с третьей строкой:

Разделим третью строку на –11:

Получили матрицу треугольного вида (все элементы ниже главной диагонали равны нулю). Выпишем систему уравнений треугольного вида:

Ответ: х = -1, у = 3, z = 2

1.3 Решение систем линейных уравнений методом Крамера.

Для решения систем линейных уравнений с большим количеством уравнений применяют метод Гаусса. Если же уравнений в системе не так много, то удобнее использовать метод Крамера. Этот метод основан на вычислении определителей.

Пусть дана система n линейных уравнений с n неизвестными:

Составим определитель матрицы системы:

Заменим в определителе  первый столбик, соответствующий переменной х1, на столбец свободных членов b1, b2, …,bn, получим определитель х1:

Заменим в определителе  второй столбик, соответствующий переменной х2, на столбец свободных членов b1, b2, …,bn, получим определитель х2:

Аналогично поступаем с третьим, четвертым, …, n –ым столбцами определителя . В итоге получим n+1 определитель. Для того, чтобы найти неизвестные х1, х2 , …, хn используем формулы Крамера:

, , …,

При вычислении определителей могут возникнуть следующие случаи:

  • если определитель матрицы системы  отличен от 0, то система линейных уравнений имеет единственное решение;

  • если определитель матрицы системы  равен 0, а среди определителей х1, х2, …, хn есть хотя один отличный от 0, то система линейных уравнений не имеет решений;

  • если определитель матрицы системы  равен 0 и все определители х1, х2, …, хn равны 0, то система линейных уравнений имеет бесконечно много решений.

Пример 3.

Решить систему линейных уравнений методом Крамера:

Выпишем определитель матрицы системы  и вычислим его:

Так как 0, то система имеет единственное решение.

Заменим в определителе  первый столбик на столбец свободных коэффициентов, получим х :

Заменим в определителе  второй столбик на столбец свободных коэффициентов, получим у :

Найдем значения переменных х и у по формулам Крамера:

,

Ответ: (-3;1)

Пример 4.

Решить систему линейных уравнений методом Крамера:

Выпишем определитель матрицы системы  и вычислим его:

Так как 0, то система имеет единственное решение.

Заменим в определителе  первый столбик на столбец свободных коэффициентов, получим х :

Заменим в определителе  первый столбик на столбец свободных коэффициентов, получим у :

Заменим в определителе  первый столбик на столбец свободных коэффициентов, получим z :

Найдем значения переменных х , у и z по формулам Крамера:

, ,

Ответ: (-1; 1; -2)

7


multiurok.ru

Метод Крамера — Вікіпедія

Матеріал з Вікіпедії — вільної енциклопедії.

Метод Крамера (правило Крамера) — спосіб розв’язання квадратних систем лінійних алгебраїчних рівнянь із ненульовим визначником основної матриці (при цьому для таких рівнянь розв’язок існує і є єдиним). Метод було створено Габрієлем Крамером у 1750 році.

Для системи n{\displaystyle n} лінійних рівнянь з n{\displaystyle n} невідомими (над довільним полем)

{a11x1+a12x2+…+a1nxn=b1a21x1+a22x2+…+a2nxn=b2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯an1x1+an2x2+…+annxn=bn{\displaystyle {\begin{cases}a_{11}x_{1}+a_{12}x_{2}+\ldots +a_{1n}x_{n}=b_{1}\\a_{21}x_{1}+a_{22}x_{2}+\ldots +a_{2n}x_{n}=b_{2}\\\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\a_{n1}x_{1}+a_{n2}x_{2}+\ldots +a_{nn}x_{n}=b_{n}\\\end{cases}}}

з визначником матриці системи Δ{\displaystyle \Delta }, що не рівний нулю, розв’язок записується у такому вигляді:

xi=1Δ|a11…a1,i−1b1a1,i+1…a1na21…a2,i−1b2a2,i+1…a2n…………………an−1,1…an−1,i−1bn−1an−1,i+1…an−1,nan1…an,i−1bnan,i+1…ann|{\displaystyle x_{i}={\frac {1}{\Delta }}{\begin{vmatrix}a_{11}&\ldots &a_{1,i-1}&b_{1}&a_{1,i+1}&\ldots &a_{1n}\\a_{21}&\ldots &a_{2,i-1}&b_{2}&a_{2,i+1}&\ldots &a_{2n}\\\ldots &\ldots &\ldots &\ldots &\ldots &\ldots &\ldots \\a_{n-1,1}&\ldots &a_{n-1,i-1}&b_{n-1}&a_{n-1,i+1}&\ldots &a_{n-1,n}\\a_{n1}&\ldots &a_{n,i-1}&b_{n}&a_{n,i+1}&\ldots &a_{nn}\\\end{vmatrix}}}

(i-й стовпчик матриці системи замінюється стовпчиком вільних членів).

Іншим чином правило Крамера формулюється так: для будь-яких коефіцієнтів c1, c2, …, cn виконується рівність:

(c1x1+c2x2+⋯+cnxn)⋅Δ=−|a11a12…a1nb1a21a22…a2nb2……………an1an2…annbnc1c2…cn0|{\displaystyle (c_{1}x_{1}+c_{2}x_{2}+\dots +c_{n}x_{n})\cdot \Delta =-{\begin{vmatrix}a_{11}&a_{12}&\ldots &a_{1n}&b_{1}\\a_{21}&a_{22}&\ldots &a_{2n}&b_{2}\\\ldots &\ldots &\ldots &\ldots &\ldots \\a_{n1}&a_{n2}&\ldots &a_{nn}&b_{n}\\c_{1}&c_{2}&\ldots &c_{n}&0\\\end{vmatrix}}}

У такій формі формула Крамера справедлива без припущення, що Δ{\displaystyle \Delta } не рівне нулю, не треба, навіть, аби коефіцієнти системи були елементами цілісного кільця (визначник системи навіть може бути дільником нуля у кільці коефіцієнтів). Також можна вважати, що або набори b1,b2,…,bn{\displaystyle b_{1},b_{2},…,b_{n}} та x1,x2,…,xn{\displaystyle x_{1},x_{2},…,x_{n}}, або набір c1,c2,…,cn{\displaystyle c_{1},c_{2},…,c_{n}} складаються не з елементів кільця коефіциєнтів системи, а деякого модуля над цим кільцем. В такому вигляді формула Крамера використовується, наприклад, при доведенні формули для визначника Грама і Леми Накаями.

Система лінійних рівнянь:

{a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3{\displaystyle {\begin{cases}a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3}=b_{1}\\a_{21}x_{1}+a_{22}x_{2}+a_{23}x_{3}=b_{2}\\a_{31}x_{1}+a_{32}x_{2}+a_{33}x_{3}=b_{3}\\\end{cases}}}

Визначники:

Δ=|a11a12a13a21a22a23a31a32a33|,  Δ1=|b1a12a13b2a22a23b3a32a33|,  Δ2=|a11b1a13a21b2a23a31b3a33|,  Δ3=|a11a12b1a21a22b2a31a32b3|{\displaystyle \Delta ={\begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\\\end{vmatrix}},\ \ \Delta _{1}={\begin{vmatrix}b_{1}&a_{12}&a_{13}\\b_{2}&a_{22}&a_{23}\\b_{3}&a_{32}&a_{33}\\\end{vmatrix}},\ \ \Delta _{2}={\begin{vmatrix}a_{11}&b_{1}&a_{13}\\a_{21}&b_{2}&a_{23}\\a_{31}&b_{3}&a_{33}\\\end{vmatrix}},\ \ \Delta _{3}={\begin{vmatrix}a_{11}&a_{12}&b_{1}\\a_{21}&a_{22}&b_{2}\\a_{31}&a_{32}&b_{3}\\\end{vmatrix}}}

Розв’язок:

x1=Δ1Δ,  x2=Δ2Δ,  x3=Δ3Δ{\displaystyle x_{1}={\frac {\Delta _{1}}{\Delta }},\ \ x_{2}={\frac {\Delta _{2}}{\Delta }},\ \ x_{3}={\frac {\Delta _{3}}{\Delta }}}


Приклад:

{2×1+5×2+4×3=30×1+3×2+2×3=1502×1+10×2+9×3=110{\displaystyle {\begin{cases}2x_{1}+5x_{2}+4x_{3}=30\\x_{1}+3x_{2}+2x_{3}=150\\2x_{1}+10x_{2}+9x_{3}=110\\\end{cases}}}

Визначники:

Δ=|2541322109|=5,  Δ1=|305415032110109|=−760,  Δ2=|23041150221109|=1350,  Δ3=|253013150210110|=−1270.{\displaystyle \Delta ={\begin{vmatrix}2&5&4\\1&3&2\\2&10&9\\\end{vmatrix}}=5,\ \ \Delta _{1}={\begin{vmatrix}30&5&4\\150&3&2\\110&10&9\\\end{vmatrix}}=-760,\ \ \Delta _{2}={\begin{vmatrix}2&30&4\\1&150&2\\2&110&9\\\end{vmatrix}}=1350,\ \ \Delta _{3}={\begin{vmatrix}2&5&30\\1&3&150\\2&10&110\\\end{vmatrix}}=-1270.}

x1=−7605=−152,  x2=13505=270,  x3=−12705=−254{\displaystyle x_{1}=-{\frac {760}{5}}=-152,\ \ x_{2}={\frac {1350}{5}}=270,\ \ x_{3}=-{\frac {1270}{5}}=-254}

uk.wikipedia.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *