Модели строения атомов – 2) Строение атома. Ранние модели строения атома. Элементарные частицы атома. Состав атомного ядра. Изотопы.

Боровская модель атома

23

Материал из Википедии — свободной энциклопедии

Боровская модель водородоподобного атома (Z — заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро. Переход электрона с орбиты на орбиту сопровождается излучением или поглощением кванта электромагнитной энергии ().

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы

излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1]: .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты Rn и энергии

En находящегося на этой орбите электрона:

Здесь me — масса электрона, Z — количество протонов в ядре, ε0 — диэлектрическая постоянная, e — заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R0=5,2917720859(36)×10−11 м[2], ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты E0 = − 13.6 эВ представляет собой энергию ионизации атома водорода.

Полуклассическая теория Бора

Основана на двух постулатах Бора:

  • Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

  • Излучение и поглощение энергии атомом происходит при скачкообразном переходе из одного стационарного состояния в другое, при этом имеют место два соотношения:

  1. ε = En2En1, где  — излучённая (поглощённая) энергия,  — номера квантовых состояний. В спектроскопии и называются термами.

  2. Правило квантования

    момента импульса:

Далее исходя из соображений классической физики о круговом движении электрона вокруг неподвижного ядра по стационарной орбите под действием кулоновской силы притяжения, Бором были получены выражения для радиусов стационарных орбит и энергии электрона на этих орбитах:

м — боровский радиус.

 — энергетическая постоянная Ридберга

(численно равна 13,6 эВ).

Модели атомов

  • Кусочки материи. Демокрит полагал, что свойства того или иного вещества определяются формой, массой, и пр. характеристиками образующих его атомов. Так, скажем, у огня атомы остры, поэтому огонь способен обжигать, у твёрдых тел они шероховаты, поэтому накрепко сцепляются друг с другом, у воды — гладки, поэтому она способна течь. Даже душа человека, согласно Демокриту, состоит из атомов[2].

  • Модель атома Томсона (модель «Пудинг с изюмом», англ. Plum pudding model). Дж. Дж. Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Была окончательно опровергнута Резерфордом после проведённого им знаменитого опыта по рассеиванию альфа-частиц.

  • Ранняя планетарная модель атома Нагаоки. В 1904 году японский физик Хантаро Нагаока предложил модель атома, построенную по аналогии с планетой Сатурн. В этой модели вокруг маленького положительного ядра по орбитам вращались электроны, объединённые в кольца. Модель оказалась ошибочной.

  • Планетарная модель атома Бора-Резерфорда. В 1911 году[3] Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию

    . Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

Атом водорода является атомом химического элемента водорода. Он состоит из положительно заряженного протона, который является ядром водородного атома, и единственного отрицательно заряженного электрона. В общем случае, атом водорода описывается двухчастичной матрицей плотности или двухчастичной волновой функцией. Часто в квантовой механике рассматривается электрон в электростатическом поле атомного ядра. В этом случае, электрон описывается редуцированной одночастичной матрицей плотности или волновой функцией. Из-за своей простоты как

проблема двух тел атом водорода имеет специальное значение в квантовой механике и релятивистской квантовой механике поскольку соответствующие уравнения допускают точное или приближенное аналитическое решения.

В 1913 Нильс Бор получил спектральные частоты водородного атома в его модели атома водорода, имеющей множество предположений и упрощений. Эти предположения не были полностью правильны, но действительно приводили к правильным значениям энергии. Результаты расчёта Бора для частот и основных значений энергии были подтверждены в 1925/26 полным квантовым-механическим анализом, который использовал уравнение Шрёдингера. Решение уравнения Шрёдингера для электрона в электростатическом поле атомного ядра может быть найдено в аналитической форме. Из него получают

уровни энергии электрона и, таким образом, его частоты. Решение уравнения Шрёдингера даёт больше информации и о форме атомных орбиталей (их анизотропии) атома водорода.

Уравнение Шрёдингера также применяется к более сложным атомам и молекулам, однако, в большинстве таких случаев, решение не является аналитическим, и необходимы компьютерные вычисления, или должны быть сделаны какие-нибудь упрощающие предположения.

6. Ядерная модель строения атома. Квантово

Согласно модели, предложенной Резерфордом в 1911 году, атом состоит из положительного заряженного ядра, в котором сосредоточена большая часть массы атома, и вращающихся вокруг него электронов. Положительный заряд ядра нейтрализуется суммарным отрицательным зарядом электронов, так что в целом атом электронейтрален. Возникающая вследствие вращения электронов центробежная сила уравновешивается силой электростатического притяжения. Размеры ядра очень малы. Из опытов Резерфорда следовало, что заряд ядра численно равен порядковому номеру элемента в периодической таблице. Создание квантовой механики произошла на пути обобщения представления квантово – волновой двойственности фотона на все объекты микромира, в первую очередь на электрон. . Где h – постоянная планка, m – масса электрона, v – скорость электрона, p – импульс электрона.

9. Принцип Паули. Правило Хунда. Правило Кличковского

Принцип Паули: в атоме не может быть двух электронов, у которых все 4 квантовых числа были бы одинаковыми. Два электрона, спины которых имеют противоположные знаки, находящиеся на одной орбитали называются спаренными, в противном случае – неспаренными. Правило Хунда: устойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня, при котором абсолютное значение суммарного спина атома максимально. Правило Кличковского: при увеличении заряда ядра атома последовательное заполнение электронных орбиталей с меньшим значением суммы главного и орбитального квантовых чисел (n+l) к орбиталям с большим значениям этой суммы.

10. Строение атомных ядер. Изотопы

Согласно современным представлениям, атомные ядра состоят из протонов и нейтронов. Протон – элементарная частица, обладающая массой и положительным зарядом, равной по абсолютной величине заряду электрона. Нейтрон – элементарная частица, обладающая массой но не обладающая зарядом. Сумма числа протонов и числа нейтронов, содержащихся в ядре атома, называется массовым числом атома (ядра). Между образующими ядро частицами действуют 2 вида сил: электростатические силы взаимного отталкивания положительно заряженный протонов, и силы притяжения между всеми частицами, входящих в состав атома, называемые ядерными силами. Масса ядра всегда меньше суммы масс всех составляющих ядро частиц. Это явление называется дефектом масс. Величина энергии, выделяющаяся при образовании ядра атома гелия из протонов и нейтронов называется энергией связи ядра и характеризует его устойчивость: чем больше энергии выделилось, тем устойчивее ядро. Изотопы – атомы, обладающие одинаковым зарядом ядра, но разным числом нейтронов.

11. Периодический закон. Периодическая таблица д.И. Менделеева. Порядковый номер элемента

Между всеми химическими элементами существует связь, объединяющая их в одно единое целое. Если расположить все элементы в порядке возрастания их атомных масс, то можно заметить, что сходные в химическом отношении элементы встречаются через правильные интервалы, и что в ряду элементов многи их свойства периодически повторяются. Эту закономерность выражена в периодическом законе, сформулированном Д.И. Менделеевом:

Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов. Если проследить изменение свойств элементов, стоящих в периодической таблице, то можно заметить, что изменение свойств химических элементов не совершается непрерывно в одном и том же направлении, а имеет периодический характер. Через определенное число элементов происходит как бы возврат назад к исходным свойствам, после чего они вновь повторяют свойства предыдущих элементов в той же последовательности, но с некоторыми качественными и количественными различиями. Ряды элементов, в пределах которых свойства изменяются последовательно Менделеев назвал периодами. Разделив все элементы по периодам, и расположив периоды один под другим, Менделеев составил таблицу, названную им периодической системой элементов по группам и рядам. Она состоит из восьми вертикальных столбцов и десяти горизонтальных рядов.

13. Теория химического строения

Основу теории, разработанную Бутлеровым, составляют следующие положения:

1. Атомы в молекулах соединены друг с другом в определенной последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.

2. Соединение атомов происходит в соответствии с их валентностью.

3. Свойства вещества зависят не только от их состава, но и от их химического строения, т.е. от порядка соединения атомов в молекулах и характера их взаимного влияния. Наиболее сильно влияют атомы непосредственно связанные между собой.

Таким образом согласно теории Бутлерова свойства веществ определяются не только их качественным и количественным составом, как считали раньше, но и внутренней структурой молекул, определенным порядком соединения между собой атомов, образующих молекулу. Эту внутреннюю структуру Бутлеров назвал химическим строением. Из теории Бутлерова вытекает возможность изображать строение молекул в виде структурных формул, в которых указана последовательность соединения атомов друг с другом, а каждая черточка, соединяющая атомы, обозначает единицу валентности. Изомерия – явление, которое заключается в существовании соединений, обладающих одним и тем же количественным и качественным составом, но разными свойствами. Такие соединения были названы изомерами.

Модели строения атома — HimHelp.ru

Первые указания о сложном строении атома были получены при изучении процессов прохождения электрического тока через жидкости. Опыты выдающегося английского ученого М.Фарадея в тридцатых годах XIX в. навели на мысль о том, что электричество существует в виде отдельных единичных зарядов.

Величины этих единичных зарядов электричества были определены в более поздних экспериментах по пропусканию электрического тока через газы (опыты с так называемыми катодными лучами). Было установлено, что катодные лучи — это поток отрицательно заряженных частиц, которые получили названия электронов.

Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. (А.Беккерель, 1896 г.). Последовавшее за этим установление природы α-, β-, и γ—лучей, образующихся при радиоактивном распаде (Э.Резерфорд, 1899—1903 гг.), открытие ядер атомов (Э.Резерфорд, 1909—1911 гг.), определение заряда электрона (Р.Милликен, 1909 г.) позволили Э.Резерфорду в 1911 г. предложить одну из первых моделей строения атома.

Модель Резерфорда. Суть планетарной модели строения атома (Э.Резерфорд, 1911 г.) можно свести к следующим утверждениям:

1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.

2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).

3. Вокруг ядра вращаются электроны. Их число равно положительному заряду ядра.

Эта модель оказалась очень наглядной и полезной для объяснения многих экспериментальных данных, но она сразу обнаружила и свои недостатки. В частности, электрон, двигаясь вокруг ядра с ускорением (на него действует центростремительная сила), должен был бы, согласно электромагнитной теории, непрерывно излучать энергию. Это привело бы к тому, что электрон должен был бы двигаться вокруг ядра по спирали и в конце концов упасть на него. Никаких доказательств того, что атомы непрерывно исчезают, не было, отсюда следовало, что модель Резерфорда в чем-то ошибочна.

Теория Бора. В 1913 г. датский физик Н.Бор предложил свою теорию строения атома. Как и Резерфорд, он считал, что электроны двигаются вокруг ядра подобно планетам, движущимся вокруг Солнца. Однако к этому времени Дж.Франк и Г.Герц (1912 г.) доказали дискретность энергии электрона в атоме и это позволило Бору положить в основу новой теории два необычных предположения (постулата):

1. Электрон может вращаться вокруг ядра не по произвольным, а только по строго определенным (стационарным) круговым орбитам.

Радиус орбиты r и скорость электрона v связаны квантовым соотношением Бора:

mrv = nћ                                                                 

где m — масса электрона, n — номер орбиты,  ћ — постоянная Планка (ћ = 1,05∙10-34 Дж∙с).

2. При движении по стационарным орбитам электрон не излучает и не поглощает энергии.

Таким образом, Бор предположил, что электрон в атоме не подчиняется законам классической физики. Согласно Бору, излучение или поглощение энергии определяется переходом из одного состояния, например с энергией Е1, в другое — с энергией Е2, что соответствует переходу электрона с одной стационарной орбиты на другую. При таком переходе излучается или поглощается энергия ∆E, величина которой определяется соотношением

∆E = E1 – E2 = hv,                                                                    

где v — частота излучения, h = 2p ћ = 6,62∙10-34 Дж∙с.

Бор, используя данное уравнение, рассчитал частоты линий спектра атома водорода, которые очень хорошо согласовывались с экспериментальными значениями, но было обнаружено также и то, что для других атомов эта теория не давала удовлетворительных результатов.

Квантовая модель строения атома. В последующие годы некоторые положения теории Бора были переосмыслены и дополнены. Наиболее существенным нововведением явилось понятие об электронном облаке, которое пришло на смену понятию об электроне только как частице. Теорию Бора сменила квантовая теория, которая учитывает волновые свойства электрона и других элементарных частиц, образующих атом.

Свойства элементарных частиц, образующих атом

Частица

Заряд

Масса

Кл

условн. ед.

г

а.е.м.

Электрон

-1,6∙10-19

-1

9,10∙10-28

0,00055

Протон

1,6∙10-19

+1

1,67∙10-24

1,00728

Нейтрон

0

0

1,67∙10-24

1,00866

В основе современной теории строения атома лежат следующие основные положения:

1. Электрон имеет двойственную (корпускулярно-волновую) природу. Он может вести себя и как частица, и как волна, подобно частице, электрон обладает определенной массой и зарядом; в то же время, движущийся электрон проявляет волновые свойства, например, характеризуется способностью к дифракции. Длина волны электрона λ и его скорость v связаны соотношением де Бройля:

λ = h / mv,                                                                     

где m — масса электрона.

2. Для электрона невозможно одновременно точно, измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот. Математическим выражением принципа неопределенности служит соотношение

∆x∙m∙∆v > ћ/2,                                                                

где ∆х — неопределенность положения координаты, ∆v — погрешность измерения скорости.

3. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части около ядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, называют орбиталью.

4. Ядра атомов состоят из протонов и нейтронов (общее название — нуклоны). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.

Последнее положение было сформулировано после того, как в 1920 г. Э.Резерфорд открыл протон, а в 1932 г. Дж.Чедвик — нейтрон.

Различные виды атомов имеют общее название — нуклиды. Нуклиды достаточно характеризовать любыми двумя числами из трех фундаментальных параметров: А — массовое число, Z — заряд ядра, равный числу протонов, и N — число нейтронов в ядре. Эти параметры связаны между собой соотношениями:

Z = А — N, N = А — Z, А= Z + N.                                                 

Нуклиды с одинаковым Z, но различными А и N, называют изотопами.

Сформулированные выше положения составляют суть новой теории, описывающей движение микрочастиц, — квантовой механики (механику, применимую к движению обычных тел и описываемую законами Ньютона, стали называть классической механикой). Наибольший вклад в развитие этой теории внесли француз Л. де Бройль, немец В.Гейзенберг, австриец Э.Шредингер, англичанин П.Дирак. Впоследствии каждый из этих ученых был удостоен Нобелевской премии.

Модели строения атома

Первой моделью строения атома можно считать неделимый атом древних греков (рис. 1.1). Она просуществовала 2000 лет. На рубеже XIX-XX вв. были выявлены протоны и электроны, и в 1903 г. Дж.Дж. Томсон предложил «пудинг»-модель. Согласно этой модели, атом представляет собой равномерно заполненный положительным электричеством шар, в который вкраплены электроны – отрицательно заряженные шарики. Единственным положительным моментом в этой несостоятельной модели было определение радиуса атома, близкое (по порядку) к реальным размерам атома.

Рис.1.1. Модели строения атома:

а) неделимый атом древних греков; б) «пудинг»- модель Томсона; в) ядерная

модель Резерфорда; г) современная модель атома

В 1911 г., основываясь на выводах опыта Гейгера и Марсдена о рассеянии и поглощении -частиц, испускаемых радием, тонкими металлическими пластинами (Au, Ag, Al), Э. Резерфорд впервые установил наличие ядра в атоме. Значительная часть -частиц проходила беспрепятственно, часть их – незначительно, и лишь одна из 105 -частиц возвращалась обратно, встретив на своем пути ядро атома. Это свидетельствовало о том, что атом «пуст» и вся его масса сосредоточена в малом объеме. Резерфорд предложил ядерную модель атома (рис. 1.1.), согласно которой атом представляет собой систему зарядов, в центре которой расположено положительно заряженное ядро, вокруг которого размещены электроны, компенсирующие заряд ядра. В дальнейшем Резерфорд по величине отклонения -частиц рассчитал заряды ядер атомов элементов, которые оказались равными порядковому номеру элементов в периодической системе Д. И. Менделеева (числу электронов в атомах).

Недостатки теории Резерфорда: 1) согласно его теории электрон должен был упасть на ядро; 2) Резерфорд не объяснял линейчатость атомных спектров.

Протонно-нейтронная модель строения ядра атома

Простейшее ядро, состоящее из одной элементарной частицы – ядро атома водорода. Эта частица, образующаяся при ионизации атома водорода в трубке Крукса, в 1920 г. названа Э. Резерфордом протоном, что означает первый. Поэтому считали, что ядра атомов других элементов также состоят из протонов, а атомы – из электронов и протонов. Но в 1932 г. английским физиком Чэдвиком были открыты новые частицы – нейтроны, которые не имели заряда и по массе были близки к массе протона. Эти частицы образовывались в результате ядерной реакции

Be +He() → C + n

В противоположность протону или -частице нейтрон n ионизирует воздух и его трудно обнаружить. Нейтроны направляют обычно на водородсодержащие соединения (воду, парафин), и, сталкиваясь с ядром атома водорода, нейтрон заставляет его двигаться. По направлению движения протонов и обнаруживают нейтроны.

Обнаружение нейтрона позволило создать протонно-нейтронную теорию строения ядра в 1933 г. (Д. Д. Иваненко, Е. Н. Гапон, СССР; В. Гейзенберг, Германия). По этой модели ядра атомов всех элементов состоят из протонов (р), число которых равно порядковому номеру элемента Z в периодической системе, а число нейтронов N равно разности между атомной массой А и числом протонов Z:

N = A – Z, A = N + Z

В обозначении атома элемента указываются массовое число и число протонов Э. Например, ядро атома кислорода О, имеющего порядковый номер Z = 8 и атомную массу А = 16, имеет 8 протонов и 16 – 8 = 8 нейтронов. Протоны и нейтроны называют также нуклонами.

2.4. Квантово-механическая модель строения атома

В основе современной теории строения атома лежат следующие основные положения:

1. ЭЛЕКТРОН ИМЕЕТ ДВОЙСТВЕНУЮ (корпускулярно-волновую) ПРИРОДУ.

Электрон, как и другие элементарные частицы (протон, нейтрон), обладает определенной массой и зарядом, т.е. ведет себя как частица. В то же время, движущийся электрон проявляет волновые свойства, например характеризуется способностью к дифракции (рассеяние световых лучей) и интерференции (наложение световых волн). Для любой элементарной частицы справедливо уравнение (Луи де Бройль), связывающее параметры волны и частицы

,

где λ – длина волны электрона, h — постоянная Планка, m – масса электрона, υ – скорость движения электрона.

2. ДЛЯ ЭЛЕКТРОНА НЕВОЗМОЖНО ОДНОВРЕМЕННО ТОЧНО ИЗМЕРИТЬ КООРДИНАТУ И СКОРОСТЬ.

В силу наличия у микрочастиц волновых свойств невозможно в каждый момент времени точно фиксировать их положение в пространстве и определять с любой точностью скорость их движения. Чем точнее мы измеряем один параметр, тем больше неопределенность в другом. Принцип неопределенности сформулирован Гейзенбергом (1927 г.) и имеет математическое выражение

,

где Δх – неопределенность положения частицы по оси х, ΔРх = Δ(m·υ) – неопределенность составляющей импульса по оси х.

Из формулы видно, что чем меньше значение Δх , т.е. чем определеннее положение частицы, тем больше ΔРх, т.е. тем неопределеннее ее импульс. Неопределенность в свойствах микрообъектов проявляется тем в большей степени, чем в большей степени выражена его волновая функция (чем меньше его масса). Поэтому неопределенность в положении электрона значительно больше, чем неопределенность в положении ядра атома.

  1. ЭЛЕКТРОН В АТОМЕ НЕ ДВИЖЕТСЯ ПО ОПРЕДЕЛЕННЫМ

ТРАЕКТОРИЯМ, А МОЖЕТ НАХОДИТСЯ В ЛЮБОЙ ЧАСТИ ОКОЛОЯДЕРНОГО ПРОСТРАНСТВА, однако вероятность его нахождения в разных частях этого пространства неодинакова.

Вероятность нахождения электрона в разных местах околоядерного пространства можно определить с помощью уравнения Шредингера

,

где h – постоянная Планка, m – масса электрона, U – потенциальная энергия, Е – полная энергия, ψ – волновая (пси) функция. Первый член уравнения

соответствует кинетической энергии частицы (Ек) с массой m. При короткой записи Ек описывается оператором Лапласа

где — оператор Лапласа.

Упрощенный вид уравнения Шредингера

.

Решение этого уравнения связано с большими математическими трудностями. Точное решение оно имеет для атома водорода и для одноэлектронных частиц. Для сложных атомов уравнение Шредингера может быть решено только приблизительно. Решая его находят энергию электрона, а также функцию координат электрона X, Y, Z и времени τ:

.

Волновая функция ψ представляет собой амплитуду трехмерной электронной волны. Причем она имеет как положительные, так и отрицательные значения. Квадрат модуля волновой функции

характеризует вероятность нахождения электрона в некотором объеме. Эту величину называют также электронной плотностью. Если в соответствии с уравнением Шредингера получим, что

,

где — определенный объем, то это значит, что в данном объеме электрон находится 0,1 времени, а 0,9 – в другом месте, т.е. можно утверждать, что электронная плотность в данном объеме равна 0,1. Совокупность мест пространства, гдеимеет максимальное значение называют электронной орбиталью.

Таким образом, электронной орбиталью или электронным облаком называется часть околоядерного пространства, в котором вероятность пребывания электрона максимальна.

Поверхность, охватывающая ядро атома, за пределами которой вероятность пребывания электрона исчезающее мала, называют граничной поверхностью орбитали, которая и передает форму самой орбитали.

4. ЯДРА АТОМОВ СОСТОЯТ ИЗ ПРОТОНОВ И НЕЙТРОНОВ (общее название — нуклоны).

Число протонов в ядре равно порядковому номеру элемента в таблице Д.И. Менделеева, а сумма протонов и нейтронов его атомному числу.

Массовое число (А), заряд ядра (Z), равный числу протонов, и число нейтронов (N) связаны соотношениями: Z = А – N, N = А – Z, А = Z + N.

Атомы с одинаковыми Z, но разными А и N, называют изотопами.

Квантовая модель строения атома.

В последующие годы некоторые положения теории Бора были переосмыслены и дополнены. Наиболее существенным нововведением явилось понятие об электронном облаке, которое пришло на смену понятию об электроне только как частице. Теорию Бора сменила квантовая теория, которая учитывает волновые свойства электрона и других элементарных частиц, образующих атом.

В основе современной теории строения атома лежат следующие основные положения:

1. Электрон имеет двойственную (корпускулярно-волновую) природу. Он может вести себя и как частица, и как волна, подобно частице, электрон обладает определенной массой и зарядом; в то же время, движущийся электрон проявляет волновые свойства, например, характеризуется способностью к дифракции. Длина волны электрона λ и его скорость v связаны соотношением де Бройля:

λ = h / mv,

где m — масса электрона.

2. Для электрона невозможно одновременно точно, измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот. Математическим выражением принципа неопределенности служит соотношение

∆x∙m∙∆v > ћ/2,

где ∆х — неопределенность положения координаты, ∆v — погрешность измерения скорости.

3. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части около ядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, называют орбиталью.

4. Ядра атомов состоят из протонов и нейтронов (общее название — нуклоны). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.

Последнее положение было сформулировано после того, как в 1920 г. Э.Резерфорд открыл протон, а в 1932 г. Дж.Чедвик — нейтрон.

Различные виды атомов имеют общее название — нуклиды. Нуклиды достаточно характеризовать любыми двумя числами из трех фундаментальных параметров: А — массовое число, Z — заряд ядра, равный числу протонов, и N — число нейтронов в ядре. Эти параметры связаны между собой соотношениями:

Z = А — N, N = А — Z, А= Z + N.

Нуклиды с одинаковым Z, но различными А и N, называют изотопами.

Сформулированные выше положения составляют суть новой теории, описывающей движение микрочастиц, — квантовой механики (механику, применимую к движению обычных тел и описываемую законами Ньютона, стали называть классической механикой). Наибольший вклад в развитие этой теории внесли француз Л. де Бройль, немец В.Гейзенберг, австриец Э.Шредингер, англичанин П.Дирак. Впоследствии каждый из этих ученых был удостоен Нобелевской премии.

Заключение

Все эти открытия ясно показали, что атом не является «неделимым». Он не только состоит из более мелких частей (электронов и более тяжелых положительных частиц), но эти и другие субчастицы, по-видимому, самопроизвольно испускаются при радиоактивном распаде тяжелых элементов. Кроме того, атомы не только испускают излучение в видимой области с дискретными частотами, но и могут испускать более «жесткое» электромагнитное излучение, а именно X-лучи.

В настоящее время электронная структура атомов в принципе получила свое объяснение, хотя свойства многоэлектронных атомов удается рассчитать лишь приближенно. Квантовая механика объясняет все известные свойства отдельных атомов. Активно изучается взаимодействие атомов, особенно в твердых телах. В далёком прошлом философы Древней Греции предполагали, что вся материя едина, но приобретает те или иные свойства в зависимости от её «сущности». А сейчас, в наше время, благодаря великим учёным, мы точно знаем, из чего на самом деле она состоит.

Список использованной литературы:

1. Григорьев В.И., Мякишев Г.Я. Силы в природе. Москва, «Наука», 1983 г.

2. Кудрявцев П.С. Курс истории физики. Москва, «Просвещение», 1982 г.

3. Яворский Б.М., Детлаф А.А. Справочник по физике. Москва, «Наука», 1990 г.

4. В.К. Васильев, А.Н. Шувалова .Строение вещества. Москва, «Наука», 1987.

5. А.Л. Дайнэко Физическая химия . . Москва, « Наука», 1987

6. Г.Я. Мякишев, Б.Б. Буховцев . Физика: учебник для 11 класса средней школы. Москва «Просвещение» 1993.

17

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *