Невесомости определение: Значение слова НЕВЕСОМОСТЬ. Что такое НЕВЕСОМОСТЬ? – Невесомость — Википедия

Содержание

Невесомость — Википедия

Космонавты на борту Международной космической станции Горение свечи на Земле (слева) и в невесомости (справа)

Невесо́мость — состояние, в котором отсутствует сила взаимодействия тела с опорой или подвесом (вес тела), возникающая в связи с гравитационным притяжением или действием других массовых сил (в частности, силы инерции, возникающей при ускоренном движении тела).

Иногда в качестве синонима названия этого явления используется термин микрогравитация, что неверно (создаётся впечатление, что гравитация отсутствует или пренебрежительно мала).

Причины

Состояние невесомости имеет место, когда действующие на тело внешние силы являются только массовыми (силы тяготения), либо поле этих массовых сил локально однородно, то есть силы поля сообщают всем частицам тела в каждом его положении одинаковые по модулю и направлению ускорения (что при движении в поле тяготения Земли практически имеет место, если размеры тела малы по сравнению с радиусом Земли), либо начальные скорости всех частиц тела по модулю и направлению одинаковы (тело движется поступательно).

Например, космический аппарат и все находящиеся в нём тела, получив соответствующую начальную скорость, движутся под действием сил тяготения вдоль своих орбит практически с одинаковыми ускорениями, как свободные; ни сами тела, ни их частицы взаимных давлений друг на друга не оказывают, то есть находятся в состоянии невесомости. При этом по отношению к кабине аппарата находящееся в нём тело может в любом месте оставаться в покое (свободно «висеть» в пространстве). Хотя силы тяготения при невесомости действуют на все частицы тела, но нет внешних поверхностных сил, которые могли бы вызывать взаимные давления частиц друг на друга.

[1]

Таким образом, любое тело, размеры которого малы по сравнению с земным радиусом, совершающее свободное поступательное движение в поле тяготения Земли, будет, при отсутствии других внешних сил, находиться в состоянии невесомости. Аналогичным будет результат для движения в поле тяготения любых других небесных тел.

История

Изменение веса шарика при его свободном падении в жидкости было отмечено ещё Лейбницем. В 1892—1893 гг. несколько опытов, демонстрирующих возникновение невесомости при свободном падении, поставил профессор МГУ Н. А. Любимов, например, маятник, выведенный из положения равновесия при свободном падении не качался[2].

Особенности деятельности человека и работы техники

В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя, предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также — процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

Воздействие на организм человека

При переходе из условий наличия веса тела у поверхности Земли к условиям невесомости (в первую очередь — при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации.

При длительном (более недели) пребывании человека в космосе отсутствие веса тела начинает вызывать в организме определённые вредные изменения[3].

Первое и самое очевидное последствие невесомости — стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма[3]. Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин)

[3].

Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности[3].

Вес и гравитация

Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения, но это вовсе не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 м/с², что всего лишь на 10 % меньше, чем на поверхности Земли. Состояние невесомости на МКС возникает не из-за «отсутствия гравитации», а за счёт движения по круговой орбите с первой космической скоростью, то есть космонавты как бы постоянно «падают вперёд» со скоростью 7,9 км/с.

Невесомость на Земле

Траектория маневра для достижения невесомости Астронавты Проекта Меркури на борту C-131 Samaritan, 1959

На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолёт под воздействием одной лишь силы земного притяжения. Эта траектория при небольших скоростях движения получается параболой, из-за чего её иногда ошибочно называют «параболической». В общем случае траектория представляет собой эллипс или гиперболу.

Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолёт покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе без натяжения нити. Для достижения этого эффекта самолёт должен иметь постоянное ускорение равное g и направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она представляет собой полностью обитую мягким покрытием пассажирскую кабину без кресел, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

Подобное чувство невесомости (частичной) человек испытывает при полётах рейсами гражданской авиации во время посадки. Однако в целях безопасности полёта и из-за большой нагрузки на конструкцию самолёта, любой рейсовый самолёт сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полёта в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его немного отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомыми с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

Утверждения, что самолёт для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова» — не более чем миф. Тренировки выполняются в слегка модифицированных серийных пассажирских или грузовых самолётах, для которых фигуры высшего пилотажа и подобные режимы полёта являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному износу несущих конструкций.

Состояние невесомости можно ощутить в начальный момент свободного падения тела в атмосфере, когда сопротивление воздуха ещё невелико.

Существует несколько самолётов, способных проводить полёты с достижением состояния невесомости без вылета в космос. Технология используется как для тренировок космическими агентствами, так и для коммерческих полётов частных лиц. Подобные полёты проводят американская авиакомпания Zero Gravity, Роскосмос (на Ил-76 МДК c 1988 года, полёты также доступны для частных лиц

[4]), NASA (на Boeing KC-135) , Европейское космическое агентство (на Airbus A-310)[5] Типичный полёт продолжается около полутора часов. В течение полёта проводятся 10-15 сессий невесомости, для достижения которых самолёт совершает крутое пике. Длительность каждой сессии невесомости около 25 секунд[6]. Более 15000 человек совершили полёты по состоянию на ноябрь 2017 года[7]. Многие известные люди совершили полёты в невесомости на борту самолёта, в их числе: Баз Олдрин, Джон Кармак, Тони Хоук, Ричард Брэнсон, Артемий Лебедев. Стивен Хокинг также совершил короткий полёт 26 апреля 2007 года
[8]
[9][10].

Примечания

Ссылки

Невесомость Википедия

Космонавты на борту Международной космической станции Горение свечи на Земле (слева) и в невесомости (справа)

Невесо́мость — состояние, в котором отсутствует сила взаимодействия тела с опорой или подвесом (вес тела), возникающая в связи с гравитационным притяжением или действием других массовых сил (в частности, силы инерции, возникающей при ускоренном движении тела).

Иногда в качестве синонима названия этого явления используется термин микрогравитация, что неверно (создаётся впечатление, что гравитация отсутствует или пренебрежительно мала).

Причины

Состояние невесомости имеет место, когда действующие на тело внешние силы являются только массовыми (силы тяготения), либо поле этих массовых сил локально однородно, то есть силы поля сообщают всем частицам тела в каждом его положении одинаковые по модулю и направлению ускорения (что при движении в поле тяготения Земли практически имеет место, если размеры тела малы по сравнению с радиусом Земли), либо начальные скорости всех частиц тела по модулю и направлению одинаковы (тело движется поступательно).

Например, космический аппарат и все находящиеся в нём тела, получив соответствующую начальную скорость, движутся под действием сил тяготения вдоль своих орбит практически с одинаковыми ускорениями, как свободные; ни сами тела, ни их частицы взаимных давлений друг на друга не оказывают, то есть находятся в состоянии невесомости. При этом по отношению к кабине аппарата находящееся в нём тело может в любом месте оставаться в покое (свободно «висеть» в пространстве). Хотя силы тяготения при невесомости действуют на все частицы тела, но нет внешних поверхностных сил, которые могли бы вызывать взаимные давления частиц друг на друга.

[1]

Таким образом, любое тело, размеры которого малы по сравнению с земным радиусом, совершающее свободное поступательное движение в поле тяготения Земли, будет, при отсутствии других внешних сил, находиться в состоянии невесомости. Аналогичным будет результат для движения в поле тяготения любых других небесных тел.

История

Изменение веса шарика при его свободном падении в жидкости было отмечено ещё Лейбницем. В 1892—1893 гг. несколько опытов, демонстрирующих возникновение невесомости при свободном падении, поставил профессор МГУ Н. А. Любимов, например, маятник, выведенный из положения равновесия при свободном падении, не качался[2].

Особенности деятельности человека и работы техники

В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя, предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также — процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

Воздействие на организм человека

При переходе из условий наличия веса тела у поверхности Земли к условиям невесомости (в первую очередь — при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации.

При длительном (более недели) пребывании человека в космосе отсутствие веса тела начинает вызывать в организме определённые вредные изменения[3].

Первое и самое очевидное последствие невесомости — стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма[3]. Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин)[3].

Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности[3].

Вес и гравитация

Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения, но это вовсе не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 м/с², что всего лишь на 10 % меньше, чем на поверхности Земли. Состояние невесомости на МКС возникает не из-за «отсутствия гравитации», а за счёт движения по круговой орбите с первой космической скоростью, то есть космонавты как бы постоянно «падают вперёд» со скоростью 7,9 км/с.

Невесомость на Земле

Траектория маневра для достижения невесомости Астронавты Проекта Меркури на борту C-131 Samaritan, 1959

На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолёт под воздействием одной лишь силы земного притяжения. Эта траектория при небольших скоростях движения получается параболой, из-за чего её иногда ошибочно называют «параболической». В общем случае траектория представляет собой эллипс или гиперболу.

Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолёт покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе без натяжения нити. Для достижения этого эффекта самолёт должен иметь постоянное ускорение равное g и направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она представляет собой полностью обитую мягким покрытием пассажирскую кабину без кресел, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

Подобное чувство невесомости (частичной) человек испытывает при полётах рейсами гражданской авиации во время посадки. Однако в целях безопасности полёта и из-за большой нагрузки на конструкцию самолёта, любой рейсовый самолёт сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полёта в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его немного отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомые с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

Утверждения, что самолёт для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова» — не более чем миф. Тренировки выполняются в слегка модифицированных серийных пассажирских или грузовых самолётах, для которых фигуры высшего пилотажа и подобные режимы полёта являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному износу несущих конструкций.

Состояние невесомости можно ощутить в начальный момент свободного падения тела в атмосфере, когда сопротивление воздуха ещё невелико.

Существует несколько самолётов, способных проводить полёты с достижением состояния невесомости без вылета в космос. Технология используется как для тренировок космическими агентствами, так и для коммерческих полётов частных лиц. Подобные полёты проводят американская авиакомпания Zero Gravity, Роскосмос (на Ил-76 МДК c 1988 года, полёты также доступны для частных лиц[4]), NASA (на Boeing KC-135) , Европейское космическое агентство (на Airbus A-310)[5] Типичный полёт продолжается около полутора часов. В течение полёта проводятся 10-15 сессий невесомости, для достижения которых самолёт совершает крутое пике. Длительность каждой сессии невесомости около 25 секунд[6]. Более 15000 человек совершили полёты по состоянию на ноябрь 2017 года[7]. Многие известные люди совершили полёты в невесомости на борту самолёта, в их числе: Баз Олдрин, Джон Кармак, Тони Хоук, Ричард Брэнсон, Артемий Лебедев. Стивен Хокинг также совершил короткий полёт 26 апреля 2007 года[8][9][10].

Примечания

Ссылки

Невесомость — Википедия

Космонавты на борту Международной космической станции Горение свечи на Земле (слева) и в невесомости (справа) Приземление кошек на четыре лапы в условиях нормальной гравитации и в невесомости

Невесо́мость — состояние, при котором сила взаимодействия тела с опорой (вес тела), возникающая в связи с гравитационным притяжением, ничтожно мала. Иногда можно услышать и другое название этого эффекта — микрогравитация.

Особенности деятельности человека и работы техники

В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя, предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также — процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

Видео по теме

Воздействие на организм человека

При переходе из условий земной гравитации к условиям невесомости (в первую очередь — при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации.

При длительном (более недели) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер[1].

Первое и самое очевидное последствие невесомости — стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма[1]. Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин)[1].

Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности[1].

Вес и гравитация

Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения, но это вовсе не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 м/с², что всего лишь на 10 % меньше, чем на поверхности Земли. Состояние невесомости на МКС возникает не из-за «отсутствия гравитации», а за счёт движения по круговой орбите с первой космической скоростью, то есть космонавты как бы постоянно «падают вперед» со скоростью 7,9 км/с.

Невесомость на Земле

Траектория маневра для достижения невесомости Астронавты Проекта Меркури на борту C-131 Samaritan, 1959

На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолёт под воздействием одной лишь силы земного притяжения. Эта траектория при небольших скоростях движения получается параболой, из-за чего её иногда ошибочно называют «параболической». В общем случае траектория представляет собой эллипс или гиперболу.

Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолёт покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе без натяжения нити. Для достижения этого эффекта самолёт должен иметь постоянное ускорение равное g и направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она представляет собой полностью обитую мягким покрытием пассажирскую кабину без кресел, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

Подобное чувство невесомости (частичной) человек испытывает при полётах рейсами гражданской авиации во время посадки. Однако в целях безопасности полёта и из-за большой нагрузки на конструкцию самолёта, любой рейсовый самолёт сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полёта в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его немного отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомыми с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

Утверждения, что самолёт для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова» — не более чем миф. Тренировки выполняются в слегка модифицированных серийных пассажирских или грузовых самолётах, для которых фигуры высшего пилотажа и подобные режимы полёта являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному износу несущих конструкций.

Состояние невесомости можно ощутить в начальный момент свободного падения тела в атмосфере, когда сопротивление воздуха ещё невелико.

Существует несколько самолётов, способных проводить полёты с достижением состояния невесомости без вылета в космос. Технология используется как для тренировок космическими агентствами, так и для коммерческих полётов частных лиц. Подобные полёты проводят американская авиакомпания Zero Gravity, Роскосмос (на Ил-76 МДК c 1988 года, полёты также доступны для частных лиц[2]), NASA (на Boeing KC-135) , Европейское космическое агентство (на Airbus A-310)[3] Типичный полёт продолжает около полутора часов. В течение полёта проводятся 10-15 сессий невесомости, для достижения которых самолёт совершает крутое пике. Длительность каждой сессии невесомости около 25 секунд[4]. Более 15000 человек совершили полёты по состоянию на ноябрь 2017 года[5]. Многие известные люди совершили полёты в невесомости на борту самолёта, в их числе: Баз Олдрин, Джон Кармак, Тони Хоук, Ричард Брэнсон, Артемий Лебедев. Стивен Хокинг также совершил короткий полёт 26 апреля 2007 года[6][7][8].

Примечания

Ссылки

Невесомость — Википедия

Космонавты на борту Международной космической станции Горение свечи на Земле (слева) и в невесомости (справа) Приземление кошек на четыре лапы в условиях нормальной гравитации и в невесомости

Невесо́мость — состояние, при котором сила взаимодействия тела с опорой (вес тела), возникающая в связи с гравитационным притяжением, ничтожно мала. Иногда можно услышать и другое название этого эффекта — микрогравитация.

Особенности деятельности человека и работы техники

В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя, предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также — процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

Воздействие на организм человека

При переходе из условий земной гравитации к условиям невесомости (в первую очередь — при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации.

При длительном (более недели) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер[1].

Первое и самое очевидное последствие невесомости — стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма[1]. Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин)[1].

Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности[1].

Вес и гравитация

Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения, но это вовсе не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 м/с², что всего лишь на 10 % меньше, чем на поверхности Земли. Состояние невесомости на МКС возникает не из-за «отсутствия гравитации», а за счёт движения по круговой орбите с первой космической скоростью, то есть космонавты как бы постоянно «падают вперед» со скоростью 7,9 км/с.

Невесомость на Земле

Траектория маневра для достижения невесомости Астронавты Проекта Меркури на борту C-131 Samaritan, 1959

На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолёт под воздействием одной лишь силы земного притяжения. Эта траектория при небольших скоростях движения получается параболой, из-за чего её иногда ошибочно называют «параболической». В общем случае траектория представляет собой эллипс или гиперболу.

Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолёт покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе без натяжения нити. Для достижения этого эффекта самолёт должен иметь постоянное ускорение равное g и направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она представляет собой полностью обитую мягким покрытием пассажирскую кабину без кресел, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

Подобное чувство невесомости (частичной) человек испытывает при полётах рейсами гражданской авиации во время посадки. Однако в целях безопасности полёта и из-за большой нагрузки на конструкцию самолёта, любой рейсовый самолёт сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полёта в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его немного отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомыми с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

Утверждения, что самолёт для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова» — не более чем миф. Тренировки выполняются в слегка модифицированных серийных пассажирских или грузовых самолётах, для которых фигуры высшего пилотажа и подобные режимы полёта являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному износу несущих конструкций.

Состояние невесомости можно ощутить в начальный момент свободного падения тела в атмосфере, когда сопротивление воздуха ещё невелико.

Существует несколько самолётов, способных проводить полёты с достижением состояния невесомости без вылета в космос. Технология используется как для тренировок космическими агентствами, так и для коммерческих полётов частных лиц. Подобные полёты проводят американская авиакомпания Zero Gravity, Роскосмос (на Ил-76 МДК c 1988 года, полёты также доступны для частных лиц[2]), NASA (на Boeing KC-135) , Европейское космическое агентство (на Airbus A-310)[3] Типичный полёт продолжает около полутора часов. В течение полёта проводятся 10-15 сессий невесомости, для достижения которых самолёт совершает крутое пике. Длительность каждой сессии невесомости около 25 секунд[4]. Более 15000 человек совершили полёты по состоянию на ноябрь 2017 года[5]. Многие известные люди совершили полёты в невесомости на борту самолёта, в их числе: Баз Олдрин, Джон Кармак, Тони Хоук, Ричард Брэнсон, Артемий Лебедев. Стивен Хокинг также совершил короткий полёт 26 апреля 2007 года[6][7][8].

Примечания

Ссылки

Невесомость на Земле и в космосе.

Все мы слышали о невесомости. При этом слове мы представляем себе космонавтов, свободно плавающих внутри космической станции. Давайте с вами попытаемся ответить на простой с виду вопрос: что же такое эта самая невесомость?

НЕ ВЕСОМОСТЬ, то есть отсутствие у тела веса. То есть, чтобы правильно понять, что такое невесомость, мы должны чётко себе представлять, что такое вес тела.


Вес — сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести. Определяется выражением:

Р — вес тела, m — масса тела, g — ускорение свободного падения.

Если считать систему отсчёта неподвижной, значение веса тела совпадает со значением действующей на это тела силы тяжести.

При движении системы тело — опора (или подвес) относительно инерциальной системы отсчёта c ускорением а вес перестаёт совпадать с силой тяжести, действующей на это тело: 

P = m(g — а)


В результате вращения Земли существует широтное уменьшение веса: на экваторе примерно на 0,3 % меньше, чем на полюсах.

Надо ещё отметить, что согласно Третьему Закону Ньютона, не только тело воздействует на опору (подвес), но и опора (подвес) воздействуют на тело с силой, называемой силой реакции опоры (подвеса). Эта сила численно равна весу тела и направлена противоположно действию силы тяжести. Тогда, на тело действуют две силы, равные по величине и противоположные по направлению, то есть их равнодействующая равна нулю, значит тело либо покоится, либо движется равномерно и прямолинейно.

Значит, невесомость (отсутствие веса) — это состояние, в котором отсутствует сила взаимодействия тела с опорой (или подвесом), возникающая в связи с гравитационным притяжением, действием других массовых сил, в частности силы инерции, возникающей при ускоренном движении тела.

Тогда, давайте подумаем, что будет, если и тело и его опора будут падать в поле сил тяготения.  Тогда, так как и опора и тело будут двигаться с одинаковой скоростью, тело не будет давить своей массой на эту опору, то есть не будет воздействовать на неё. То есть вес тела (сила, с которой оно воздействует на опору) равен нулю. Где это можно наблюдать на практике? Представим себе кабину лифта, сорвавшуюся с тросов и свободно падающую в шахте. И кабина и пассажир двигаются с одинаковым ускорением g = 9,8 м/с2. Тогда, пассажир не будет воздействовать на пол лифта, то есть будет испытывать состояние невесомости. Тогда он сможет свободно плавать в пространстве кабины лифта. Естественно, этот эксперимент обычно приводит к гибели подопытного. Но есть более привычная ситуация. Когда лифт только начинает движение вниз (то есть движется ускоренно, набирая свою обычную скорость), ваше тело ещё не набрало этой скорости и почти не давит на пол, значит — почти ничего не весит. Потом, когда лифт разогнался и далее движется равномерно, вместе с ним равномерно движетесь и вы, следовательно, вы как обычно давите своим телом на опору (пол лифта), значит состояния невесомости нет.

Полёт на космическом аппарате, вращающемся по орбите вокруг Земли, представляет собой не что иное, как постоянное падение на Землю. Просто, аппарат движется по орбите с очень большой скоростью(ок. 8 км/сек), и падая на Землю (вертикально), он успевает пройти в горизонтальном направлении такое расстояние, что в виду шарообразности Земли, расстояние до её поверхности не уменьшается. Тело падает, при этом не падая. Парадокс? Реальность! То есть, кабина космического аппарата — это тот же лифт, сорвавшийся с тросов. И все тела, находящиеся внутри неё будут испытывать состояние невесомости. Они будут свободно плавать в кабине космического аппарата, при этом будут иметь место несколько интересных эффектов, о которых я расскажу в одном из следующих постов.
Для тренировки космонавтов на Земле мы можем кратковременно создавать состояние невесомости. Специальный самолёт пикирует по  гиперболической траектории, то есть фактически падает с ускорением g, падают с тем же ускорением и люди в его кабине. То есть, они пребывают в состоянии невесомости. Таким способом можно создавать невесомость на время порядка одной минуты, после чего самолёт переходит из пикирования в набор высоты, а потом снова пикирует и всё повторяется опять. Так невесомость можно создать и на Земле. Очень важным является понимание того, что вес и масса тела строго говоря не есть одно и то же, хотя в обиходе понятие «вес» часто употребляется, когда речь идёт о массе тел. Определение весу тела уже было дано выше. А масса тела — это мера его инертности, то есть способности сохранять своё состояние покоя или равномерного прямолинейного движения при воздействии на него других тел, пытающихся это состояние изменить. Взаимодействие тел характеризуется такой величиной, как силой. При воздействии на тело силой F, ему сообщается ускорение а, зависящее от массы тела m:

a = F / m.

Мы видим, что чем больше масса тела, тем меньше ускорение, сообщённое ему силой той же величины. Если мы попытаемся проверить это сначала на Земле, а потом на борту космического аппарата (в невесомости), мы увидим, что это правило выполняется в обоих случаях. То есть, масса и вес тела — не одно и то же. Вес тела может и исчезать, а масса тела всегда сохраняется. Правда, в релятивистской механике, масса тел может изменяться (увеличиваться вплоть до бесконечности), но это уже совсем другая история, которая, правда тоже однажды станет объектом нашего рассмотрения.

А пока — до новых встреч. Спасибо всем, кто дочитал до конца, ибо «многобукав» даётся не каждому, а только самым любознательным.

Удачи!!!

Измеритель массы тела в невесомости — Википедия

Измеритель массы тела в невесомости (ИМТ, ИМ, массметр) — прибор для измерения массы тела и малых масс в невесомости[1].

С увеличением длительности космических полётов медики поставили вопрос о необходимости наблюдения за весом космонавтов[2].

Переход в другую среду обитания непременно ведёт к перестройке организма, в том числе и к перераспределению в нём потоков жидкости[2].

В невесомости изменяется ток крови — из нижних конечностей значительная её часть поступает к грудной клетке и голове[2].

Стимулируется процесс обезвоживания организма и человек теряет в весе[2].

Однако потеря даже пятой части воды, которая составляет у человека 60-65 %% весьма опасна для организма[2].

Поэтому медикам понадобился надёжный прибор, для постоянного мониторинга массы тела космонавтов в полёте и при подготовке к возвращению на Землю[2].

Обычные «земные» весы определяют не массу, а вес тела — то есть силу тяжести, с какой оно давит на прибор[2].

В невесомости такой принцип неприемлем — и пылинка, и контейнер с грузом, при различной массе, имеют равный — нулевой вес[2].

При создании измерителя массы тела в невесомости инженерам пришлось использовать другой принцип[2].

Простое гармоническое движение в системе груз-пружина без затухания

Измеритель массы тела в невесомости построен по схеме гармонического осциллятора.

Как известно, период свободных колебаний груза на пружине зависит от его массы[2]. Таким образом система осциллятора пересчитывает на массу период колебаний специальной платформы с размещённым на ней космонавтом или каким-нибудь предметом[1].

Тело, массу которого надо измерить, закрепляют на пружине таким образом, чтобы оно могло совершать свободные колебания вдоль оси пружины.

Период T{\displaystyle T} этих колебаний связан с массой тела M{\displaystyle M} соотношением:

T=2πMK{\displaystyle T=2\pi {\sqrt {\frac {M}{K}}}}

где К — коэффициент упругости пружины.

Таким образом, зная K{\displaystyle K} и измерив T{\displaystyle T}, можно найти M{\displaystyle M}.

Из формулы видно, что период колебаний не зависит ни от амплитуды, ни от ускорения свободного падения.

Массметр из другого ракурса

Выглядящий как «стул» прибор состоит из четырёх частей: площадки для размещения космонавта (верхняя часть), основания, которое крепится к «полу» станции (нижняя часть), стойки и механической средней части, а также электронного блока измерения показаний[3].

Размер прибора: 79,8 х 72 х 31,8 см[3]. Материал: алюминий, резина, стекло органическое[3]. Вес устройства — около 11 килограммов[2].

Верхняя часть устройства, на которую грудью ложится космонавт, состоит из трёх частей[3]. К верхней площадке прикреплён прямоугольный лист оргстекла[3]. Из торца площадки на металлическом стержне выдвигается упор для подбородка космонавта[3].

Нижняя часть прибора представляет собой подковообразное основание, к которому прикреплена механическая часть прибора и блок измерения показаний[3].

Механическая часть состоит из вертикальной цилиндрической стойки, по которой снаружи на подшипниках перемещается второй цилиндр[3]. Снаружи на подвижном цилиндре имеются два маховика со стопорами для фиксации подвижной системы в среднем положении[3].

Сверху к торцу подвижного цилиндра при помощи двух трубчатых кронштейнов прикреплена фигурная площадка для тела космонавта, определяющего свою массу[3].

На нижней половине подвижного цилиндра прикреплены две рукоятки, имеющие на концах курки, с помощью которых стопора подвижной системы утапливаются в рукоятках[3].

Внизу на наружном цилиндре установлена подставка для ног космонавта, имеющая два резиновых колпачка[3].

Внутри цилиндрической стойки движется металлический шток, заделанный одним концом в верхней площадке; на противоположном конце штока установлена тарелка, по обе стороны которой прикреплены две пружины, устанавливающие подвижную систему прибора в среднем положении при нахождении в условиях невесомости[3]. В нижней части стойки закреплён магнитоэлектрический датчик, фиксирующий период колебания подвижной системы[3].

Датчик автоматически учитывает длительность периода колебаний с точностью до тысячной доли секунды[2].

Как показано выше, частота колебаний «стула» зависит от массы груза. Таким образом космонавту достаточно немного покачаться на таких качелях, и через некоторое время электроника посчитает и выдаст результат измерений.

Для измерения массы тела космонавта достаточно 30 секунд[2].

Впоследствии оказалось, что «космические весы» значительно точнее, чем медицинские, которыми пользуются в обиходе[2].

Валентин Лебедев описывает процедуру взвешивания в «Дневнике космонавта» (1982) следующим образом[4]:

Первый раз приходится взвешиваться в космосе. Понятно, что обычные весы здесь работать не могут, так как нет веса. Наши весы в отличие от земных необычные, они работают на другом принципе и представляют собой колеблющуюся платформу на пружинах.

Перед взвешиванием опускаю платформу, сжимая пружины, до фиксаторов, ложусь на неё, плотно прижимаясь к поверхности, и фиксируюсь, группирую тело, чтобы не болталось, обхватывая профильный ложемент платформы ногами и руками. Нажимаю спуск. Легкий толчок, и ощущаю колебания. Частота их высвечивается на индикаторе в цифровом коде. Считываю его значение, вычитаю код частоты колебания платформы, замеренных без человека, и по таблице определяю свой вес. Получилось 74 кг.

Прибор для измерения массы тела космонавта был создан не позднее 1976 года в ленинградском специальном конструкторско-технологическом бюро «Биофизприбор» (СКТБ «Биофизприбор»)[3].

Первый массметр был установлен на орбитальной станции «Салют-5»[2][3].

Первыми испытателями прибора в условиях реальной невесомости стали космонавты Борис Волынов и Виталий Жолобов[2][3].

В процессе первых испытаний оказалось, что вес Волынова в Жолобова на борту станции совпал, хотя перед полётом разница составляла почти десять килограммов[2]. Управление полётом предположило, что это ошибка «космических весов»[2]. Однако инженеры разобрались, что инструкция по эксплуатации прибора составлена не совсем ясно[2]. После того, как космонавты воспользовались отправленными на «Салют» разъяснениями, прибор стал показывать результаты точнее, чем обычные земные весы[2].

Разработанный СКТБ «Биофизприбор» измеритель массы действовал много лет в условиях невесомости на борту орбитальных станций «Салют» и «Мир»[3][1].

Модернизированный вариант измерителя массы поставлен на Международную космическую станцию[1].

  • Видео с демонстрацией работы прибора на МКС: Mass Measurement.

Обсуждение:Невесомость — Википедия

Материал из Википедии — свободной энциклопедии

Переработать полностью[править код]

  1. Почему «кажущийся вес» — это и есть вес по определению
  2. Ни слова про принцип относительности эквивалентности
  3. Нет ничего о физиологическом воздействии невесомости

==Maxim Razin(talk) 13:41, 27 сентября 2005 (UTC)

Извините, погорячился, но термин «кажущийся вес» выглядит очень нефизичным. Впрочем, если его употребляют в учебниках — ну и ладно. Принцип эквивалентности из ОТО (прошу прощения, не то слово написал в спешке) — как раз то, что позволяет избавиться от кажущегося веса, и на мой взгляд, лучше отражает суть дела — в невесомости находятся тела, свободно движущиеся под воздействиеми гравитационных сил. ==Maxim Razin(talk) 17:33, 27 сентября 2005 (UTC)

Интересный на мой взгляд момент[править код]

Думаю, было бы хорошо отразить в статье то, как человеческий организм, да и не только человеческий, реагирует на состояние невесомости. Vitae 22:21, 12 апреля 2007 (UTC)

Господа, а что за бред в статье о центробежной силе? Если бы сила притяжения была уравновешена, соглано первому закону Ньютона МКС летела бы себе по прямой, никуда не сворачивая.

KG, 9.11.2007

«Тело, помещённое в герметично закрытый контейнер, при экспериментах со свободным падением […] испытывает состояние невесомости. Это происходит потому, что ускорение контейнера, заключённого внутри него воздуха, и всех частей самого тела, вызываемое воздействием силы тяжести — одинаково, реакция опоры и градиент давления отсутствует (в случае свободного падения тела вне контейнера это не совсем так, кроме силы тяжести на него действует ещё и реакция внешней среды — сила сопротивления воздуха).»

Что на счёт сопротивления воздуха, действующего на сам контейнер? Тогда его ускорение меньше g и находящиеся внутри предметы имеют вес? —Ausdortmund 21:28, 26 октября 2009 (UTC)

Правильное определение[править код]

«Невесомость — состояние тела, при котором оно движется только под действием силы тяжести. Это происходит, когда тело движется с ускорением, направленным вниз и численно равным ускорению свободного падения. Самым известным примером невесомости является невесомость в условиях космического корабля.» Или, проще говоря, невесомость — это состояние свободного падения. Это знает (должен знать) любой школьник, посещающий уроки физики.

Отправить ответ

avatar
  Подписаться  
Уведомление о