Оксиды и соли как строительные материалы: Оксиды и соли как строительные материалы – Презентация на тему Оксиды и соли как строительные

Содержание

Оксиды и соли как строительные материалы

Химические вещества- строительные материалы

Химические вещества- строительные материалы.

Развитие общекультурной компетенции учащихся, расширение и углубление химических знаний, использование их в практической деятельности, развитие познавательной активности, наблюдательности, творческих способностей учащихся.

Углубление, расширение и систематизация знаний учащихся о строении, свойствах, применении веществ и их соединений,

Формирование умений работать с учебной, научно-популярной, энциклопедической литературой,

Развитие творческих способностей учащихся, наблюдательности, воображения.

Вступительное слово учителя.

В любой отрасли человеческой деятельности, следовательно, в любой профессиональной деятельности, связанной с материальным миром, мы неизбежно соприкасаемся с веществами и используем их свойства и взаимодействие между собой. Химия, обладая огромными возможностями, создает невиданные ранее материалы, умножает плодородие почвы, облегчает труд человека, экономит его время, одевает, сохраняет его здоровье, создает ему уют и комфорт, изменяет внешность людей. Использование людьми достижений современной техники и химии требует высокой общей культуры, большой ответственности и, конечно, знаний. Именно с этой целью мы проводим этот урок и, надеюсь, он будет интересен и полезен также тем, кто считает химию скучным, бесполезным для себя школьным предметом, далеким от повседневной жизни обычного человека.

Природные или искусственные вещества, в состав которых входит кремнезем SiO2, называют силикатами. Это слово происходит от лат. silex – кремень. Современная силикатная промышленность – важнейшая отрасль народного хозяйства. Она обеспечивает основные потребности страны в строительных материалах.

Так же, в современном строительстве находят применение различные пластмассы, добавки в цементы и в бетоны, новые лаки, гидрофобизирующие составы и др. Это позволяет постепенно заменять традиционные строительные материалы более легкими, прочными и красивыми. Их использование связано с тем, что полимерные материалы обладают необходимым комплексом физико-химических и строительно-эксплуатационных свойств. Это, прежде всего, прочность, небольшая объемная масса (например, пено- и поропласты) и эластичность, высокая водо-, газо- и паронепроницаемость, химическая стойкость и устойчивость к коррозии. Применение пластмасс в строительстве уменьшает вес строительных конструкции. Кроме того, это дает возможность находить многие интересные инженерные и архитектурные решения.

Нередко нам приходится заниматься ремонтом самостоятельно. Многие виды ремонтных работ может освоить каждый, но химику это сделать проще, так как в основе применения большинства строительных материалов лежат чисто химические процессы. Изучив закономерности протекания этих процессов, можно сделать ремонт и быстрее и более качественно. Вначале остановимся на связующих материалах, получающихся с их использованием.

Известь один из древнейших связующих материалов. Археологические раскопки показали, что во дворцах древнего города Кносса, расположенного в центральной части острова Крит,-имелись росписи стен пигментами, закрепленными гашеной известью.

«Негашеную известь» (оксид кальция, CaО) получают обжигом различных природных карбонатов кальция. Реакция обжига обратима и описывается уравнением CaCO3 ↔ CaО + CO2, ΔH = –179 кДж Гашение извести сводится к переводу оксида кальция в гидроксид: CaO + h3O ↔ Ca(OH)2, ΔH = +65 кДж. При хранении негашеной извести контакт с влагой может привести к такому разогреванию, что способно воспламениться дерево. Кроме того, происходит взаимодействие гидроксида кальция с углекислым газом воздуха.

Задание 1. Опытные мастера определяют окончание “схватывания” штукатурки по внешним признакам. Можно ли определить это химическим путем – с помощью индикатора?

Ответ можно найти в учебнике для 9 кл (свойства оснований)

Ответ: при полном “схватывании” весь Са (ОН) 2 превращается в карбонат и проба с фенолфталеином не даёт окрашивания, если же штукатурка не схватилась полностью, то присутствующий Са (ОН) 2 дает с фенолфталеином малиновое окрашивание.

Гипс
В строительстве из гипса изготавливают сухую штукатурку, плиты и панели для перегородок, стеновые камни, архитектурные детали.

Гипсовые изделия характеризуются сравнительно небольшой плотностью, несгораемостью.

Строительный гипс получают из природного минерала – гипсового камня CaSO4·2h3O или из минерала ангидрита CaSO4, а также из отходов некоторых отраслей химической индустрии. Гипсовый камень при нагревании примерно до 140°C теряет часть воды и переходит в алебастр (полуводный гипс CaSO4·0,5h3O) в соответствии с уравнением CaSO4·2h3О = CaSO4·0,5h3О + 1,5h3О

Задание 2 . Как лучше с точки зрения гигиены отделать потолок и стены кухни: побелить мелом, известью, окрасить масляной краской, водоэмульсионной краской, эмалью, оклеить клеёнкой? Чем отделать стены?

Необходимая информация в учебниках для 8-9 кл (горение, состав и свойства природного газа ).

Ответ: в порядке убывания гигиенических свойств материалы можно расположить так известь, мел, водоэмульсионная краска, масляная краска, эмаль, клеенка.

Бетон. Растворимое стекло.

Бетон является разновидностью искусственных каменных материалов. Известен уже около 2 тысяч лет. Его использовали уже в строительстве одного из величайших сооружений 1в. До н.э. Колизея в Риме наряду с кирпичом и природными камнями. Активными составными частями бетона являются вяжущие вещества вода, а пассивными – наполнители. К крупным относится гравий и щебень, к мелким – песок.

Обыкновенный (тяжелый) бетон изготавливают на основе тяжелых наполнителей – песка, гравия или щебня. Поскольку среда цементного теста щелочная, алюминий взаимодействует со щелочами в соответствии с уравнением 2Al + Ca(OH)2 + 2h3О = Ca(AlO2)2+ 3h3.

Это водный раствор силиката натрия – натриевой соли кремниевой кислоты. Жидкое стекло изготавливают сплавлением песка с содой с последующим вывариванием полученного и измельченного стекла в воде. Водные растворы жидкого стекла имеют сильно щелочную реакцию. На основе жидкого стекла изготавливают искусственные камни.

Задание3. Вы собрались бетонировать дорожку на дачном участке. Когда лучше этим заняться: в жаркую сухую погоду или в дождливую, влажную?

Вам поможет информация из учебника 9 кл ( свойства силикатов, получение цемента )

Ответ: основным химическим процессом, происходящим при “схватывании” бетона, является гидратация. Поэтому все бетонные работы нежелательно проводить в жаркую, сухую погоду, когда вода быстро испаряется. Для нормального схватывания бетона по технологии строительных работ его надо поливать водой, поэтому для выполнения бетонных работ всегда предпочтительна влажная погода.

Задание 4. К каким процессам можно отнести процессы высыхания масляной краски и эмали: к физическим или химическим?

Ответ: высыхание масляной краски — химический процесс, эмали — физический.

Полимеры в строительстве.

Синтетические полимерные материалы стали применять в строительстве сравнительно недавно, не более 50-60 лет, однако они по праву заняли достойное место в этой области из-за своей используемости в конструкционных прочных материалах, применения в качестве связующих, в дорожных покрытиях, тепло- и гидроизоляторов . Важными свойствами синтетических пластмасс являются их химическая стойкость, водонепроницаемость и стойкость к микроорганизмам.

Краткое рассмотрение некоторых вопросов химизации строительства заставляет задуматься о перспективах ее развития: будут ли в дальнейшем интенсивно развиваться процессы внедрения новейших достижений химии в строительное дело, получат ли развитие физико-химические методы контроля качества строительных материалов, как может осуществляться подобное развитие? Оценивая накопленный опыт можно полагать, что достойное место среди конструкционных материалов займут стеклопластики, теплоизоляционные и отделочные полимерные материалы, которые могут значительно изменить как технологию строительства, так и облик сооружений. Введение в строительные материалы и композиции новых типов металл- и элементоорганических низко- и высокомолекулярных соединений может придать свойства негорючести и микробостойкости, сочетания прочности и эластичности. Активнее следует применять изделия из небьющегося стекла, прозрачные материалы и новые клеящие и лакокрасочные композиции с высокой адгезией к бетону и металлу. По-прежнему высок спрос на металлоконструкции, использование прочных и легких сплавов. Сочетание различных неорганических и органических материалов должно привести к созданию новых видов стеклопластиков, бетонов, армированных материалов .


Оксиды и соли как строительные материалы

Соли — водорастворимые соединения металлов. При нанесении на сырую глазурь или черепок соли не остаются на месте мазка, а пропитывают объем и близлежащие участки, давая мягкие акварельные рисунки.

Оксиды не растворяются в воде, их используют для приготовления цветных глазурей, масс, реже — красок. Оксиды близки по свойствам к пигментам. Об отличиях читайте ниже.

ВЫБОР ДЛЯ КРУЖКОВ И СТУДИЙ. Соли и оксиды — сложные материалы и их лучше не использовать в учебных процессах. Демонстрацию возможности оксидов можно провести на примерах железа (железоокисный пигмент) и меди (оксид меди).

1. ТИП МЕТАЛЛА. Практически используют соли и оксиды следующих металлов:

цветные — медь, марганец, железо, никель, хром, кобальт,

бесцветные — цинк, олово, титан, свинец.

2. ХИМИЧЕСКАЯ ФОРМУЛА. Для корректной работы с солью (оксидом) недостаточно знать только тип металла. Требуется его полная формула. Например, оксид меди может быть Cu2O (закись меди, красная) и CuO (окись меди, черная). Для воспроизводимости эффектов следует использовать материал с одной и той же химической формулой.

3. ДИСПЕРСНОСТЬ характеризуется размером частиц порошка и важна для нерастворимых в воде оксидов. Грубые порошки дают точку (крапчатость), могут легко оседать в водной суспензии. К сожалению, оксиды производят не керамисты, а химики, а для химических реактивов крайне редко регламентируется дисперсность. Совсем грубые оксиды часто используют для получения крапчатых поверхностей глазурей, ангобов, масс.

4. РАСТВОРИМОСТЬ в воде зависит от типа соли. Чем выше растворимость и соответственно выше концентрация соли в растворе, тем более насыщен цвет мазка.

5. ЦВЕТ, МАКСИМАЛЬНАЯ ТЕМПЕРАТУРА ПРИМЕНЕНИЯ, СРЕДА ОБЖИГА, КРАСЯЩАЯ СПОСОБНОСТЬ — эти характеристики полностью совпадают с характеристиками пигментов (см. соответствующий раздел).

Декорирование водными растворами солей в свое время было широко распространенной техникой. Соли дают мягкие акварельные рисунки, которые часто невозможно выполнить в другой технике.

Во время обжига соль разлагается, оставляя красящий цветной оксид. Поэтому конечный цвет соли определяется металлом. Тип соли имеет меньшее значение. Лучше всего использовать нитраты (азотнокислые соли): во-первых, они прекрасно растворяются в воде, образуя высококонцентрированные растворы, т.е. из нитратов получаются самые насыщенные мазки, во-вторых, разложение нитратов происходит уже при низких температурах, к моменту сплавления с глазурью не остается ничего постороннего. Сульфаты (сернокислые соли) имеют меньшую растворимость в воде, разлагаются значительно позже, что иногда сказывается на цвете в появлении сероватых оттенков, впрочем, заметных только профессионалам. Хлориды так же разлагаются при более высоких, чем нитраты, температурах, но обычно не влияют на цвет.

Конечная окраска и вид во многом зависят от температуры, от состава глазури, от метода нанесения. Существует два метода нанесения солей: по черепку и по необожженной глазури — и они дают разные результаты. Следует учитывать, что при нанесении на утильный черепок раствор активно впитывается внутрь черепка, оставляя только слабый цвет на поверхности. Нанесение на поверхность глазури дает насыщенный цвет, но часто приводит к сборке или «кипению». Можно нанести последовательно несколько слоев соли по одному и тому же участку, пользуясь раствором с невысокой концентрацией.

Для того, чтобы соль ложилась равномернее, в раствор вводят КМЦ, глицерин, раствор крахмала или декстрина. Некоторые соли слабо окрашены (до обжига!) и их плохо видно на месте нанесения. В этом случае целесообразно подкрасить раствор органической краской (например, черникой).

Декорированию оксидами посвящено большое число публикаций. Оксиды популярны в художественной керамике, так как дают возможность получения глазурей «одного обжига» — с неповторимыми эффектами цвета и фактуры.

Отличия окрашивания оксидами от окрашивания пигментами:

— Оксиды растворяются в глазурях, т.е. цветная глазурь прозрачна, как и всякий раствор. Чем тоньше смолот оксид, тем легче он растворяется в глазурном расплаве. Если оксида больше, чем он может раствориться, или частицы оксида чересчур грубые и не успевают раствориться, итоговый цвет будет суммой цвета прозрачной цветной глазури и цвета исходного порошка. Но если в получившейся глазури весь оксид растворился, наблюдается прекрасная прозрачная цветная глазурь, четко обозначающая рельеф черепка.

— Пигменты остаются в глазури в виде отдельных частичек, их растворение нежелательно, так как обычно это приводит к невзрачному цвету. Глазури, окрашенные пигментами, бывают полупрозрачными или даже полностью глухими, следовательно, подчеркивания рельефа от них не добиться. Перемол пигмента нежелателен.

— Цвет оксида гораздо сильнее зависит от состава глазури, чем цвет пигмента. Этим и пользуются для получения эффектарных глазурей. Как цвет зависит от состава — см. в описаниях подгрупп.

— Результат обжига глазурей с оксидами сильно зависит от окислительного потенциала среды обжига. Например, высокожелезные глазури типа «теммоку», маложелезные типа «селадон» можно получить исключительно в восстановительной среде и исключительно из оксидов, ни один пигмент такого эффекта не дает.

— Для кристаллических глазурей используются преимущественно оксиды. В том числе оксиды цинка и титана для провоцирования кристаллизации. Авантюриновые глазури — это насыщенный раствор оксида железа, кристаллизующегося из расплава при охлаждении. См. железо.

ВОДОРАСТВОРИМЫЕ СОЛИ — ЧРЕЗВЫЧАЙНО ЛЕГКО РАСТВОРЯЮТСЯ В ВОДЕ, СЛЮНЕ, ПОТЕ! Существуют следующие опасности:

1. Опасность попадания в пищу при несоблюдении элементарных правил гигиены. НЕ ПИТЬ, НЕ ЕСТЬ, НЕ КУРИТЬ НА РАБОЧЕМ МЕСТЕ.

2. Опасность аллергических реакций кожи — следует работать аккуратно и при необходимости в резиновых перчатках.

3. Опасность вдыхания аэрозолей, если применяется напыление растворов солей (сама по себе соль из раствора НЕ испаряется!), требуется хорошая вентиляция и респиратор.

4. Опасность вдыхания продуктов разложения в процессе обжига — необходима вентиляция печи или помещения, в котором проводится обжиг.

Дети должны быть отстранены от работы с солями.

ОКСИДЫ менее опасны для здоровья, чем соли, но практически всегда более опасны, чем синтезированные пигменты. При работе с оксидами соблюдайте общие правила безопасности в керамической мастерской. Подробнее см. в описаниях конкретного материала.

В СЛУЧАЕ ПРИЗНАКОВ ОТРАВЛЕНИЯ ПОКАЖИТЕ ВРАЧУ ЭТИКЕТКУ С УПАКОВКИ СОЛИ (ОКСИДА).

Соли и оксиды поставляются в виде порошков в двойных полиэтиленовых упаковках. Стандартные фасовки — 50 г, 200 г, 500 г. Исключение — хлорное железо. В силу крайне высокой гигроскопичности оно поставляется в виде концентрированного раствора в стеклянной или пластиковой таре.

В эту группу входят вольфрамовый и молибденовый ангидрид. На фото — S-0241 с добавкой 3% вольфрама (слева) и молибдена (справа).

Железо, в основном в виде красного оксида железа, используют для окрашивания масс, глазурей, ангобов в желтый, коричневый, черный цвет.

Кобальт — наиболее интенсивный из применяемых в керамике красящий оксид и, кроме того, наиболее стабильный. Синий цвет кобальта не исчезает даже при 1400°C.

Марганец, преимущественно в виде диоксида марганца (пиролюзит), используют для окрашивания масс и глазурей в светло-коричневый, фиолетово-коричневый, красно-коричневый цвет.

Соединения меди, преимущественно черный оксид меди, используют для окрашивания глазурей и поверхности изделий в цвет от светло-зеленого до черного. В условиях восстановления медь дает красные, пурпуровые медные цвета.

Никель относится к разряду многоликих красящих элементов. Им окрашивают преимущественно глазури в желто-зеленый, зелено-коричневый, коричневый, сине-зеленый цвет.

Оксид титана (рутил) сам по себе дает желтый цвет обычно невыразительного оттенка. Основное назначение титана — эффектарность, провоцирование кристаллизации и других эффектов.

Соединения хрома окрашивают глазури и массы в зеленый хромовый цвет, в цвет хаки, иногда — в коричневый цвет.

Группа представлена 1 материалом — оксидом цинка.


Рабочая программа учебной дисциплины химия

Классификация окислительно-восстановительных реакций . Реакции межатомного и межмолекулярного окисления-восстановления. Реакции внутримолекулярного окисления-восстановления. Реакции самоокисления-самовосстановления (диспропорционирования).

Методы составления уравнений окислительно-восстановительных реакций. Метод электронного баланса. Влияние среды на протекание окислительно-восстановительных процессов.

^ Химические источники тока. Электродные потенциалы. Ряд стандартных электродных потенциалов (электрохимический ряд напряжений металлов). Гальванические элементы и принципы их работы. Составление гальванических элементов. Образование гальванических пар при химических процессах. Гальванические элементы, применяемые в жизни: свинцовая аккумуляторная батарея, никель-кадмиевые батареи, топливные элементы.

Электролиз расплавов и водных растворов электролитов. Процессы, происходящие на катоде и аноде. Уравнения электрохимических процессов. Электролиз водных растворов с инертными электродами. Электролиз водных растворов с растворимыми электродами. Практическое применение электролиза.

1.Взаимодействие металлов с неметаллами, а также с растворами солей и растворами кислот. Взаимодействие серной и азотной кислот с медью.

2.Окислительные свойства перманганата калия в различных средах.

Составление уравнений окислительно-восстановительных реакций и схем процессов электролиза

Самостоятельная работа обучающихся

Самостоятельное изучение теоретического материала

Самостоятельное решение практикоориентированых задач

Классификация веществ. Простые вещества

^ Классификация неорганических веществ. Простые и сложные вещества. Оксиды, их классификация. Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их классификация. Основания, их классификация. Соли средние, кислые, оснóвные и комплексные.

Металлы. Положение металлов в Периодической системе и особенности строения их атомов. Простые вещества – металлы: строение кристаллов и металлическая химическая связь. Общие физические свойства металлов и их восстановительные свойства: взаимодействие с неметаллами (кислородом, галогенами, серой, азотом, водородом), водой, кислотами, растворами солей, органическими веществами (спиртами, галогеналканами, фенолом, кислотами), со щелочами. Оксиды и гидроксиды металлов. Зависимость свойств этих соединений от степеней окисления металлов. Значение металлов в природе и жизни организмов.

^ Коррозия металлов. Понятие коррозии. Химическая коррозия. Электрохимическая коррозия. Способы защиты металлов от коррозии.

Общие способы получения металлов. Металлы в природе. Металлургия и ее виды: пиро-, гидро- и электрометаллургия. Электролиз расплавов и растворов соединений металлов и его практическое значение.

Неметаллы. Положение неметаллов в периодической системе, особенности строения их атомов. Электроотрицательность.

Благородные газы. Электронное строение атомов благородных газов и особенности их химических и физических свойств.

Неметаллы – простые вещества. Атомное и молекулярное их строение. Аллотропия. Химические свойства неметаллов. Окислительные свойства: взаимодействие с металлами, водородом, менее электроотрицательными неметаллами, некоторыми сложными веществами. Восстановительные свойства неметаллов в реакциях с фтором, кислородом, сложными веществами-окислителями (азотной и серной кислотами и др.).

1.Ознакомление с образцами представителей классов неорганических веществ. Ознакомление с образцами представителей классов органических веществ. Ознакомление с коллекцией руд.

Получение и свойства кислорода.

2.Получение и свойства водорода.. Свойства угля: адсорбционные, восстановительные.

Получение пластической серы, химические свойства серы.

3. Взаимодействие металлов с растворами кислот и солей. Взаимодействие цинка или алюминия с растворами кислот и щелочей. Окрашивание пламени катионами щелочных и щелочноземельных металлов.

Самостоятельная работа обучающихся

Самостоятельная подготовка презентации по предложенной тематике:

  1. Оксиды и соли как строительные материалы.
  2. История гипса.
  3. Поваренная соль как химическое сырье.
  4. Многоликий карбонат кальция: в природе, в промышленности, в быту.
  5. Реакция горения на производстве.
  6. Реакция горения в быту.
  7. Коррозия металлов и способы защиты от коррозии.
  8. Инертные или благородные газы.
  9. Рождающие соли – галогены.
  10. История шведской спички.

Основные классы неорганических и органических соединений

^ Водородные соединения неметаллов. Получение аммиака и хлороводорода синтезом и косвенно. Физические свойства. Отношение к воде: кислотно-основные свойства.

^ Оксиды и ангидриды карбоновых кислот. Несолеобразующие и солеобразующие оксиды. Кислотные оксиды, их свойства. Оснóвные оксиды, их свойства. Амфотерные оксиды, их свойства. Зависимость свойств оксидов металлов от степени окисления. Ангидриды карбоновых кислот как аналоги кислотных оксидов.

^ Кислоты органические и неорганические. Кислоты в свете теории электролитической диссоциации. Кислоты в свете протолитической теории. Классификация органических и неорганических кислот. Общие свойства кислот: взаимодействие органических и неорганических кислот с металлами, оснóвными и амфотерными оксидами и гидроксидами, с солями, образование сложных эфиров. Особенности свойств концентрированной серной и азотной кислот.

^ Основания органические и неорганические. Основания в свете теории электролитической диссоциации. Основания в свете протолитической теории. Классификация органических и неорганических оснований. Химические свойства щелочей и нерастворимых оснований. Свойства бескислородных оснований: аммиака и аминов. Взаимное влияние атомов в молекуле анилина.

^ Амфотерные органические и неорганические соединения. Амфотерные основания в свете протолитической теории. Амфотерность оксидов и гидроксидов переходных металлов: взаимодействие с кислотами и щелочами.

Соли. Классификация и химические свойства солей. Особенности свойств солей органических и неорганических кислот.

^ Генетическая связь между классами органических и неорганических соединений. Понятие о генетической связи и генетических рядах в неорганической и органической химии. Генетические ряды металла (на примере кальция и железа), неметалла (серы и кремния), переходного элемента (цинка). Генетические ряды и генетическая связь в органической химии. Единство мира веществ.

1.Получение и свойства углекислого газа.

2.Свойства соляной, серной (разбавленной) и уксусной кислот.

3.Взаимодействие гидроксида натрия с солями (сульфатом меди(II) и хлоридом аммония). Разложение гидроксида меди. Получение и амфотерные свойства гидроксида алюминия. 4.Получение жесткой воды и изучение ее свойств. Устранение временной и постоянной жесткости.

1.Получение хлороводорода и соляной кислоты, их свойства.

2.Получение аммиака, его свойства.

Самостоятельная работа обучающихся

Самостоятельное изучение теоретического материала

Самостоятельное решение практикоориентированых задач по составлению цепочек взаимопревращений веществ

Водород. Двойственное положение водорода в Периодической системе. Изотопы водорода. Тяжелая вода. Окислительные и восстановительные свойства водорода, его получение и применение. Роль водорода в живой и неживой природе.

^ Вода. Роль воды как средообразующего вещества клетки. Экологические аспекты водопользования.

Элементы IА-группы. Щелочные металлы. Общая характеристика щелочных металлов на основании положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Получение, физические и химические свойства щелочных металлов. Катионы щелочных металлов как важнейшая химическая форма их существования, регулятивная роль катионов калия и натрия в живой клетке. Природные соединения натрия и калия, их значение.

^ Элементы IIА-группы. Общая характеристика щелочноземельных металлов и магния на основании положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Кальций, его получение, физические и химические свойства. Важнейшие соединения кальция, их значение и применение. Кальций в природе, его биологическая роль.

Алюминий. Характеристика алюминия на основании положения в Периодической системе элементов Д.И.Менделеева и строения атома. Получение, физические и химические свойства алюминия. Важнейшие соединения алюминия, их свойства, значение и применение. Природные соединения алюминия.

^ Углерод и кремний. Общая характеристика на основании их положения в Периодической системе Д.И. Менделеева и строения атома. Простые вещества, образованные этими элементами. Оксиды и гидроксиды углерода и кремния. Важнейшие соли угольной и кремниевой кислот. Силикатная промышленность.

Галогены. Общая характеристика галогенов на основании их положения в Периодической системе элементов Д.И.Менделеева и строения атомов. Галогены – простые вещества: строение молекул, химические свойства, получение и применение. Важнейшие соединения галогенов, их свойства, значение и применение. Галогены в природе. Биологическая роль галогенов.

Халькогены. Общая характеристика халькогенов на основании их положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Халькогены – простые вещества. Аллотропия. Строение молекул аллотропных модификаций и их свойства. Получение и применение кислорода и серы. Халькогены в природе, их биологическая роль.

^ Элементы VА-группы. Общая характеристика элементов этой группы на основании их положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Строение молекулы азота и аллотропных модификаций фосфора, их физические и химические свойства. Водородные соединения элементов VА-группы. Оксиды азота и фосфора, соответствующие им кислоты. Соли этих кислот. Свойства кислородных соединений азота и фосфора, их значение и применение. Азот и фосфор в природе, их биологическая роль.

^ Элементы IVА-группы. Общая характеристика элементов этой группы на основании их положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Углерод и его аллотропия. Свойства аллотропных модификаций углерода, их значение и применение. Оксиды и гидроксиды углерода и кремния, их химические свойства. Соли угольной и кремниевых кислот, их значение и применение. Природообразующая роль углерода для живой и кремния – для неживой природы.

Особенности строения атомов d-элементов (IB-VIIIB-групп). Медь, цинк, хром, железо, марганец как простые вещества, их физические и химические свойства. Нахождение этих металлов в природе, их получение и значение. Соединения d-элементов с различными степенями окисления. Характер оксидов и гидроксидов этих элементов в зависимости от степени окисления металла.


Презентация на тему Оксиды и соли как строительные

Презентация на тему: ”Оксиды и соли как строительные материалы” Презентацию приготовил: студент 212 группы Презентация на тему: ”Оксиды и соли как строительные материалы” Презентацию приготовил: студент 212 группы отделения ЭАСХ Калашников Алексей

Введение n n Данная тема меня привлекла тем, так как мне стало очень интересно, Введение n n Данная тема меня привлекла тем, так как мне стало очень интересно, как взаимодействуют оксиды с солями и как уже понятно по моей теме они используются в строительных материалах. В общем, меня заинтересовала тема в том в каких количествах, средах температурах и многое другое все это используют и делают, какие материалы получают. Я надеюсь, что данная тема поможет мне в будущей профессии и у меня не будет лишних затруднений в жизни и на будущей работе. Цель- разузнать как используются оксиды и соли в строительных материалах, а также подробно изучить.

Соли n Сложные вещества, молекулы которых состоят из атомах металла и кислотного остатка. Соли n Сложные вещества, молекулы которых состоят из атомах металла и кислотного остатка.

Соль n Кроме поваренной соли, в кулинарии и промышленности находят применение гидрокарбонат натрия, нитрит Соль n Кроме поваренной соли, в кулинарии и промышленности находят применение гидрокарбонат натрия, нитрит и нитрат натрия.

Соль в промышленности n Соль- основное сырье для многих отраслей химической промышленности, в том Соль в промышленности n Соль- основное сырье для многих отраслей химической промышленности, в том числе для получения каустической соды, соляной кислоты, металлического натрия, синтетических смол и. т. д. Значительное количество соли используется для нужд теплоэнергетики, в частности при химической очистке воды для котлов тепловых станций. Кроме этого хлористый натрий активно используется предприятиями цветной металлургии, нефтегазовой, туковой промышленности, предприятиями по обслуживанию автодорог для борьбы с гололедом и д. р.

Добыча n Крупнейшими месторождениями соли являются — Мертвое море, залив Кара-Богаз. Гол (Туркмения), Соледар Добыча n Крупнейшими месторождениями соли являются — Мертвое море, залив Кара-Богаз. Гол (Туркмения), Соледар (Донецк ая область Украины), озеро Баскунчак (Россия), Соль. Илецк (Россия), Яван (Таджикистан ). Соляное предприятие выпускает соль в различном виде: рассол, твёрдую (в том числе вакуумную), молотую, солебрикеты с микродобавками для скота, зерновую, иодированную и прочие.

Оксиды n Сложные вещества состоящие из двух химических элементов одним из которых является кислород Оксиды n Сложные вещества состоящие из двух химических элементов одним из которых является кислород со степенью окисления -2

Оксиды n Сложные вещества состоящие из двух химических элементов одним из которых является кислород

Оксиды n Сложные вещества состоящие из двух химических элементов одним из которых является кислород

Оксиды n Сложные вещества состоящие из двух химических элементов одним из которых является кислород

Соли и оксиды металлов n Используются в основном для изготовления конденсаторных сегнетоэлектрических материалов, в Соли и оксиды металлов n Используются в основном для изготовления конденсаторных сегнетоэлектрических материалов, в производстве пластичных смазок, в производстве щелочных аккумуляторов. Также некоторые соли используются в качестве флюса при пайке, как катализатор органического синтеза, в производстве водоупорных смазочных материалов и катализаторов.

Конец Конец

Тема работы: «Химические вещества- строительные материалы»

Тема работы: «Химические вещества- строительные материалы»

Руководитель: Яськова Людмила Николаевна

Брянск-2016 год

Содержание

1.Введение стр. 3

2. Основная часть стр. 4-20

3. Заключение стр. 21

4. Список литературы стр. 22

Введение

Строительство – это отрасль науки и техники, занимающаяся возведением и реконструкцией зданий и сооружений: домов , мостов, дамб , дорог. Люди строят жилища уже 50 тыс. лет. В глубокой древности это были простые шалаши и шатры из веток, шкур животных или дерна.

Тысячелетиями человек пользовался природными материалами: деревом, глиной или камнями , которые мог найти поблизости. Смешивая глину с соломой, люди лепили из нее кирпичи и сушили на солнце. Позже кирпичи научились обжигать, что сделало их прочными и водоупорными.

И сегодня дома по-прежнему строят из кирпичей, а так же из современных материалов – стекла, бетона , стали.

Свою будущую профессию я уже выбрал, она связана со строительством. В будущем, я планирую работать мастером общестроительных работ. Для того, чтобы быть хорошим специалистом необходимо знать, какие современные строительные материалы существуют и из чего они состоят. Я заинтересовался этой проблемой.

Цель моей работы — изучить какие строительные материалы используют в современном строительстве, и из каких химических веществ они состоят, по каким химическим технологиям строительные материалы производятся . Так как от этого зависит качество строящихся объектов.

Красный глиняный кирпич

Красный глиняный кирпич изготавливают из замешанной с водой глины с последующим формованием, сушкой и обжигом. Сформованный кирпич (сырец) не должен давать трещин при сушке. Плохо высушенный сырец при обжиге неизбежно приведет к образованию трещин. Красная окраска кирпича обусловлена наличием в глине оксида Fe2O3. Эта окраска получается, если обжиг ведут в окислительной атмосфере, т.е. при избытке воздуха. При наличии в атмосфере восстановителей на кирпиче появляются серовато-синеватые тона.

В настоящее время в строительстве широко используют пустотелый кирпич, т.е. имеющий внутри полости определенной формы. Не теряя существенно теплоизоляционные свойства, такой кирпич позволяет уменьшать массу жилого здания примерно на 25…40%. Это позволяет существенно сократить затраты при транспортировке и трудозатраты на строительстве.

Для облицовки зданий изготавливают двухслойный кирпич. При его формовании на обычный кирпич наносится слой из светложгущейся или равномерно окрашенной глины. Сушку и обжиг двухслойного облицовочного кирпича производят по обычной технологии.

Важными характеристиками кирпича являются влагопоглощение и морозостойкость. Они взаимосвязаны. По техническим нормам водопоглощение красного глиняного кирпича около 8%. При понижении температуры вода в порах кирпича замерзает. Поскольку объем льда больше, чем воды, то при замерзании стенки пор испытывают давление, в результате чего могут появиться трещины. Морозостойкость кирпича, так же как и другой строительной керамики, определяют пятнадцатикратным помещением изделия в среду при –15°C с последующим оттаиванием в воде при +20°C. Для предотвращения разрушения от атмосферных воздействий кирпичную кладку обычно защищают штукатуркой, облицовыванием плиткой или в крайнем случае окраской. Регулирование пористости и объемной массы кирпича и других керамических изделий, а также придание им определенных теплофизических свойств осуществляют вводом в сырую массу выгорающих добавок – древесных опилок торфяной крошки, отходов промышленности полимерных материалов или вводом пористых природных минералов. Производство обжигового полого кирпича обходится в 1,2 раза дороже, чем белого силикатного.

Особым видом глиняного обожженного кирпича является клинкерный. Его применяют для мощения дорог, облицовки цоколей зданий, в гидротехнических сооружениях. Клинкерный кирпич производят из специальных глин с большой вязкостью и малой деформируемостью при обжиге. Он характеризуется сравнительно низким водопоглощением (от 0,9 до 5,5%), большой прочностью на сжатие и большой износостойкостью. При мощении дорог он рассчитан на эксплуатацию в течение 10…12 лет.

Силикатный кирпич

Сырьем для силикатного кирпича служит известь и кварцевый песок. При приготовлении массы известь составляет 5,5…6,5% по массе, а вода – 6…8%. Подготовленную массу прессуют и затем подвергают нагреванию (при температуре около 170°C) в автоклаве под действием пара высокого давления. Химическая сущность процесса твердения силикатного кирпича совершенно иная, чем при твердении связующего материала на основе извести и песка. При высокой температуре значительно ускоряется кислотно-основное взаимодействие гидроксида кальция Ca(OH)2 с диоксидом кремния SiO2 с образованием соли – силиката кальция CaSiO3. Образование последнего и обеспечивает связку между зернами песка, а следовательно, прочность и долговечность изделия.

Силикатный кирпич имеет светло-серый цвет, но иногда его окрашивают. Для этой цели используют глины или промышленные отходы, содержащие оксиды железа. Водопоглощение силикатного кирпича довольно высокое, но не должно превышать 16%. Вследствие высокого водопоглощения по сравнению с красным глиняным кирпичом он обладает меньшей морозостойкостью. Силикатный кирпич в основном используют в качестве стенового материала для возведения надземных частей зданий. Его нельзя применять для фундаментов, подвергающихся воздействию грунтовых вод, особенно ,если последние содержат CO2, а также для кладки печей, так как он не выдерживает длительного воздействия высоких температур.

Цемент

Цемент – собирательное название различных порошкообразных вяжущих веществ, способных при смешении с водой образовывать пластичную массу, приобретающую со временем камневидное состояние. Большинство цементов является гидравлическими, т.е. вяжущими веществами, которые, начав твердеть на воздухе, продолжают твердеть и под водой. Первый цемент был открыт во времена Римской империи. Жители местечка Пуццоли, расположенного у подножья вулкана Везувий, заметили, что при добавлении к извести вулканического пепла (пуццоланы) образуется эффективное связующее средство. Сама известь, как известно, проявляет связующие свойства, но в связке неустойчива к воде. Примерно в это же время жители Древней Руси заметили, что устойчивость к воде придает извести измельченная обожженная глина («цемянка»). Такие гидравлические связующие материалы использовали для сооружения каменных построек древнего Киева и Новгорода.

Одним из основных и наиболее распространенных промышленных цементов является портландцемент. Его рецепт был запатентован английским каменщиком Дж. Аспадом в 1824 г. В настоящее время портландцемент готовят обжигом до спекания (т.е. до появления жидкой фазы) смеси известняка и алюмосиликатного компонента (глины, шлака, золы). Спек размалывают и в него вводят некоторые добавки. Он состоит из 60…65% извести, ~24% кремнезема SiO2 и ~8% глинозема Al2O3. В свое время вблизи Новороссийска были найдены огромные залежи породы, по составу близкой к сырьевой смеси портландцемента. Этот сырьевой источник послужил основой для широкого развития цементной промышленности в районе Новороссийска. Обычно цементы при твердении в условиях недостаточной влажности дают усадку. Пористая структура затвердевшего цемента и его усадка являются причинами водопроницаемости бетонных конструкций. Для ряда строительных работ рекомендуется применять безусадочный (расширяющийся) цемент. Такие цементы включают в себя расширяющиеся добавки, например гипс. В качестве основы берут тот же портландцемент или другие марки.

Слово цемент происходит от лат. caementum, что означает битый камень.

Строительные растворы

Строительные растворы применяют для связывания кирпичей, камней и блоков при сооружении стен. Кроме того, их используют для штукатурки стен и потолков с целью получения ровных поверхностей и защиты от внешних воздействий. В строительные растворы входят вяжущее вещество и заполнитель. В качестве основного вяжущего вещества используют цемент, а в качестве заполнителя – песок. Часто в строительные растворы включают смесь двух вяжущих веществ, например цемент и известь. Такие растворы называют смешанными. Для каменной кладки обычно используют цементно-известково-песчаные растворы. Соотношение этих компонентов в объемных частях от 1:0,2:3 до 1:2:12 (цемент:известь:песок).

Для штукатурных работ часто используют растворы на основе смеси цемента, гипса и песка в следующих объемных соотношениях: от 1:0,25:4 до 1:4:6. В таких растворах строительный гипс ускоряет схватывание и твердение, а также устраняет оплывание. Растворы, применяемые для штукатурных работ, не должны давать усадки. Гипс при затвердевании расширяется в объеме. Поэтому его введение в растворы имеет весьма веское обоснование. При оштукатуривании потолков и карнизов дозировку гипса увеличивают, а при штукатурке стен – уменьшают.

Если стремятся повысить пластичность и связность растворов, то вместо гипса предпочитают брать известь. Асбестоцементные изделия изготавливают из смеси асбеста (~20%), цемента (~80%) и воды. Асбест, называемый также горным льном, – это природный волокнистый минерал, способный расщепляться на тончайшие гибкие и эластичные волокна, из которых так же, как и из растительных волокон (лен, хлопок), можно прясть нити и вырабатывать ткани. Асбест негорюч, обладает низкой теплопроводностью и потому изготовленная из асбестовых тканей одежда используется для работы около объектов с высокой температурой. Промышленность выпускает следующие асбоцементные изделия: кровельные (в частности, шифер), стеновые, трубы и др. Как уже было отмечено, асбест – огнестойкий материал, однако при 70°C он начинает терять прочность. При температуре 368°C удаляется содержащаяся в нем вода, в результате чего полностью теряется прочность асбеста.

Асбоцементные изделия

Асбоцементные изделия обладают более высокой прочностью при растяжении, изгибе и ударных нагрузках, чем затвердевшее цементное тесто. Это объясняется армирующими свойствами асбеста, схожими с армирующим действием стальной арматуры в железобетоне. Асбоцементные изделия кроме огнестойкости и теплоизоляционных свойств обладают малой электрической проводимостью, стойкостью к атмосферным воздействиям, хорошей прошиваемостью гвоздями. Они легко обрабатываются режущими и пилящими инструментами. Асбоцементные изделия характеризуются меньшей водопроницаемостью и большей устойчивостью к действию минерализованных вод, чем бетоны и растворы из портландцемента. Асбоцементные кровельные покрытия долговечны, морозостойки, несгораемы, не требуют окраски и редко нуждаются в ремонте. К их недостаткам относятся хрупкость, коробление и, при сильных ветрах, возможность проникания воды через стыки соседних листов.

На основе гипса с введением гидроксида железа (III), получаемого из промышленных отходов, изготавливают теплоизоляционный материал феррон или феррогипс. Его используют для тепловой изоляции аппаратов и трубопроводов, а также в строительстве.

Строительные гипсовые изделия

Примерно в третьем тысячелетии до н.э. в строительстве взамен глины в качестве связующего материала стали использовать гипс. Для этой цели его начали применять даже раньше, чем известь. Уже 5…6 тыс. лет назад египтяне заделывали швы сложенных из камней пирамид гипсом. Такие швы были обнаружены, в частности, в пирамиде Хеопса.

Строительный гипс получают из природного минерала – гипсового камня CaSO4·2H2O или из минерала ангидрита CaSO4, а также из отходов некоторых отраслей химической индустрии. Природный гипс содержит примеси глины, песка, известняка, колчедана. Для его использования в качестве строительного материала примеси не должны превышать 35%.

Гипсовый камень при нагревании примерно до 140°C теряет часть воды и переходит в алебастр (полуводный гипс CaSO4·0,5H2O) в соответствии с уравнением

CaSO4·2H2О = CaSO4·0,5H2О + 1,5H2О

При замешивании с водой измельченного полуводного гипса CaSO4·0,5H2O происходит ее поглощение вновь до состояния дигидрата CaSO4·2H2O и масса превращается в твердое тело. Это свойство гипса широко используют в травматологии, ортопедии и хирургии для изготовления гипсовых повязок, обеспечивающих фиксацию отдельных частей тела. Отвердевание замешанного с водой гипса сопровождается небольшим увеличением объема. Это позволяет проводить тонкое воспроизведение всех деталей лепной формы, что широко используют скульпторы и архитекторы. Для придания скульптурному изделию вида «слоновой кости» слепок пропитывают раствором парафина или стеарина в бензине. Воскообразное вещество, остающееся после испарения летучих углеводородов, заполняет поры и предохраняет гипс от атмосферных воздействий.

При повышении температуры до 220°C двуводный гипс полностью теряет воду, образуя безводный CaSO4, который лишь при вылеживании поглощает влагу и переходит в полугидрат. Однако если обжиг вести при температуре выше 220°C, то получается безводный CaSO4, который влагу уже не поглощает и не «схватывается» при затворении водой. Его называют мертвым гипсом. Однако мертвый гипс может быть использован для получения ангидритового цемента при добавлении 1…5% извести.

Строительный гипс получают прокаливанием природного гипса или ангидрита при температуре около 1300°C. При этой температуре выделяется триоксид серы по реакции CaSO4 = CaO + SOи получается твердый раствор CaО в CaSO4. При замешивании с водой измельченный продукт быстро образует очень твердую и плотную массу. Начало схватывания затворенного с водой строительного гипса наступает не ранее 4 мин, конец схватывания – не ранее 6 мин, но и не позднее 30 мин.

В строительстве из гипса изготавливают сухую штукатурку, плиты и панели для перегородок, стеновые камни, архитектурные детали, вентиляционные короба и др.

Гипсовые изделия характеризуются сравнительно небольшой плотностью, несгораемостью и относительно невысокой теплопроводностью. В состав гипсовых изделий вводят древесные опилки, шлаки и другие наполнители, уменьшающие массу и улучшающие гвоздимость, под которой в строительном деле понимают способность материала прочно удерживать вбитые гвозди, не растрескиваясь. Следует сказать, что эти наполнители приводят к некоторому уменьшению прочности изделий. Гипс является воздушно вяжущим материалом, поэтому изделия из него не рекомендуется применять в помещениях с повышенной влажностью.

Гипсовая сухая штукатурка

Гипсовая сухая штукатурка – листовой отделочный материал, состоящий из гипсового слоя, покрытого со всех сторон (кроме торцевых) картонной оболочкой. В гипсовый слой вводят пенообразователь (увеличивающий пористость, а значит, уменьшающий массу и теплопроводность) и клей – декстрин или сульфитно-спиртовую барду, обеспечивающих сцепление с картоном. Картон приклеивается жидким стеклом или декстрином.

Гипсовые перегородочные плиты

Гипсовые перегородочные плиты изготавливают как из одного строительного гипса, так и из его смеси с наполнителями – древесными опилками или шлаками тепловых электростанций. Замешанную с водой массу заливают в форму, выдерживают определенное время, а затем сушат. Процесс этот полностью механизирован.

Следует также отметить, что гипс в смеси с глиной, песком и известняком на Кавказе называют гажей и ганчем, а в Средней Азии – арзыком. Они встречаются в этих засушливых районах в виде породы.

Бетон

Бетон является разновидностью искусственных каменных материалов. Безусловно, это важнейший материал современной строительной индустрии, хотя и известен уже около 2 тыс. лет. Он использовался уже в строительстве одного из величайших сооружений I в. до н.э. Колизея в Риме наряду с кирпичом и природными камнями. Интересно отметить, что древнеримское сооружение Пантеон, построенный в начале нашей эры, перекрыт бетонным куполом диаметром 42,7 м. Для изготовления бетона используют цемент (10…15% по массе). Для этой цели чаще всего берут портландцемент. Активными составными частями бетона являются вяжущие вещества и вода, а пассивными – наполнители. Обычно сочетают крупные и мелкие наполнители. К крупным , относят гравий и щебень, а к мелкому – песок. Должно быть рациональное соотношение между крупным и мелким наполнителем. Частицы мелкого наполнителя должны заполнять пустоты между крупными. Пустоты между частицами наполнителя должны заполняться цементным тестом. Наполнители при обычных температурах практически не вступают в химическое взаимодействие с вяжущим веществом и водой.

Обыкновенный (тяжелый) бетон изготавливают на основе тяжелых наполнителей – песка, гравия или щебня. Он обладает большой теплопроводностью и поэтому не применяется для возведения стен жилых домов. Малая плотность легких бетонов обусловлена тем, что для их изготовления применяют пористые наполнители: шлаковую пемзу, котельный и доменные шлаки, вспученный перлит, туф и др. Легкие бетоны имеют замкнутые поры, заполненные воздухом, который, являясь плохим проводником теплоты, обеспечивает малую теплопроводность. Это дает возможность применять легкий бетон для жилищного строительства. Естественно, что увеличение пористости снижает его прочность.

Существуют ячеистые бетоны, которые содержат мелкие ячейки, занимающие до 85% объема. Это пенобетон и газобетон. Первый получают смешением цементного теста с пеной, устойчивой в течение нескольких часов, т.е. досхватывания цемента. Существует несколько пенообразователей, среди которых используется и гидролизованная кровь, вырабатываемая из отходов мясокомбинатов. Для получения газобетона в тесто вводят газообразующие добавки. Обычно – это алюминиевая пудра, вводимая в количестве 0,1…0,2% по массе цемента. Поскольку среда цементного теста щелочная, алюминий взаимодействует со щелочами в соответствии с уравнением

2Al + Ca(OH)2 + 2H2О = Ca(AlO2)2+ 3H2

Выделяющийся водород и вспучивает цементное тесто, делая его пористым.

Для упрочнения бетон армируют стальными прутами. Такой бетон называют железобетоном. Его широко используют в современном строительстве, изготавливая конструкции и детали для промышленных, жилых и общественных зданий, транспортных сооружений и многое другое.

Растворимое (жидкое) стекло

Это водный раствор силиката натрия – натриевой соли кремниевой кислоты. Оно известно со времени Агриколы, т.е. с середины XVI в. Жидкое стекло стало доступным для технического использования после работ Фукса (1818). Поэтому раньше его называли фуксовым стеклом. Жидкое стекло изготавливают сплавлением песка с содой с последующим вывариванием полученного и измельченного стекла в воде. Водные растворы жидкого стекла имеют сильно щелочную реакцию. Под действием углекислого газа из них выделяются малорастворимые кремниевые кислоты. Щелочные свойства и способность выделять кремниевую кислоту обусловливают области применения растворимого стекла: текстильное и бумажное производство, в мыловарении и лакокрасочном деле. Жидкое стекло придает крепость и лоск штукатурке, цементам и другим материалам, содержащим известь, так как кальций придает стеклу нерастворимость в воде. Жидкое стекло используют для пропитки рыхлых грунтов с целью их упрочнения и закрепления. На основе растворимого стекла при добавлении наполнителей и модификаторов получают силикатный клей, который применяют для склеивания керамики, стекол, асбеста, металлов и других материалов. Конечно, его используют и в канцелярском деле для склеивания бумаги и картона.

Вследствие близкой природы жидкое стекло (силикатный клей), попавшее на поверхность стекла, при высыхании образует прочное сцепление. Это приводит к нарушению ровной поверхности стекла, т.е. к его порче. Однако данное свойство может быть использовано для придания стеклу матовости. С этой целью жидкое стекло смешивают с порошком мела (зубным порошком) и наносят на поверхность стекла. При высыхании образуется плотный слой, который и придает стеклу матовость.

На основе жидкого стекла изготавливают искусственные камни. Они получаются в результате смешения стекла с различными (чаще минеральными) наполнителями: карбонатными горными породами, кварцевым песком, древесными опилками и др. Отформованную массу помещают в раствор хлорида кальция CaСl2 или сульфата алюминия A12(SO4)3 (алюминиевых квасцов). Это приводит к затвердению массы и образованию камня. Вводя в массу окрашенные добавки, получают камни, напоминающие натуральные.

С целью предохранения поверхности каменных зданий от преждевременного разрушения разработан способ ее флюатирования, т.е. обработки фторидными соединениями. Для этого используют MgSiF6 и ZnSiF6. В результате химической реакции ионы кальция, находящиеся на поверхности, превращаются в малорастворимый CaF2. Пленка этого соединения и выполняет защитную функцию. Поверхность железобетонных изделий флюотируют 3,5…7% раствором кислоты H2SiF6. Кроме того, для этой цели предложено также использовать сухой газообразный HF под давлением 4…6 атм. В результате образуется SiF4, который при взаимодействии с находящимся в бетоне Ca(OH)2дает малорастворимый CaF2 и гель кремниевой кислоты, который также малорастворим. Они и выполняют защитную функцию бетона. Химическая стойкость бетона резко возрастает, особенно в агрессивных средах.

За рубежом при строительстве и эксплуатации грунтовых и щебеночных дорог для их обеспыливания широко используют растворы CaСl2. За летний сезон дорогу поливают 3…4 раза 75%-ным раствором этой соли. Отметим также, что CaCl2 ускоряет твердение бетона и увеличивает морозостойкость строительных растворов.

Древесина

Лес является величайшим даром природы. Его называют легкими нашей планеты, поскольку в процессе фотосинтеза он поглощает углекислый газ и одновременно выделяет кислород, играя, таким образом, важнейшую роль в сохранении кислородного баланса атмосферы воздуха. Лес – источник древесины – уникального строительного материала. Здесь важно отметить то, что древесина постоянно воспроизводится и при правильном ведении лесного хозяйства лес может быть неисчерпаемым поставщиком строительного материала и сырьем для лесохимической промышленности. На земном шаре существует около 500 видов деревьев хвойных пород и около 30000 деревьев лиственных пород. Ученые считают, что хвойные породы деревьев появились на земле 200…300 млн лет назад, а лиственные намного позже – около 100 млн лет назад.

Специалисты утверждают, что при правильной эксплуатации деревянные конструкции могут служить весьма долго. Недавно в Санкт-Петербурге были вскрыты стены главного корпуса технологического института им. Ленсовета, построенного более 160 лет назад. Оказалось, что внутри они имеют деревянные конструкции, которые оформлены кирпичной кладкой. Удивление и восхищение вызвало то, что деревянные конструкции находятся в хорошем состоянии и могут нести службу еще многие годы.

Однако древесина является хорошей питательной средой для дереворазрушающих грибков и насекомых. Важным фактором для их развития является повышенная влажность. В настоящее время выявлено около 100 видов таких грибков, разрушающих древесину. Поэтому перед химиками стоит важнейшая народнохозяйственная задача химическими средствами защитить древесину от разрушения. Для этой цели используют антисептики – препараты, уничтожающие микроорганизмы или задерживающие их размножение и развитие. Для защиты древесины антисептики должны отвечать ряду требований: быть токсичными к дереворазрушающим грибкам и насекомым, но безвредными для человека и животных; хорошо проникать в древесину и быть стойкими во времени; не снижать прочность древесины и не портить ее внешнего вида; не вымываться водой. Большинством из этих свойств обладают каменноугольные масла, образующиеся при коксовании каменных углей. Первые рекомендации по их использованию для пропитки древесины были даны еще в 1835…1838 гг. Несмотря на большое количество выявленных антисептиков, ни один из них не обладает столь широким комплексом необходимых свойств. Каменноугольные масла применяют в чистом виде или в смеси в разбавителями для защиты древесины, работающей в самых жестких условиях: шпалы, подземная часть столбов, опоры мостов и др. Однако у каменноугольных пропиточных масел имеются и существенные недостатки. Они придают древесине повышенную горючесть, окрашивают ее в непривлекательный черный цвет и обусловливают неприятный запах. Пропитанную ими древесину нельзя склеивать.

Наряду с каменноугольными маслами для этой же цели используют «сланцевое масло». Понятно, что оно получается на сланцехимическом производстве. В отличие от каменноугольного сланцевое масло не загустевает вплоть до температуры –30°C. Для употребления в быту и в индивидуальном строительстве используют одну из дистиллатных фракций сланцевого масла, названную «Лигно». Этот антисептик имеет гораздо более терпимый запах, светлую окраску и потому даже повышает декоративные свойства древесины, оттеняя ее фактуру.

Существуют эффективные антисептики, растворимые в органических растворителях, – пентахлорфенол и смесь медных солей нафтеновых кислот. Они обладают рядом важных для сохранения древесины свойств, но первый имеет специфический запах и окрашивает древесину в коричневый цвет, а второй – в непопулярный зеленый цвет.

Химики также предлагают несколько неорганических антисептиков. Среди них фторид натрия NaF, комплексные соли Na2[SiF6] и NH4[BF4]. Все они водорастворимы и потому легко вымываются из древесины. В связи с этим их можно применять для пропитки деталей конструкций, не подвергающихся постоянному увлажнению. Существуют и антисептики на основе мышьяка – мышьяковая кислота H3AsO4 и ее соль Na2HAsO4. Для защиты древесины также используют смесь, состоящую из трех частей дихромата натрия Na2Cr2O7 и двух частей сульфата меди CuSO4·5H2O, а также смесь какой-либо соли меди (II) и борной кислоты H3BO3. Все эти антисептики не должны быть дорогими и потому, как правило, используют отходы различных производств, а не чистые соединения.

Для борьбы с гниением древесины и с целью ее консервирования применяют ZnSO4 и ZnCl2. Для этой же цели широко используют фториды металлов (например, NaF, KF, BaF2, ZnF2) и кремнефториды (Na2SiF6, MgSiF6, ZnSiF6), а также соединения мышьяка. Кремнефториды лучше, чем простые фториды, проникают в древесину и потому эффективнее проявляют свои антисептические свойства. Кремнефториды не дают осадка с известью и солями кальция и потому могут быть использованы для консервирования древесины, находящейся в контакте со штукатуркой.

Известен антисептик «уралит», который состоит из Na2Cr2O7, NaF и динитрофенола. Он используется для пропитки шпал и телеграфных столбов.

Для защиты древесины от гниения используют также борную кислоту H3BO3 и буру Na2B4O7·10H2О. Эти вещества придают древесине огнестойкость. Кроме того, огнестойкость древесины достигается ее пропиткой силикатом натрия Na2SiO3, NaH2PO4 или Na2HPO4. Эти же соединения используются для придания огнестойкости тканям. При повышенных температурах образуются легкоплавкие соединения, которые покрывают поверхность волокон (тканей или древесины) тонкой пленкой, защищающей данные материалы от воспламенения.

Одним из существенных недостатков деревянных конструкций является горючесть. Для повышения огнестойкости древесину обрабатывают растворами борной кислоты, соды Na2CO3, соли (NH4)2HPO4 или карбамида, используемого обычно в качестве азотного удобрения.

Следует отметить, что деревянные детали, изготовленные из обработанных парами аммиака и спрессованных заготовок из березы, тополя, осины, прочны и устойчивы к действию кислот и щелочей. Естественно, что такая обработка может быть проведена лишь в заводских условиях.

Древесноволокнистые плиты

Древесноволокнистые плиты получают из лесосечных отходов, отходов деревообработки и из технологической щепы. Изготовление плит заключается в пропарке и размоле древесного сырья до волокон. Волокнистая масса смешивается с клеем и в виде суспензии волокна в воде подается на сетку отливной машины, где формируется волокнистый ковер. Затем следует сушка ковра в роликовой сушильной камере. Так получают пористые мягкие плиты. Для производства твердых плит после отжима воды из волокнистого ковра его прессуют при нагревании, а затем «закаливают» выдерживанием в течение нескольких часов в камерах при 150…170°C. Мягкие плиты используют в качестве утеплительного материала, а твердые для отделки внутренних стен и потолков вместо мокрой или гипсовой штукатурки. Считают, что одна пористая мягкая плита толщиной 12,5 мм по тепловым свойствам равноценна сухой доске толщиной в 40 мм или кирпичной стенке толщиной в один кирпич.

Древесностружечные плиты

Сырьем для них служат отходы деревообработки: стружка, в небольшом количестве опилки, мелкие куски древесины, щепа. Высушенное древесное сырье смешивают с мочевиноформальдегидной или фенолформальдегидной смолой и из смеси формируют на специальных формовочных машинах ковер плиты. Затем его прессуют при температуре 100…140°C. Древесностружечные плиты могут быть облицованы шпоном, бумагой, полимерными пленками. Взамен древесины из них изготавливают внутренние перегородки помещений, двери, подоконники, пол и другие детали. Эти плиты также идут на изготовление мебели.

Заключение

Овладение профессией и основами наук составляет единый образовательный процесс. Привлечение знаний из разных дисциплин , например химии, технологии, физики и т.д , позволяет более глубоко раскрыть и изучить интересующее явление в будущей профессии.

Знание именно химических основ в технологии строительных работ позволяет предвидеть, как поведет себя тот или иной строительный материал в окружающей среде, насколько эти строительные материалы экологически безопасны. Сведения о том, как химические составляющие строительных материалов могут повлиять на качество, безопасность, прочность, долговечность строящихся объектов, позволит мне, в дальнейшем стать профессионалом в работе со строительными материалами.

Список литературы

Энциклопедия для детей. Т.17.- М.: Аванта+, 2000.

Августиник А.И. Керамика.- Л.: Строй издат,1975.

Мир химии.- Спб, М.: М – Экспресс,1995.

Пузанков В.Ф. Материалы для штукатурных и облицовочных работ. Москва: Академкнига, 2005.

Попов К.Н. Материаловедение для каменщиков, монтажников конструкций.- М.: Высшая школа,2006.

Сайты в Интернете:

www. Vashdom. ru.

www.ngs.ru.

www. Bb.- club.ru.

www. Idh.ru.

Оксиды и соли, как строительные материалы

Участник оксиды и соли, как строительные материалы себя высокими достижениями в количестве созданных релизов и поддержке существующих. Сообщение оксиды и соли как строительные материалы.

Сообщение оксиды и соли как строительные материалы ! Строительные материалы Природные или искусственные вещества, в состав которых входит кремнезем SiO2, называют силикатами. Она обеспечивает основные потребности страны в строительных материалах. Стекло является типичным представителем силикатных материалов, но о нем уже была речь. Керамические материалы также относятся к силикатным. В данном случае известь использована и как связующее, и как клей. Можно отметить, что содержание в негашеной извести небольших количеств неразложившегося карбоната кальция CaCO3 улучшает связующие свойства извести.

К этому же приводят небольшие примеси силикатов, алюмосиликатов и ферритов кальция, часто присутствующих в природном карбонате. Считают, что при хранении негашеной извести контакт с влагой может привести к такому разогреванию, что способно воспламениться дерево. Для использования извести в качестве связующего ее гасят, готовят тесто, которое затем смешивают с песком в количестве от двух до четырех частей по объему. Твердение извести связано с физическими и химическими процессами. Во-первых, происходит испарение механически примешанной воды. Поскольку процесс карбонизации связан с выделением воды, то стены, сложенные с использованием известкового раствора, долго остаются сырыми.

Теперь должно быть понятно, что прогреванием отштукатуренных поверхностей электрическими отражательными лампами или сухим теплым воздухом нельзя ускорить процесс карбонизации. Наоборот, это приведет к обезвоживанию штукатурки, что затруднит поглощение ею диоксида углерода. Чтобы установить зрелость связки или штукатурки, т. При наличии не связанной в карбонат извести происходит покраснение. Добавление песка к известковому тесту необходимо потому, что в ином случае при затвердевании оно дает сильную усадку и растрескивается. Песок в известковом тесте служит как бы арматурой, которая препятствует изменению объема и растрескиванию при высыхании.

Кроме того, песок удешевляет раствор и делает его более пористым, что облегчает удаление испаряющейся воды и доступ CO2 внутрь связующего материала. Для известкового раствора предпочитают применять горный песок, состоящий из угловатых песчинок. Речной песок состоит из округлых, скатанных зерен, что приводит к меньшей прочности связки. Как уже было сказано, наличие в гашеной извести небольшой примеси карбоната кальция CaCO3 улучшает связующие свойства извести. Это обусловлено тем, что частички карбоната кальция играют роль центров кристаллизации при карбонизации и тем самым ускоряют процесс затвердевания. Красный глиняный кирпич Красный глиняный кирпич изготавливают из замешанной с водой глины с последующим формованием, сушкой и обжигом.

Плохо высушенный сырец при обжиге неизбежно приведет к образованию трещин. Красная окраска кирпича обусловлена наличием в глине оксида Fe2O3. Эта окраска получается, если обжиг ведут в окислительной атмосфере, т. В настоящее время в строительстве широко используют пустотелый кирпич, т. Это позволяет существенно сократить затраты при транспортировке и трудозатраты на строительстве. Для облицовки зданий изготавливают двухслойный кирпич.

При его формовании на обычный кирпич наносится слой из светложгущейся или равномерно окрашенной глины. Сушку и обжиг двухслойного облицовочного кирпича производят по обычной технологии. Важными характеристиками кирпича являются влагопоглощение и морозостойкость. При понижении температуры вода в порах кирпича замерзает. Поскольку объем льда больше, чем воды, то при замерзании стенки пор испытывают давление, в результате чего могут появиться трещины. Особым видом глиняного обожженного кирпича является клинкерный.

Его применяют для мощения дорог, облицовки цоколей зданий, в гидротехнических сооружениях. Клинкерный кирпич производят из специальных глин с большой вязкостью и малой деформируемостью при обжиге. При мощении дорог он рассчитан на эксплуатацию в течение 1012 лет. Силикатный кирпич Сырьем для силикатного кирпича служит известь и кварцевый песок. Химическая сущность процесса твердения силикатного кирпича совершенно иная, чем при твердении связующего материала на основе извести и песка. Силикатный кирпич имеет светло-серый цвет, но иногда его окрашивают. Для этой цели используют глины или промышленные отходы, содержа

Химические вещества- строительные материалы

Химические вещества- строительные материалы.

Цели :

Развитие общекультурной компетенции учащихся, расширение и углубление химических знаний, использование их в практической деятельности; развитие познавательной активности, наблюдательности, творческих способностей учащихся.

Задачи :

Углубление, расширение и систематизация знаний учащихся о строении, свойствах, применении веществ и их соединений;

Формирование умений работать с учебной, научно-популярной, энциклопедической литературой;

Развитие творческих способностей учащихся, наблюдательности, воображения.

Ход урока

Вступительное слово учителя.

Уважаемые старшеклассники!

В любой отрасли человеческой деятельности, следовательно, в любой профессиональной деятельности, связанной с материальным миром, мы неизбежно соприкасаемся с веществами и используем их свойства и взаимодействие между собой. Химия, обладая огромными возможностями, создает невиданные ранее материалы, умножает плодородие почвы, облегчает труд человека, экономит его время, одевает, сохраняет его здоровье, создает ему уют и комфорт, изменяет внешность людей. Использование людьми достижений современной техники и химии требует высокой общей культуры, большой ответственности и, конечно, знаний. Именно с этой целью мы проводим этот урок и, надеюсь, он будет интересен и полезен также тем, кто считает химию скучным, бесполезным для себя школьным предметом, далеким от повседневной жизни обычного человека.

Итак, начнём.

 Природные или искусственные вещества, в состав которых входит кремнезем SiO2, называют силикатами. Это слово происходит от лат. silex – кремень. Современная силикатная промышленность – важнейшая отрасль народного хозяйства. Она обеспечивает основные потребности страны в строительных материалах.

Так же, в современном строительстве находят применение различные пластмассы, добавки в цементы и в бетоны, новые лаки, гидрофобизирующие составы и др. Это позволяет постепенно заменять традиционные строительные материалы более легкими, прочными и красивыми. Их использование связано с тем, что полимерные материалы обладают необходимым комплексом физико-химических и строительно-эксплуатационных свойств. Это, прежде всего, прочность, небольшая объемная масса (например, пено- и поропласты) и эластичность, высокая водо-, газо- и паронепроницаемость, химическая стойкость и устойчивость к коррозии. Применение пластмасс в строительстве уменьшает вес строительных конструкции. Кроме того, это дает возможность находить многие интересные инженерные и архитектурные решения.

Нередко нам приходится заниматься ремонтом самостоятельно. Многие виды ремонтных работ может освоить каждый, но химику это сделать проще, так как в основе применения большинства строительных материалов лежат чисто химические процессы. Изучив закономерности протекания этих процессов, можно сделать ремонт и быстрее и более качественно. Вначале остановимся на связующих материалах, получающихся с их использованием.

Связующие материалы.

Известь

Известь один из древнейших связующих материалов. Археологические раскопки показали, что во дворцах древнего города Кносса, расположенного в центральной части острова Крит,-имелись росписи стен пигментами, закрепленными гашеной известью.

«Негашеную известь» (оксид кальция, CaО) получают обжигом различных природных карбонатов кальция. Реакция обжига обратима и описывается уравнением CaCO3 ↔ CaО + CO2; ΔH = –179 кДж Гашение извести сводится к переводу оксида кальция в гидроксид: CaO + h3O ↔ Ca(OH)2; ΔH = +65 кДж. При хранении негашеной извести контакт с влагой может привести к такому разогреванию, что способно воспламениться дерево. Кроме того, происходит взаимодействие гидроксида кальция с углекислым газом воздуха.

Задание 1. Опытные мастера определяют окончание “схватывания” штукатурки по внешним признакам. Можно ли определить это химическим путем – с помощью индикатора?

Ответ можно найти в учебнике для 9 кл (свойства оснований)

Ответ: при полном “схватывании” весь Са (ОН)2 превращается в карбонат и проба с фенолфталеином не даёт окрашивания, если же штукатурка не схватилась полностью, то присутствующий Са (ОН)2дает с фенолфталеином малиновое окрашивание.

Гипс
В строительстве из гипса изготавливают сухую штукатурку, плиты и панели для перегородок, стеновые камни, архитектурные детали.

Гипсовые изделия характеризуются сравнительно небольшой плотностью, несгораемостью.

Строительный гипс получают из природного минерала – гипсового камня CaSO4·2h3O или из минерала ангидрита CaSO4, а также из отходов некоторых отраслей химической индустрии. Гипсовый камень при нагревании примерно до 140°C теряет часть воды и переходит в алебастр (полуводный гипс CaSO4·0,5h3O) в соответствии с уравнением CaSO4·2h3О = CaSO4·0,5h3О + 1,5h3О

Задание 2. Как лучше с точки зрения гигиены отделать потолок и стены кухни: побелить мелом, известью, окрасить масляной краской, водоэмульсионной краской, эмалью, оклеить клеёнкой? Чем отделать стены?

Необходимая информация в учебниках для 8-9 кл (горение, состав и свойства природного газа ).

Ответ: в порядке убывания гигиенических свойств материалы можно расположить так известь, мел, водоэмульсионная краска, масляная краска, эмаль, клеенка.

Бетон. Растворимое стекло.

Бетон является разновидностью искусственных каменных материалов. Известен уже около 2 тысяч лет. Его использовали уже в строительстве одного из величайших сооружений 1в. До н.э. Колизея в Риме наряду с кирпичом и природными камнями. Активными составными частями бетона являются вяжущие вещества вода, а пассивными – наполнители. К крупным относится гравий и щебень, к мелким – песок.

Обыкновенный (тяжелый) бетон изготавливают на основе тяжелых наполнителей – песка, гравия или щебня. Поскольку среда цементного теста щелочная, алюминий взаимодействует со щелочами в соответствии с уравнением 2Al + Ca(OH)2 + 2h3О = Ca(AlO2)2+ 3h3.

Растворимое стекло.

Это водный раствор силиката натрия – натриевой соли кремниевой кислоты. Жидкое стекло изготавливают сплавлением песка с содой с последующим вывариванием полученного и измельченного стекла в воде. Водные растворы жидкого стекла имеют сильно щелочную реакцию. На основе жидкого стекла изготавливают искусственные камни.

 

Задание3. Вы собрались бетонировать дорожку на дачном участке. Когда лучше этим заняться: в жаркую сухую погоду или в дождливую, влажную?

Вам поможет информация из учебника 9 кл ( свойства силикатов, получение цемента )

Ответ: основным химическим процессом, происходящим при “схватывании” бетона, является гидратация. Поэтому все бетонные работы нежелательно проводить в жаркую, сухую погоду, когда вода быстро испаряется. Для нормального схватывания бетона по технологии строительных работ его надо поливать водой, поэтому для выполнения бетонных работ всегда предпочтительна влажная погода.

Задание 4. К каким процессам можно отнести процессы высыхания масляной краски и эмали: к физическим или химическим?

Ответ: высыхание масляной краски — химический процесс, эмали — физический.

Полимеры в строительстве.

Синтетические полимерные материалы стали применять в строительстве сравнительно недавно, не более 50-60 лет, однако они по праву заняли достойное место в этой области из-за своей используемости в конструкционных прочных материалах, применения в качестве связующих, в дорожных покрытиях, тепло- и гидроизоляторов . Важными свойствами синтетических пластмасс являются их химическая стойкость, водонепроницаемость и стойкость к микроорганизмам.

Краткое рассмотрение некоторых вопросов химизации строительства заставляет задуматься о перспективах ее развития: будут ли в дальнейшем интенсивно развиваться процессы внедрения новейших достижений химии в строительное дело, получат ли развитие физико-химические методы контроля качества строительных материалов, как может осуществляться подобное развитие? Оценивая накопленный опыт можно полагать, что достойное место среди конструкционных материалов займут стеклопластики, теплоизоляционные и отделочные полимерные материалы, которые могут значительно изменить как технологию строительства, так и облик сооружений. Введение в строительные материалы и композиции новых типов металл- и элементоорганических низко- и высокомолекулярных соединений может придать свойства негорючести и микробостойкости, сочетания прочности и эластичности. Активнее следует применять изделия из небьющегося стекла, прозрачные материалы и новые клеящие и лакокрасочные композиции с высокой адгезией к бетону и металлу. По-прежнему высок спрос на металлоконструкции, использование прочных и легких сплавов. Сочетание различных неорганических и органических материалов должно привести к созданию новых видов стеклопластиков, бетонов, армированных материалов.

Занимательная химия

 

Строительные материалы

Природные или искусственные вещества, в состав которых входит кремнезем SiO2, называют силикатами. Это слово происходит от лат. silex – кремень. Современная силикатная промышленность – важнейшая отрасль народного хозяйства. Она обеспечивает основные потребности страны в строительных материалах. Стекло является типичным представителем силикатных материалов, но о нем уже была речь. Керамические материалы также относятся к силикатным. Знакомство с ними также уже состоялось. Здесь остановимся главным образом на связующих материалах и материалах, получающихся с их использованием, а также на уникальном строительном материале – древесине.

Известь как связующий материал

Известь – один из древнейших связующих материалов. Археологические раскопки показали, что во дворцах древнего города Кносса, в центральной части острова Крит – в одном из центров эгейской культуры, имелись росписи стен пигментами, закрепленными гашеной известью. Эти дворцы относят к XVI…XV вв. до н.э. В данном случае известь использована и как связующее, и как клей.

«Негашеную известь» (оксид кальция, CaО) получают обжигом различных природных карбонатов кальция. Реакция обжига обратима и описывается уравнением

CaCO3 → CaО + CO2; ΔH = –179 кДж

Можно отметить, что содержание в негашеной извести небольших количеств неразложившегося карбоната кальция CaCO3 улучшает связующие свойства извести. К этому же приводят небольшие примеси силикатов, алюмосиликатов и ферритов кальция, часто присутствующих в природном карбонате.

Гашение извести сводится к переводу оксида кальция в гидроксид:

CaO + H2O3→ Ca(OH)2; ΔH = +65 кДж

Эта реакция экзотермическая, т.е. протекает с выделением теплоты, что заметно каждому проводящему операцию гашения. Считают, что при хранении негашеной извести контакт с влагой может привести к такому разогреванию, что способно воспламениться дерево.

Для использования извести в качестве связующего ее гасят, готовят тесто, которое затем смешивают с песком в количестве от двух до четырех частей по объему.

Твердение извести связано с физическими и химическими процессами. Во-первых, происходит испарение механически примешанной воды. Во-вторых, гидроксид кальция кристаллизуется, образуя известковый каркас из сросшихся кристаллов Ca(OH)2 и окружающей частицы песка. Кроме того, происходит взаимодействие гидроксида кальция с CO2 воздуха с образованием карбоната («карбонизация»):

Ca (OH)2 + CO2 = CaCO3 + H2О

Оба эти процесса (кристаллизация и карбонизация) протекают довольно медленно. Поскольку процесс карбонизации связан с выделением воды, то стены, сложенные с использованием известкового раствора, долго остаются сырыми. Для ускорения процесса карбонизации иногда внутрь домов вносят жаровни с горящими углями, которые и генерируют необходимый углекислый газ:

С + O2 = CO2

Теперь должно быть понятно, что прогреванием отштукатуренных поверхностей электрическими отражательными лампами или сухим теплым воздухом нельзя ускорить процесс карбонизации. Наоборот, это приведет к обезвоживанию штукатурки, что затруднит поглощение ею диоксида углерода.

Плохо или «ложно» высохшая штукатурка может впоследствии привести к отслаиванию пленки масляной краски вследствие образования мыла в результате взаимодействия кальциевой щелочи с жирами олифы (растительного масла).

Чтобы установить зрелость связки или штукатурки, т.е. завершение процесса карбонизации, на них наносят каплю 1%-ного спиртового раствора фенолфталеина. При наличии не связанной в карбонат извести происходит покраснение.

Добавление песка к известковому тесту необходимо потому, что в ином случае при затвердевании оно дает сильную усадку и растрескивается. Песок в известковом тесте служит как бы арматурой, которая препятствует изменению объема и растрескиванию при высыхании. Кроме того, песок удешевляет раствор и делает его более пористым, что облегчает удаление испаряющейся воды и доступ CO2 внутрь связующего материала. В известковом растворе (известковое тесто, замешанное с песком) должно быть столько извести, чтобы ее хватило для заполнения всех пустот между песчинками и обмазывания каждой из них. При большом избытке извести, а также при неравномерном ее распределении (при плохом перемешивании) в местах скопления извести при затвердевании могут появиться трещины.

Для известкового раствора предпочитают применять горный песок, состоящий из угловатых песчинок. Речной песок состоит из округлых, скатанных зерен, что приводит к меньшей прочности связки. Как уже было сказано, наличие в гашеной извести небольшой примеси карбоната кальция CaCO3 улучшает связующие свойства извести. Это обусловлено тем, что частички карбоната кальция играют роль центров кристаллизации при карбонизации и тем самым ускоряют процесс затвердевания.

Красный глиняный кирпич

Красный глиняный кирпич изготавливают из замешанной с водой глины с последующим формованием, сушкой и обжигом. Сформованный кирпич (сырец) не должен давать трещин при сушке. Плохо высушенный сырец при обжиге неизбежно приведет к образованию трещин. Красная окраска кирпича обусловлена наличием в глине оксида Fe2O3. Эта окраска получается, если обжиг ведут в окислительной атмосфере, т.е. при избытке воздуха. При наличии в атмосфере восстановителей на кирпиче появляются серовато-синеватые тона.

В настоящее время в строительстве широко используют пустотелый кирпич, т.е. имеющий внутри полости определенной формы. Не теряя существенно теплоизоляционные свойства, такой кирпич позволяет уменьшать массу жилого здания примерно на 25…40%. Это позволяет существенно сократить затраты при транспортировке и трудозатраты на строительстве.

Для облицовки зданий изготавливают двухслойный кирпич. При его формовании на обычный кирпич наносится слой из светложгущейся или равномерно окрашенной глины. Сушку и обжиг двухслойного облицовочного кирпича производят по обычной технологии.

Важными характеристиками кирпича являются влагопоглощение и морозостойкость. Они взаимосвязаны. По техническим нормам водопоглощение красного глиняного кирпича около 8%. При понижении температуры вода в порах кирпича замерзает. Поскольку объем льда больше, чем воды, то при замерзании стенки пор испытывают давление, в результате чего могут появиться трещины. Морозостойкость кирпича, так же как и другой строительной керамики, определяют пятнадцатикратным помещением изделия в среду при –15°C с последующим оттаиванием в воде при +20°C. Для предотвращения разрушения от атмосферных воздействий кирпичную кладку обычно защищают штукатуркой, облицовыванием плиткой или в крайнем случае окраской. Регулирование пористости и объемной массы кирпича и других керамических изделий, а также придание им определенных теплофизических свойств осуществляют вводом в сырую массу выгорающих добавок – древесных опилок торфяной крошки, отходов промышленности полимерных материалов или вводом пористых природных минералов. Производство обжигового полого кирпича обходится в 1,2 раза дороже, чем белого силикатного.

Особым видом глиняного обожженного кирпича является клинкерный. Его применяют для мощения дорог, облицовки цоколей зданий, в гидротехнических сооружениях. Клинкерный кирпич производят из специальных глин с большой вязкостью и малой деформируемостью при обжиге. Он характеризуется сравнительно низким водопоглощением (от 0,9 до 5,5%), большой прочностью на сжатие и большой износостойкостью. При мощении дорог он рассчитан на эксплуатацию в течение 10…12 лет.

Силикатный кирпич

Сырьем для силикатного кирпича служит известь и кварцевый песок. При приготовлении массы известь составляет 5,5…6,5% по массе, а вода – 6…8%. Подготовленную массу прессуют и затем подвергают нагреванию (при температуре около 170°C) в автоклаве под действием пара высокого давления. Химическая сущность процесса твердения силикатного кирпича совершенно иная, чем при твердении связующего материала на основе извести и песка. При высокой температуре значительно ускоряется кислотно-основное взаимодействие гидроксида кальция Ca(OH)2 с диоксидом кремния SiO2 с образованием соли – силиката кальция CaSiO3. Образование последнего и обеспечивает связку между зернами песка, а следовательно, прочность и долговечность изделия.

Силикатный кирпич имеет светло-серый цвет, но иногда его окрашивают. Для этой цели используют глины или промышленные отходы, содержащие оксиды железа. Водопоглощение силикатного кирпича довольно высокое, но не должно превышать 16%. Вследствие высокого водопоглощения по сравнению с красным глиняным кирпичом он обладает меньшей морозостойкостью. Силикатный кирпич в основном используют в качестве стенового материала для возведения надземных частей зданий. Его нельзя применять для фундаментов, подвергающихся воздействию грунтовых вод, особенно если последние содержат CO2, а также для кладки печей, так как он не выдерживает длительного воздействия высоких температур.

Цемент

Цемент – собирательное название различных порошкообразных вяжущих веществ, способных при смешении с водой образовывать пластичную массу, приобретающую со временем камневидное состояние. Большинство цементов является гидравлическими, т.е. вяжущими веществами, которые, начав твердеть на воздухе, продолжают твердеть и под водой. Первый цемент был открыт во времена Римской империи. Жители местечка Пуццоли, расположенного у подножья вулкана Везувий, заметили, что при добавлении к извести вулканического пепла (пуццоланы) образуется эффективное связующее средство. Сама известь, как известно, проявляет связующие свойства, но в связке неустойчива к воде. Примерно в это же время жители Древней Руси заметили, что устойчивость к воде придает извести измельченная обожженная глина («цемянка»). Такие гидравлические связующие материалы использовали для сооружения каменных построек древнего Киева и Новгорода.

Одним из основных и наиболее распространенных промышленных цементов является портландцемент. Его рецепт был запатентован английским каменщиком Дж. Аспадом в 1824 г. В настоящее время портландцемент готовят обжигом до спекания (т.е. до появления жидкой фазы) смеси известняка и алюмосиликатного компонента (глины, шлака, золы). Спек размалывают и в него вводят некоторые добавки. Он состоит из 60…65% извести, ~24% кремнезема SiO2 и ~8% глинозема Al2O3. В свое время вблизи Новороссийска были найдены огромные залежи породы, по составу близкой к сырьевой смеси портландцемента. Этот сырьевой источник послужил основой для широкого развития цементной промышленности в районе Новороссийска. Обычно цементы при твердении в условиях недостаточной влажности дают усадку. Пористая структура затвердевшего цемента и его усадка являются причинами водопроницаемости бетонных конструкций. Для ряда строительных работ рекомендуется применять безусадочный (расширяющийся) цемент. Такие цементы включают в себя расширяющиеся добавки, например гипс. В качестве основы берут тот же портландцемент или другие марки.

Слово цемент происходит от лат. caementum, что означает битый камень.

Строительные растворы

Строительные растворы применяют для связывания кирпичей, камней и блоков при сооружении стен. Кроме того, их используют для штукатурки стен и потолков с целью получения ровных поверхностей и защиты от внешних воздействий. В строительные растворы входят вяжущее вещество и заполнитель. В качестве основного вяжущего вещества используют цемент, а в качестве заполнителя – песок. Часто в строительные растворы включают смесь двух вяжущих веществ, например цемент и известь. Такие растворы называют смешанными. Для каменной кладки обычно используют цементно-известково-песчаные растворы. Соотношение этих компонентов в объемных частях от 1:0,2:3 до 1:2:12 (цемент:известь:песок).

Для штукатурных работ часто используют растворы на основе смеси цемента, гипса и песка в следующих объемных соотношениях: от 1:0,25:4 до 1:4:6. В таких растворах строительный гипс ускоряет схватывание и твердение, а также устраняет оплывание. Растворы, применяемые для штукатурных работ, не должны давать усадки. Гипс при затвердевании расширяется в объеме. Поэтому его введение в растворы имеет весьма веское обоснование. При оштукатуривании потолков и карнизов дозировку гипса увеличивают, а при штукатурке стен – уменьшают.

Если стремятся повысить пластичность и связность растворов, то вместо гипса предпочитают брать известь. Асбестоцементные изделия изготавливают из смеси асбеста (~20%), цемента (~80%) и воды. Асбест, называемый также горным льном, – это природный волокнистый минерал, способный расщепляться на тончайшие гибкие и эластичные волокна, из которых так же, как и из растительных волокон (лен, хлопок), можно прясть нити и вырабатывать ткани. Асбест негорюч, обладает низкой теплопроводностью и потому изготовленная из асбестовых тканей одежда используется для работы около объектов с высокой температурой. Промышленность выпускает следующие асбоцементные изделия: кровельные (в частности, шифер), стеновые, трубы и др. Как уже было отмечено, асбест – огнестойкий материал, однако при 70°C он начинает терять прочность. При температуре 368°C удаляется содержащаяся в нем вода, в результате чего полностью теряется прочность асбеста.

Строительные гипсовые изделия

Примерно в третьем тысячелетии до н.э. в строительстве взамен глины в качестве связующего материала стали использовать гипс. Для этой цели его начали применять даже раньше, чем известь. Уже 5…6 тыс. лет назад египтяне заделывали швы сложенных из камней пирамид гипсом. Такие швы были обнаружены, в частности, в пирамиде Хеопса.

Строительный гипс получают из природного минерала – гипсового камня CaSO4·2H2O или из минерала ангидрита CaSO4, а также из отходов некоторых отраслей химической индустрии. Природный гипс содержит примеси глины, песка, известняка, колчедана. Для его использования в качестве строительного материала примеси не должны превышать 35%.

Гипсовый камень при нагревании примерно до 140°C теряет часть воды и переходит в алебастр (полуводный гипс CaSO4·0,5H2O) в соответствии с уравнением

CaSO4·2H2О = CaSO4·0,5H2О + 1,5H2О

При замешивании с водой измельченного полуводного гипса CaSO4·0,5H2O происходит ее поглощение вновь до состояния дигидрата CaSO4·2H2O и масса превращается в твердое тело. Это свойство гипса широко используют в травматологии, ортопедии и хирургии для изготовления гипсовых повязок, обеспечивающих фиксацию отдельных частей тела. Отвердевание замешанного с водой гипса сопровождается небольшим увеличением объема. Это позволяет проводить тонкое воспроизведение всех деталей лепной формы, что широко используют скульпторы и архитекторы. Для придания скульптурному изделию вида «слоновой кости» слепок пропитывают раствором парафина или стеарина в бензине. Воскообразное вещество, остающееся после испарения летучих углеводородов, заполняет поры и предохраняет гипс от атмосферных воздействий.

При повышении температуры до 220°C двуводный гипс полностью теряет воду, образуя безводный CaSO4, который лишь при вылеживании поглощает влагу и переходит в полугидрат. Однако если обжиг вести при температуре выше 220°C, то получается безводный CaSO4, который влагу уже не поглощает и не «схватывается» при затворении водой. Его называют мертвым гипсом. Однако мертвый гипс может быть использован для получения ангидритового цемента при добавлении 1…5% извести.

Строительный гипс получают прокаливанием природного гипса или ангидрита при температуре около 1300°C. При этой температуре выделяется триоксид серы по реакции:

 CaSO4 = CaO + SO3

и получается твердый раствор CaО в CaSO4. При замешивании с водой измельченный продукт быстро образует очень твердую и плотную массу. Начало схватывания затворенного с водой строительного гипса наступает не ранее 4 мин, конец схватывания – не ранее 6 мин, но и не позднее 30 мин.

В строительстве из гипса изготавливают сухую штукатурку, плиты и панели для перегородок, стеновые камни, архитектурные детали, вентиляционные короба и др.

Гипсовые изделия характеризуются сравнительно небольшой плотностью, несгораемостью и относительно невысокой теплопроводностью. В состав гипсовых изделий вводят древесные опилки, шлаки и другие наполнители, уменьшающие массу и улучшающие гвоздимость, под которой в строительном деле понимают способность материала прочно удерживать вбитые гвозди, не растрескиваясь. Следует сказать, что эти наполнители приводят к некоторому уменьшению прочности изделий. Гипс является воздушно вяжущим материалом, поэтому изделия из него не рекомендуется применять в помещениях с повышенной влажностью.

Бетон

Бетон является разновидностью искусственных каменных материалов. Безусловно, это важнейший материал современной строительной индустрии, хотя и известен уже около 2 тыс. лет. Он использовался уже в строительстве одного из величайших сооружений I в. до н.э. Колизея в Риме наряду с кирпичом и природными камнями. Интересно отметить, что древнеримское сооружение Пантеон, построенный в начале нашей эры, перекрыт бетонным куполом диаметром 42,7 м. Для изготовления бетона используют цемент (10…15% по массе). Для этой цели чаще всего берут портландцемент. Активными составными частями бетона являются вяжущие вещества и вода, а пассивными – наполнители. Обычно сочетают крупные и мелкие наполнители. К крупным относят гравий и щебень, а к мелкому – песок. Должно быть рациональное соотношение между крупным и мелким наполнителем. Частицы мелкого наполнителя должны заполнять пустоты между крупными. Пустоты между частицами наполнителя должны заполняться цементным тестом. Наполнители при обычных температурах практически не вступают в химическое взаимодействие с вяжущим веществом и водой.

Обыкновенный (тяжелый) бетон изготавливают на основе тяжелых наполнителей – песка, гравия или щебня. Он обладает большой теплопроводностью и поэтому не применяется для возведения стен жилых домов. Малая плотность легких бетонов обусловлена тем, что для их изготовления применяют пористые наполнители: шлаковую пемзу, котельный и доменные шлаки, вспученный перлит, туф и др. Легкие бетоны имеют замкнутые поры, заполненные воздухом, который, являясь плохим проводником теплоты, обеспечивает малую теплопроводность. Это дает возможность применять легкий бетон для жилищного строительства. Естественно, что увеличение пористости снижает его прочность.

Существуют ячеистые бетоны, которые содержат мелкие ячейки, занимающие до 85% объема. Это пенобетон и газобетон. Первый получают смешением цементного теста с пеной, устойчивой в течение нескольких часов, т.е. до схватывания цемента. Существует несколько пенообразователей, среди которых используется и гидролизованная кровь, вырабатываемая из отходов мясокомбинатов. Для получения газобетона в тесто вводят газообразующие добавки. Обычно – это алюминиевая пудра, вводимая в количестве 0,1…0,2% по массе цемента. Поскольку среда цементного теста щелочная, алюминий взаимодействует со щелочами в соответствии с уравнением

2Al + Ca(OH)2 + 2H2О = Ca(AlO2)2+ 3H2

Выделяющийся водород и вспучивает цементное тесто, делая его пористым.

Для упрочнения бетон армируют стальными прутами. Такой бетон называют железобетоном. Его широко используют в современном строительстве, изготавливая конструкции и детали для промышленных, жилых и общественных зданий, транспортных сооружений и многое другое.

Растворимое (жидкое) стекло

Это водный раствор силиката натрия – натриевой соли кремниевой кислоты. Оно известно со времени Агриколы, т.е. с середины XVI в. Жидкое стекло стало доступным для технического использования после работ Фукса (1818). Поэтому раньше его называли фуксовым стеклом. Жидкое стекло изготавливают сплавлением песка с содой с последующим вывариванием полученного и измельченного стекла в воде. Водные растворы жидкого стекла имеют сильно щелочную реакцию. Под действием углекислого газа из них выделяются малорастворимые кремниевые кислоты. Щелочные свойства и способность выделять кремниевую кислоту обусловливают области применения растворимого стекла: текстильное и бумажное производство, в мыловарении и лакокрасочном деле. Жидкое стекло придает крепость и лоск штукатурке, цементам и другим материалам, содержащим известь, так как кальций придает стеклу нерастворимость в воде. Жидкое стекло используют для пропитки рыхлых грунтов с целью их упрочнения и закрепления. На основе растворимого стекла при добавлении наполнителей и модификаторов получают силикатный клей, который применяют для склеивания керамики, стекол, асбеста, металлов и других материалов. Конечно, его используют и в канцелярском деле для склеивания бумаги и картона.

Вследствие близкой природы жидкое стекло (силикатный клей), попавшее на поверхность стекла, при высыхании образует прочное сцепление. Это приводит к нарушению ровной поверхности стекла, т.е. к его порче. Однако данное свойство может быть использовано для придания стеклу матовости. С этой целью жидкое стекло смешивают с порошком мела (зубным порошком) и наносят на поверхность стекла. При высыхании образуется плотный слой, который и придает стеклу матовость.

На основе жидкого стекла изготавливают искусственные камни. Они получаются в результате смешения стекла с различными (чаще минеральными) наполнителями: карбонатными горными породами, кварцевым песком, древесными опилками и др. Отформованную массу помещают в раствор хлорида кальция CaСl2 или сульфата алюминия A12(SO4)3 (алюминиевых квасцов). Это приводит к затвердению массы и образованию камня. Вводя в массу окрашенные добавки, получают камни, напоминающие натуральные.

С целью предохранения поверхности каменных зданий от преждевременного разрушения разработан способ ее флюатирования, т.е. обработки фторидными соединениями. Для этого используют MgSiF6 и ZnSiF6. В результате химической реакции ионы кальция, находящиеся на поверхности, превращаются в малорастворимый CaF2. Пленка этого соединения и выполняет защитную функцию. Поверхность железобетонных изделий флюотируют 3,5…7% раствором кислоты H2SiF6. Кроме того, для этой цели предложено также использовать сухой газообразный HF под давлением 4…6 атм. В результате образуется SiF4, который при взаимодействии с находящимся в бетоне Ca(OH)2 дает малорастворимый CaF2 и гель кремниевой кислоты, который также малорастворим. Они и выполняют защитную функцию бетона. Химическая стойкость бетона резко возрастает, особенно в агрессивных средах.

За рубежом при строительстве и эксплуатации грунтовых и щебеночных дорог для их обеспыливания широко используют растворы CaСl2. За летний сезон дорогу поливают 3…4 раза 75%-ным раствором этой соли. Отметим также, что CaCl2 ускоряет твердение бетона и увеличивает морозостойкость строительных растворов.

 

Химия вокруг нас. Раритетные издания. Наука и техника

Юрий Кукушкин

Строительные материалы

Природные или искусственные вещества, в состав которых входит кремнезем SiO2, называют силикатами. Это слово происходит от лат. silex – кремень. Современная силикатная промышленность – важнейшая отрасль народного хозяйства. Она обеспечивает основные потребности страны в строительных материалах. Стекло является типичным представителем силикатных материалов, но о нем уже была речь. Керамические материалы также относятся к силикатным. Знакомство с ними также уже состоялось. Здесь остановимся главным образом на связующих материалах и материалах, получающихся с их использованием, а также на уникальном строительном материале – древесине.

Известь как связующий материал

Известь – один из древнейших связующих материалов. Археологические раскопки показали, что во дворцах древнего города Кносса, в центральной части острова Крит – в одном из центров эгейской культуры, имелись росписи стен пигментами, закрепленными гашеной известью. Эти дворцы относят к XVI…XV вв. до н.э. В данном случае известь использована и как связующее, и как клей.

«Негашеную известь» (оксид кальция, CaО) получают обжигом различных природных карбонатов кальция. Реакция обжига обратима и описывается уравнением

CaCO3 ↔ CaО + CO2; ΔH = –179 кДж

Можно отметить, что содержание в негашеной извести небольших количеств неразложившегося карбоната кальция CaCO3 улучшает связующие свойства извести. К этому же приводят небольшие примеси силикатов, алюмосиликатов и ферритов кальция, часто присутствующих в природном карбонате.

Гашение извести сводится к переводу оксида кальция в гидроксид:

CaO + H2O3 ↔ Ca(OH)2; ΔH = +65 кДж

Эта реакция экзотермическая, т.е. протекает с выделением теплоты, что заметно каждому проводящему операцию гашения. Считают, что при хранении негашеной извести контакт с влагой может привести к такому разогреванию, что способно воспламениться дерево.

Для использования извести в качестве связующего ее гасят, готовят тесто, которое затем смешивают с песком в количестве от двух до четырех частей по объему.

Твердение извести связано с физическими и химическими процессами. Во-первых, происходит испарение механически примешанной воды. Во-вторых, гидроксид кальция кристаллизуется, образуя известковый каркас из сросшихся кристаллов Ca(OH)2 и окружающей частицы песка. Кроме того, происходит взаимодействие гидроксида кальция с CO2 воздуха с образованием карбоната («карбонизация»):

Ca (OH)2 + CO2 = CaCO3 + H2О

Оба эти процесса (кристаллизация и карбонизация) протекают довольно медленно. Поскольку процесс карбонизации связан с выделением воды, то стены, сложенные с использованием известкового раствора, долго остаются сырыми. Для ускорения процесса карбонизации иногда внутрь домов вносят жаровни с горящими углями, которые и генерируют необходимый углекислый газ:

С + O2 = CO2

Теперь должно быть понятно, что прогреванием отштукатуренных поверхностей электрическими отражательными лампами или сухим теплым воздухом нельзя ускорить процесс карбонизации. Наоборот, это приведет к обезвоживанию штукатурки, что затруднит поглощение ею диоксида углерода.

Плохо или «ложно» высохшая штукатурка может впоследствии привести к отслаиванию пленки масляной краски вследствие образования мыла в результате взаимодействия кальциевой щелочи с жирами олифы (растительного масла).

Чтобы установить зрелость связки или штукатурки, т.е. завершение процесса карбонизации, на них наносят каплю 1%-ного спиртового раствора фенолфталеина. При наличии не связанной в карбонат извести происходит покраснение.

Добавление песка к известковому тесту необходимо потому, что в ином случае при затвердевании оно дает сильную усадку и растрескивается. Песок в известковом тесте служит как бы арматурой, которая препятствует изменению объема и растрескиванию при высыхании. Кроме того, песок удешевляет раствор и делает его более пористым, что облегчает удаление испаряющейся воды и доступ CO2 внутрь связующего материала. В известковом растворе (известковое тесто, замешанное с песком) должно быть столько извести, чтобы ее хватило для заполнения всех пустот между песчинками и обмазывания каждой из них. При большом избытке извести, а также при неравномерном ее распределении (при плохом перемешивании) в местах скопления извести при затвердевании могут появиться трещины.

Для известкового раствора предпочитают применять горный песок, состоящий из угловатых песчинок. Речной песок состоит из округлых, скатанных зерен, что приводит к меньшей прочности связки. Как уже было сказано, наличие в гашеной извести небольшой примеси карбоната кальция CaCO3 улучшает связующие свойства извести. Это обусловлено тем, что частички карбоната кальция играют роль центров кристаллизации при карбонизации и тем самым ускоряют процесс затвердевания.

Красный глиняный кирпич

Красный глиняный кирпич изготавливают из замешанной с водой глины с последующим формованием, сушкой и обжигом. Сформованный кирпич (сырец) не должен давать трещин при сушке. Плохо высушенный сырец при обжиге неизбежно приведет к образованию трещин. Красная окраска кирпича обусловлена наличием в глине оксида Fe2O3. Эта окраска получается, если обжиг ведут в окислительной атмосфере, т.е. при избытке воздуха. При наличии в атмосфере восстановителей на кирпиче появляются серовато-синеватые тона.

В настоящее время в строительстве широко используют пустотелый кирпич, т.е. имеющий внутри полости определенной формы. Не теряя существенно теплоизоляционные свойства, такой кирпич позволяет уменьшать массу жилого здания примерно на 25…40%. Это позволяет существенно сократить затраты при транспортировке и трудозатраты на строительстве.

Для облицовки зданий изготавливают двухслойный кирпич. При его формовании на обычный кирпич наносится слой из светложгущейся или равномерно окрашенной глины. Сушку и обжиг двухслойного облицовочного кирпича производят по обычной технологии.

Важными характеристиками кирпича являются влагопоглощение и морозостойкость. Они взаимосвязаны. По техническим нормам водопоглощение красного глиняного кирпича около 8%. При понижении температуры вода в порах кирпича замерзает. Поскольку объем льда больше, чем воды, то при замерзании стенки пор испытывают давление, в результате чего могут появиться трещины. Морозостойкость кирпича, так же как и другой строительной керамики, определяют пятнадцатикратным помещением изделия в среду при –15°C с последующим оттаиванием в воде при +20°C. Для предотвращения разрушения от атмосферных воздействий кирпичную кладку обычно защищают штукатуркой, облицовыванием плиткой или в крайнем случае окраской. Регулирование пористости и объемной массы кирпича и других керамических изделий, а также придание им определенных теплофизических свойств осуществляют вводом в сырую массу выгорающих добавок – древесных опилок торфяной крошки, отходов промышленности полимерных материалов или вводом пористых природных минералов. Производство обжигового полого кирпича обходится в 1,2 раза дороже, чем белого силикатного.

Особым видом глиняного обожженного кирпича является клинкерный. Его применяют для мощения дорог, облицовки цоколей зданий, в гидротехнических сооружениях. Клинкерный кирпич производят из специальных глин с большой вязкостью и малой деформируемостью при обжиге. Он характеризуется сравнительно низким водопоглощением (от 0,9 до 5,5%), большой прочностью на сжатие и большой износостойкостью. При мощении дорог он рассчитан на эксплуатацию в течение 10…12 лет.

Силикатный кирпич

Сырьем для силикатного кирпича служит известь и кварцевый песок. При приготовлении массы известь составляет 5,5…6,5% по массе, а вода – 6…8%. Подготовленную массу прессуют и затем подвергают нагреванию (при температуре около 170°C) в автоклаве под действием пара высокого давления. Химическая сущность процесса твердения силикатного кирпича совершенно иная, чем при твердении связующего материала на основе извести и песка. При высокой температуре значительно ускоряется кислотно-основное взаимодействие гидроксида кальция Ca(OH)2 с диоксидом кремния SiO2 с образованием соли – силиката кальция CaSiO3. Образование последнего и обеспечивает связку между зернами песка, а следовательно, прочность и долговечность изделия.

Силикатный кирпич имеет светло-серый цвет, но иногда его окрашивают. Для этой цели используют глины или промышленные отходы, содержащие оксиды железа. Водопоглощение силикатного кирпича довольно высокое, но не должно превышать 16%. Вследствие высокого водопоглощения по сравнению с красным глиняным кирпичом он обладает меньшей морозостойкостью. Силикатный кирпич в основном используют в качестве стенового материала для возведения надземных частей зданий. Его нельзя применять для фундаментов, подвергающихся воздействию грунтовых вод, особенно если последние содержат CO2, а также для кладки печей, так как он не выдерживает длительного воздействия высоких температур.

Цемент

Цемент – собирательное название различных порошкообразных вяжущих веществ, способных при смешении с водой образовывать пластичную массу, приобретающую со временем камневидное состояние. Большинство цементов является гидравлическими, т.е. вяжущими веществами, которые, начав твердеть на воздухе, продолжают твердеть и под водой. Первый цемент был открыт во времена Римской империи. Жители местечка Пуццоли, расположенного у подножья вулкана Везувий, заметили, что при добавлении к извести вулканического пепла (пуццоланы) образуется эффективное связующее средство. Сама известь, как известно, проявляет связующие свойства, но в связке неустойчива к воде. Примерно в это же время жители Древней Руси заметили, что устойчивость к воде придает извести измельченная обожженная глина («цемянка»). Такие гидравлические связующие материалы использовали для сооружения каменных построек древнего Киева и Новгорода.

Одним из основных и наиболее распространенных промышленных цементов является портландцемент. Его рецепт был запатентован английским каменщиком Дж. Аспадом в 1824 г. В настоящее время портландцемент готовят обжигом до спекания (т.е. до появления жидкой фазы) смеси известняка и алюмосиликатного компонента (глины, шлака, золы). Спек размалывают и в него вводят некоторые добавки. Он состоит из 60…65% извести, ~24% кремнезема SiO2 и ~8% глинозема Al2O3. В свое время вблизи Новороссийска были найдены огромные залежи породы, по составу близкой к сырьевой смеси портландцемента. Этот сырьевой источник послужил основой для широкого развития цементной промышленности в районе Новороссийска. Обычно цементы при твердении в условиях недостаточной влажности дают усадку. Пористая структура затвердевшего цемента и его усадка являются причинами водопроницаемости бетонных конструкций. Для ряда строительных работ рекомендуется применять безусадочный (расширяющийся) цемент. Такие цементы включают в себя расширяющиеся добавки, например гипс. В качестве основы берут тот же портландцемент или другие марки.

Слово цемент происходит от лат. caementum, что означает битый камень.

Строительные растворы

Строительные растворы применяют для связывания кирпичей, камней и блоков при сооружении стен. Кроме того, их используют для штукатурки стен и потолков с целью получения ровных поверхностей и защиты от внешних воздействий. В строительные растворы входят вяжущее вещество и заполнитель. В качестве основного вяжущего вещества используют цемент, а в качестве заполнителя – песок. Часто в строительные растворы включают смесь двух вяжущих веществ, например цемент и известь. Такие растворы называют смешанными. Для каменной кладки обычно используют цементно-известково-песчаные растворы. Соотношение этих компонентов в объемных частях от 1:0,2:3 до 1:2:12 (цемент:известь:песок).

Для штукатурных работ часто используют растворы на основе смеси цемента, гипса и песка в следующих объемных соотношениях: от 1:0,25:4 до 1:4:6. В таких растворах строительный гипс ускоряет схватывание и твердение, а также устраняет оплывание. Растворы, применяемые для штукатурных работ, не должны давать усадки. Гипс при затвердевании расширяется в объеме. Поэтому его введение в растворы имеет весьма веское обоснование. При оштукатуривании потолков и карнизов дозировку гипса увеличивают, а при штукатурке стен – уменьшают.

Если стремятся повысить пластичность и связность растворов, то вместо гипса предпочитают брать известь. Асбестоцементные изделия изготавливают из смеси асбеста (~20%), цемента (~80%) и воды. Асбест, называемый также горным льном, – это природный волокнистый минерал, способный расщепляться на тончайшие гибкие и эластичные волокна, из которых так же, как и из растительных волокон (лен, хлопок), можно прясть нити и вырабатывать ткани. Асбест негорюч, обладает низкой теплопроводностью и потому изготовленная из асбестовых тканей одежда используется для работы около объектов с высокой температурой. Промышленность выпускает следующие асбоцементные изделия: кровельные (в частности, шифер), стеновые, трубы и др. Как уже было отмечено, асбест – огнестойкий материал, однако при 70°C он начинает терять прочность. При температуре 368°C удаляется содержащаяся в нем вода, в результате чего полностью теряется прочность асбеста.

Асбоцементные изделия

Асбоцементные изделия обладают более высокой прочностью при растяжении, изгибе и ударных нагрузках, чем затвердевшее цементное тесто. Это объясняется армирующими свойствами асбеста, схожими с армирующим действием стальной арматуры в железобетоне. Асбоцементные изделия кроме огнестойкости и теплоизоляционных свойств обладают малой электрической проводимостью, стойкостью к атмосферным воздействиям, хорошей прошиваемостью гвоздями. Они легко обрабатываются режущими и пилящими инструментами. Асбоцементные изделия характеризуются меньшей водопроницаемостью и большей устойчивостью к действию минерализованных вод, чем бетоны и растворы из портландцемента. Асбоцементные кровельные покрытия долговечны, морозостойки, несгораемы, не требуют окраски и редко нуждаются в ремонте. К их недостаткам относятся хрупкость, коробление и, при сильных ветрах, возможность проникания воды через стыки соседних листов.

На основе гипса с введением гидроксида железа (III), получаемого из промышленных отходов, изготавливают теплоизоляционный материал феррон или феррогипс. Его используют для тепловой изоляции аппаратов и трубопроводов, а также в строительстве.

Строительные гипсовые изделия

Примерно в третьем тысячелетии до н.э. в строительстве взамен глины в качестве связующего материала стали использовать гипс. Для этой цели его начали применять даже раньше, чем известь. Уже 5…6 тыс. лет назад египтяне заделывали швы сложенных из камней пирамид гипсом. Такие швы были обнаружены, в частности, в пирамиде Хеопса.

Строительный гипс получают из природного минерала – гипсового камня CaSO4·2H2O или из минерала ангидрита CaSO4, а также из отходов некоторых отраслей химической индустрии. Природный гипс содержит примеси глины, песка, известняка, колчедана. Для его использования в качестве строительного материала примеси не должны превышать 35%.

Гипсовый камень при нагревании примерно до 140°C теряет часть воды и переходит в алебастр (полуводный гипс CaSO4·0,5H2O) в соответствии с уравнением

CaSO4·2H2О = CaSO4·0,5H2О + 1,5H2О

При замешивании с водой измельченного полуводного гипса CaSO4·0,5H2O происходит ее поглощение вновь до состояния дигидрата CaSO4·2H2O и масса превращается в твердое тело. Это свойство гипса широко используют в травматологии, ортопедии и хирургии для изготовления гипсовых повязок, обеспечивающих фиксацию отдельных частей тела. Отвердевание замешанного с водой гипса сопровождается небольшим увеличением объема. Это позволяет проводить тонкое воспроизведение всех деталей лепной формы, что широко используют скульпторы и архитекторы. Для придания скульптурному изделию вида «слоновой кости» слепок пропитывают раствором парафина или стеарина в бензине. Воскообразное вещество, остающееся после испарения летучих углеводородов, заполняет поры и предохраняет гипс от атмосферных воздействий.

При повышении температуры до 220°C двуводный гипс полностью теряет воду, образуя безводный CaSO4, который лишь при вылеживании поглощает влагу и переходит в полугидрат. Однако если обжиг вести при температуре выше 220°C, то получается безводный CaSO4, который влагу уже не поглощает и не «схватывается» при затворении водой. Его называют мертвым гипсом. Однако мертвый гипс может быть использован для получения ангидритового цемента при добавлении 1…5% извести.

Строительный гипс получают прокаливанием природного гипса или ангидрита при температуре около 1300°C. При этой температуре выделяется триоксид серы по реакции CaSO4 = CaO + SO3 и получается твердый раствор CaО в CaSO4. При замешивании с водой измельченный продукт быстро образует очень твердую и плотную массу. Начало схватывания затворенного с водой строительного гипса наступает не ранее 4 мин, конец схватывания – не ранее 6 мин, но и не позднее 30 мин.

В строительстве из гипса изготавливают сухую штукатурку, плиты и панели для перегородок, стеновые камни, архитектурные детали, вентиляционные короба и др.

Гипсовые изделия характеризуются сравнительно небольшой плотностью, несгораемостью и относительно невысокой теплопроводностью. В состав гипсовых изделий вводят древесные опилки, шлаки и другие наполнители, уменьшающие массу и улучшающие гвоздимость, под которой в строительном деле понимают способность материала прочно удерживать вбитые гвозди, не растрескиваясь. Следует сказать, что эти наполнители приводят к некоторому уменьшению прочности изделий. Гипс является воздушно вяжущим материалом, поэтому изделия из него не рекомендуется применять в помещениях с повышенной влажностью.

Гипсовая сухая штукатурка

Гипсовая сухая штукатурка – листовой отделочный материал, состоящий из гипсового слоя, покрытого со всех сторон (кроме торцевых) картонной оболочкой. В гипсовый слой вводят пенообразователь (увеличивающий пористость, а значит, уменьшающий массу и теплопроводность) и клей – декстрин или сульфитно-спиртовую барду, обеспечивающих сцепление с картоном. Картон приклеивается жидким стеклом или декстрином.

Гипсовые перегородочные плиты

Гипсовые перегородочные плиты изготавливают как из одного строительного гипса, так и из его смеси с наполнителями – древесными опилками или шлаками тепловых электростанций. Замешанную с водой массу заливают в форму, выдерживают определенное время, а затем сушат. Процесс этот полностью механизирован.

Следует также отметить, что гипс в смеси с глиной, песком и известняком на Кавказе называют гажей и ганчем, а в Средней Азии – арзыком. Они встречаются в этих засушливых районах в виде породы.

Бетон

Бетон является разновидностью искусственных каменных материалов. Безусловно, это важнейший материал современной строительной индустрии, хотя и известен уже около 2 тыс. лет. Он использовался уже в строительстве одного из величайших сооружений I в. до н.э. Колизея в Риме наряду с кирпичом и природными камнями. Интересно отметить, что древнеримское сооружение Пантеон, построенный в начале нашей эры, перекрыт бетонным куполом диаметром 42,7 м. Для изготовления бетона используют цемент (10…15% по массе). Для этой цели чаще всего берут портландцемент. Активными составными частями бетона являются вяжущие вещества и вода, а пассивными – наполнители. Обычно сочетают крупные и мелкие наполнители. К крупным относят гравий и щебень, а к мелкому – песок. Должно быть рациональное соотношение между крупным и мелким наполнителем. Частицы мелкого наполнителя должны заполнять пустоты между крупными. Пустоты между частицами наполнителя должны заполняться цементным тестом. Наполнители при обычных температурах практически не вступают в химическое взаимодействие с вяжущим веществом и водой.

Обыкновенный (тяжелый) бетон изготавливают на основе тяжелых наполнителей – песка, гравия или щебня. Он обладает большой теплопроводностью и поэтому не применяется для возведения стен жилых домов. Малая плотность легких бетонов обусловлена тем, что для их изготовления применяют пористые наполнители: шлаковую пемзу, котельный и доменные шлаки, вспученный перлит, туф и др. Легкие бетоны имеют замкнутые поры, заполненные воздухом, который, являясь плохим проводником теплоты, обеспечивает малую теплопроводность. Это дает возможность применять легкий бетон для жилищного строительства. Естественно, что увеличение пористости снижает его прочность.

Существуют ячеистые бетоны, которые содержат мелкие ячейки, занимающие до 85% объема. Это пенобетон и газобетон. Первый получают смешением цементного теста с пеной, устойчивой в течение нескольких часов, т.е. до схватывания цемента. Существует несколько пенообразователей, среди которых используется и гидролизованная кровь, вырабатываемая из отходов мясокомбинатов. Для получения газобетона в тесто вводят газообразующие добавки. Обычно – это алюминиевая пудра, вводимая в количестве 0,1…0,2% по массе цемента. Поскольку среда цементного теста щелочная, алюминий взаимодействует со щелочами в соответствии с уравнением

2Al + Ca(OH)2 + 2H2О = Ca(AlO2)2+ 3H2

Выделяющийся водород и вспучивает цементное тесто, делая его пористым.

Для упрочнения бетон армируют стальными прутами. Такой бетон называют железобетоном. Его широко используют в современном строительстве, изготавливая конструкции и детали для промышленных, жилых и общественных зданий, транспортных сооружений и многое другое.

Растворимое (жидкое) стекло

Это водный раствор силиката натрия – натриевой соли кремниевой кислоты. Оно известно со времени Агриколы, т.е. с середины XVI в. Жидкое стекло стало доступным для технического использования после работ Фукса (1818). Поэтому раньше его называли фуксовым стеклом. Жидкое стекло изготавливают сплавлением песка с содой с последующим вывариванием полученного и измельченного стекла в воде. Водные растворы жидкого стекла имеют сильно щелочную реакцию. Под действием углекислого газа из них выделяются малорастворимые кремниевые кислоты. Щелочные свойства и способность выделять кремниевую кислоту обусловливают области применения растворимого стекла: текстильное и бумажное производство, в мыловарении и лакокрасочном деле. Жидкое стекло придает крепость и лоск штукатурке, цементам и другим материалам, содержащим известь, так как кальций придает стеклу нерастворимость в воде. Жидкое стекло используют для пропитки рыхлых грунтов с целью их упрочнения и закрепления. На основе растворимого стекла при добавлении наполнителей и модификаторов получают силикатный клей, который применяют для склеивания керамики, стекол, асбеста, металлов и других материалов. Конечно, его используют и в канцелярском деле для склеивания бумаги и картона.

Вследствие близкой природы жидкое стекло (силикатный клей), попавшее на поверхность стекла, при высыхании образует прочное сцепление. Это приводит к нарушению ровной поверхности стекла, т.е. к его порче. Однако данное свойство может быть использовано для придания стеклу матовости. С этой целью жидкое стекло смешивают с порошком мела (зубным порошком) и наносят на поверхность стекла. При высыхании образуется плотный слой, который и придает стеклу матовость.

На основе жидкого стекла изготавливают искусственные камни. Они получаются в результате смешения стекла с различными (чаще минеральными) наполнителями: карбонатными горными породами, кварцевым песком, древесными опилками и др. Отформованную массу помещают в раствор хлорида кальция CaСl2 или сульфата алюминия A12(SO4)3 (алюминиевых квасцов). Это приводит к затвердению массы и образованию камня. Вводя в массу окрашенные добавки, получают камни, напоминающие натуральные.

С целью предохранения поверхности каменных зданий от преждевременного разрушения разработан способ ее флюатирования, т.е. обработки фторидными соединениями. Для этого используют MgSiF6 и ZnSiF6. В результате химической реакции ионы кальция, находящиеся на поверхности, превращаются в малорастворимый CaF2. Пленка этого соединения и выполняет защитную функцию. Поверхность железобетонных изделий флюотируют 3,5…7% раствором кислоты H2SiF6. Кроме того, для этой цели предложено также использовать сухой газообразный HF под давлением 4…6 атм. В результате образуется SiF4, который при взаимодействии с находящимся в бетоне Ca(OH)2 дает малорастворимый CaF2 и гель кремниевой кислоты, который также малорастворим. Они и выполняют защитную функцию бетона. Химическая стойкость бетона резко возрастает, особенно в агрессивных средах.

За рубежом при строительстве и эксплуатации грунтовых и щебеночных дорог для их обеспыливания широко используют растворы CaСl2. За летний сезон дорогу поливают 3…4 раза 75%-ным раствором этой соли. Отметим также, что CaCl2 ускоряет твердение бетона и увеличивает морозостойкость строительных растворов.

Древесина

Лес является величайшим даром природы. Его называют легкими нашей планеты, поскольку в процессе фотосинтеза он поглощает углекислый газ и одновременно выделяет кислород, играя, таким образом, важнейшую роль в сохранении кислородного баланса атмосферы воздуха. Лес – источник древесины – уникального строительного материала. Здесь важно отметить то, что древесина постоянно воспроизводится и при правильном ведении лесного хозяйства лес может быть неисчерпаемым поставщиком строительного материала и сырьем для лесохимической промышленности. На земном шаре существует около 500 видов деревьев хвойных пород и около 30000 деревьев лиственных пород. Ученые считают, что хвойные породы деревьев появились на земле 200…300 млн лет назад, а лиственные намного позже – около 100 млн лет назад.

Специалисты утверждают, что при правильной эксплуатации деревянные конструкции могут служить весьма долго. Недавно в Санкт-Петербурге были вскрыты стены главного корпуса технологического института им. Ленсовета, построенного более 160 лет назад. Оказалось, что внутри они имеют деревянные конструкции, которые оформлены кирпичной кладкой. Удивление и восхищение вызвало то, что деревянные конструкции находятся в хорошем состоянии и могут нести службу еще многие годы.

Однако древесина является хорошей питательной средой для дереворазрушающих грибков и насекомых. Важным фактором для их развития является повышенная влажность. В настоящее время выявлено около 100 видов таких грибков, разрушающих древесину. Поэтому перед химиками стоит важнейшая народнохозяйственная задача химическими средствами защитить древесину от разрушения. Для этой цели используют антисептики – препараты, уничтожающие микроорганизмы или задерживающие их размножение и развитие. Для защиты древесины антисептики должны отвечать ряду требований: быть токсичными к дереворазрушающим грибкам и насекомым, но безвредными для человека и животных; хорошо проникать в древесину и быть стойкими во времени; не снижать прочность древесины и не портить ее внешнего вида; не вымываться водой. Большинством из этих свойств обладают каменноугольные масла, образующиеся при коксовании каменных углей. Первые рекомендации по их использованию для пропитки древесины были даны еще в 1835…1838 гг. Несмотря на большое количество выявленных антисептиков, ни один из них не обладает столь широким комплексом необходимых свойств. Каменноугольные масла применяют в чистом виде или в смеси в разбавителями для защиты древесины, работающей в самых жестких условиях: шпалы, подземная часть столбов, опоры мостов и др. Однако у каменноугольных пропиточных масел имеются и существенные недостатки. Они придают древесине повышенную горючесть, окрашивают ее в непривлекательный черный цвет и обусловливают неприятный запах. Пропитанную ими древесину нельзя склеивать.

Наряду с каменноугольными маслами для этой же цели используют «сланцевое масло». Понятно, что оно получается на сланцехимическом производстве. В отличие от каменноугольного сланцевое масло не загустевает вплоть до температуры –30°C. Для употребления в быту и в индивидуальном строительстве используют одну из дистиллатных фракций сланцевого масла, названную «Лигно». Этот антисептик имеет гораздо более терпимый запах, светлую окраску и потому даже повышает декоративные свойства древесины, оттеняя ее фактуру.

Существуют эффективные антисептики, растворимые в органических растворителях, – пентахлорфенол и смесь медных солей нафтеновых кислот. Они обладают рядом важных для сохранения древесины свойств, но первый имеет специфический запах и окрашивает древесину в коричневый цвет, а второй – в непопулярный зеленый цвет.

Химики также предлагают несколько неорганических антисептиков. Среди них фторид натрия NaF, комплексные соли Na2[SiF6] и NH4[BF4]. Все они водорастворимы и потому легко вымываются из древесины. В связи с этим их можно применять для пропитки деталей конструкций, не подвергающихся постоянному увлажнению. Существуют и антисептики на основе мышьяка – мышьяковая кислота H3AsO4 и ее соль Na2HAsO4. Для защиты древесины также используют смесь, состоящую из трех частей дихромата натрия Na2Cr2O7 и двух частей сульфата меди CuSO4·5H2O, а также смесь какой-либо соли меди (II) и борной кислоты H3BO3. Все эти антисептики не должны быть дорогими и потому, как правило, используют отходы различных производств, а не чистые соединения.

Для борьбы с гниением древесины и с целью ее консервирования применяют ZnSO4 и ZnCl2. Для этой же цели широко используют фториды металлов (например, NaF, KF, BaF2, ZnF2) и кремнефториды (Na2SiF6, MgSiF6, ZnSiF6), а также соединения мышьяка. Кремнефториды лучше, чем простые фториды, проникают в древесину и потому эффективнее проявляют свои антисептические свойства. Кремнефториды не дают осадка с известью и солями кальция и потому могут быть использованы для консервирования древесины, находящейся в контакте со штукатуркой.

Известен антисептик «уралит», который состоит из Na2Cr2O7, NaF и динитрофенола. Он используется для пропитки шпал и телеграфных столбов.

Для защиты древесины от гниения используют также борную кислоту H3BO3 и буру Na2B4O7·10H2О. Эти вещества придают древесине огнестойкость. Кроме того, огнестойкость древесины достигается ее пропиткой силикатом натрия Na2SiO3, NaH2PO4 или Na2HPO4. Эти же соединения используются для придания огнестойкости тканям. При повышенных температурах образуются легкоплавкие соединения, которые покрывают поверхность волокон (тканей или древесины) тонкой пленкой, защищающей данные материалы от воспламенения.

Одним из существенных недостатков деревянных конструкций является горючесть. Для повышения огнестойкости древесину обрабатывают растворами борной кислоты, соды Na2CO3, соли (NH4)2HPO4 или карбамида, используемого обычно в качестве азотного удобрения.

Следует отметить, что деревянные детали, изготовленные из обработанных парами аммиака и спрессованных заготовок из березы, тополя, осины, прочны и устойчивы к действию кислот и щелочей. Естественно, что такая обработка может быть проведена лишь в заводских условиях.

Древесноволокнистые плиты

Древесноволокнистые плиты получают из лесосечных отходов, отходов деревообработки и из технологической щепы. Изготовление плит заключается в пропарке и размоле древесного сырья до волокон. Волокнистая масса смешивается с клеем и в виде суспензии волокна в воде подается на сетку отливной машины, где формируется волокнистый ковер. Затем следует сушка ковра в роликовой сушильной камере. Так получают пористые мягкие плиты. Для производства твердых плит после отжима воды из волокнистого ковра его прессуют при нагревании, а затем «закаливают» выдерживанием в течение нескольких часов в камерах при 150…170°C. Мягкие плиты используют в качестве утеплительного материала, а твердые для отделки внутренних стен и потолков вместо мокрой или гипсовой штукатурки. Считают, что одна пористая мягкая плита толщиной 12,5 мм по тепловым свойствам равноценна сухой доске толщиной в 40 мм или кирпичной стенке толщиной в один кирпич.

Древесностружечные плиты

Сырьем для них служат отходы деревообработки: стружка, в небольшом количестве опилки, мелкие куски древесины, щепа. Высушенное древесное сырье смешивают с мочевиноформальдегидной или фенолформальдегидной смолой и из смеси формируют на специальных формовочных машинах ковер плиты. Затем его прессуют при температуре 100…140°C. Древесностружечные плиты могут быть облицованы шпоном, бумагой, полимерными пленками. Взамен древесины из них изготавливают внутренние перегородки помещений, двери, подоконники, пол и другие детали. Эти плиты также идут на изготовление мебели.

 

• Клеи

• Оглавление


Дата публикации:

28 декабря 2002 года

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *