Онлайн найдите корень уравнения – Уравнения. Онлайн калькулятор с примерами

Содержание

Решение иррациональных уравнений онлайн · Как пользоваться Контрольная Работа РУ

Иррациональные уравнения бывают от простых до сложных — и всех их можно решить онлайн и с подробным решением с помощью калькулятора онлайн.

Итак:

Простые иррациональные уравнения

Будем считать, что простые уравнения будут содержат только одну часть иррациональности. Тогда рассмотрим пример:

2*x + sqrt(-x + 3)  = 3

Введём это уравнение в форму калькулятора

Решение иррациональных уравнений онлайн

Тогда, вы получите подробное решение:

Дано уравнение


  _______          
\/ 3 - x  + 2*x = 3

  _______          
\/ 3 - x  = 3 - 2*x

Возведём обе части ур-ния в(о) 2-ую степень

Перенесём правую часть уравнения левую часть уравнения со знаком минус

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
x1 = ---------
        2*a   

            ___
     -b - \/ D 
x2 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(11)^2 - 4 * (-4) * (-6) = 25

Т.к. D > 0, то уравнение имеет два корня.


x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

или

 

Т.к.


  _______          
\/ 3 - x  = 3 - 2*x

и

то

или

Тогда, окончательный ответ:

Средние иррациональные уравнения

Средними же будем считать уравнения, которые содержат две иррациональные части в уравнении.

Например,

sqrt(4*x + 1)  + sqrt(3*x — 2)  = 2

надо ввести в форму в калькуляторе

Иррациональное уравнение онлайн

Результат будет таким:

Дано уравнение


  _________     __________    
\/ 1 + 4*x  + \/ -2 + 3*x  = 2

Возведём обе части ур-ния в(о) 2-ую степень


                            2    
/  _________     __________\     
\\/ 1 + 4*x  + \/ -2 + 3*x /  = 4

или


 2                 _____________________    2              
1 *(3*x - 2) + 2*\/ (3*x - 2)*(4*x + 1)  + 1 *(4*x + 1) = 4

или


          __________________          
         /                2           
-1 + 2*\/  -2 - 5*x + 12*x   + 7*x = 4

преобразуем:


     __________________          
    /                2           
2*\/  -2 - 5*x + 12*x   = 5 - 7*x

Возведём обе части ур-ния в(о) 2-ую степень


                2            2
-8 - 20*x + 48*x  = (5 - 7*x) 

                2                   2
-8 - 20*x + 48*x  = 25 - 70*x + 49*x 

Перенесём правую часть уравнения левую часть уравнения со знаком минус

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
x1 = ---------
        2*a   

            ___
     -b - \/ D 
x2 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(50)^2 - 4 * (-1) * (-33) = 2368

Т.к. D > 0, то уравнение имеет два корня.


x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

или

 

Т.к.


   __________________          
  /                2    5   7*x
\/  -2 - 5*x + 12*x   = - - ---
                        2    2 

и


   __________________     
  /                2      
\/  -2 - 5*x + 12*x   >= 0

то

или

проверяем:


       __________     ___________    
-2 + \/ 1 + 4*x1  + \/ -2 + 3*x1  = 0

=


   _______________________      ________________________        
  /       /         ____\      /        /         ____\         
\/  1 + 4*\25 - 4*\/ 37 /  + \/  -2 + 3*\25 - 4*\/ 37 /  - 2 = 0

=

— тождество

Тогда, окончательный ответ:

Сложные иррациональные уравнения

Самыми сложными же будут уравнения с тремя частями иррациональностями, значит будет такой пример:

sqrt(x + 5)  — sqrt(x — 1)  = sqrt(2*x + 4)

В форме калькулятора это будет выглядеть так:

Подробное решение иррациональных уравнений

Тогда получите подробное объяснение

Дано уравнение


  _______     ________     _________
\/ 5 + x  - \/ -1 + x  = \/ 4 + 2*x 

Возведём обе части ур-ния в(о) 2-ую степень


                        2          
/  _______     ________\           
\\/ 5 + x  - \/ -1 + x /  = 4 + 2*x

или


 2               _________________       2                  
1 *(x + 5) - 2*\/ (x + 5)*(x - 1)  + (-1) *(x - 1) = 4 + 2*x

или


         _______________                
        /       2                       
4 - 2*\/  -5 + x  + 4*x  + 2*x = 4 + 2*x

преобразуем:


      _______________    
     /       2           
-2*\/  -5 + x  + 4*x  = 0

преобразуем

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
x1 = ---------
        2*a   

            ___
     -b - \/ D 
x2 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(4)^2 - 4 * (1) * (-5) = 36

Т.к. D > 0, то уравнение имеет два корня.


x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

или

проверяем:


  ________     _________     __________    
\/ 5 + x1  - \/ -1 + x1  - \/ 4 + 2*x1  = 0

=


  _______     ________     _______    
\/ 5 + 1  - \/ -1 + 1  - \/ 4 + 2  = 0

=

— тождество


  ________     _________     __________    
\/ 5 + x2  - \/ -1 + x2  - \/ 4 + 2*x2  = 0

=


  _______     ________     ____________    
\/ 5 - 5  - \/ -1 - 5  - \/ 4 + 2*(-5)  = 0

=

— Нет

Тогда, окончательный ответ:

www.kontrolnaya-rabota.ru

Решение кубических уравнений онлайн · Как пользоваться Контрольная Работа РУ

Рассмотрим два примера кубических уравнений, которые калькулятор уравнений умеет без проблем решать с подробным решением:

Пример простого кубического уравнения

Первый пример будет простым:

49*x^3 — x = 0

Решение кубических уравнений онлайн

После того, как вы нажмёте «Решить уравнение!», то вы получите ответ с подробным объяснением:

Дано уравнение:

преобразуем

Вынесем общий множитель x за скобки

получим:

тогда:

и также

получаем ур-ние

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
x2 = ---------
        2*a   

            ___
     -b - \/ D 
x3 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(0)^2 - 4 * (49) * (-1) = 196

Т.к. D > 0, то уравнение имеет два корня.


x2 = (-b + sqrt(D)) / (2*a)

x3 = (-b - sqrt(D)) / (2*a)

или

Получаем окончательный ответ для -x + 49*x^3 = 0:


x3 = -1/7

 

Второй простой пример кубического уравнения будет таким:

8 = (1/2 + 3*x)^3

Кубическое уравнение онлайн

Получим подробное решение:

Дано уравнение:

преобразуем:

Вынесем общий множитель за скобки


              /               2\    
-9*(-1 + 2*x)*\7 + 12*x + 12*x /    
-------------------------------- = 0
               8                    

Т.к. правая часть ур-ния равна нулю, то решение у ур-ния будет, если хотя бы один из множителей в левой части ур-ния равен нулю.

Получим ур-ния

решаем получившиеся ур-ния:

1.

Переносим свободные слагаемые (без x)

из левой части в правую, получим:

Разделим обе части ур-ния на -9/4

Получим ответ: x1 = 1/2

2.

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
x2 = ---------
        2*a   

            ___
     -b - \/ D 
x3 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(12)^2 - 4 * (12) * (7) = -192

Т.к. D < 0, то уравнение

не имеет вещественных корней,

но комплексные корни имеются.


x2 = (-b + sqrt(D)) / (2*a)

x3 = (-b - sqrt(D)) / (2*a)

или


               ___
       1   I*\/ 3 
x2 = - - + -------
       2      3   

               ___
       1   I*\/ 3 
x3 = - - - -------
       2      3   

Тогда, окончательный ответ:


               ___
       1   I*\/ 3 
x2 = - - + -------
       2      3   

               ___
       1   I*\/ 3 
x3 = - - - -------
       2      3   

Пример сложного кубического уравнения

Третьим примером будет более сложный — возвратное кубическое уравнение онлайн.

5*x^3 -8*x^2 — 8*x + 5 = 0

Чтобы решить такое возвратное кубическое уравнение, то введите данное уравнение в калькулятор:

Возвратное кубическое уравнение

Дано уравнение:


             2      3    
5 - 8*x - 8*x  + 5*x  = 0

преобразуем


   3          2                  
5*x  + 5 - 8*x  + 8 - 8*x - 8 = 0

или


   3         3      2          2              
5*x  - 5*(-1)  - 8*x  - -8*(-1)  - 8*x - 8 = 0

  / 3       3\     / 2       2\                
5*\x  - (-1) / - 8*\x  - (-1) / - 8*(x + 1) = 0

          / 2           2\                                     
5*(x + 1)*\x  - x + (-1) / + -8*(x + 1)*(x - 1) - 8*(x + 1) = 0

Вынесем общий множитель 1 + x за скобки

получим:


        /  / 2           2\                \    
(x + 1)*\5*\x  - x + (-1) / - 8*(x - 1) - 8/ = 0

или


        /              2\    
(1 + x)*\5 - 13*x + 5*x / = 0

тогда:

и также

получаем ур-ние

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
x2 = ---------
        2*a   

            ___
     -b - \/ D 
x3 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(-13)^2 - 4 * (5) * (5) = 69

Т.к. D > 0, то уравнение имеет два корня.


x2 = (-b + sqrt(D)) / (2*a)

x3 = (-b - sqrt(D)) / (2*a)

или


            ____
     13   \/ 69 
x2 = -- + ------
     10     10  

            ____
     13   \/ 69 
x3 = -- - ------
     10     10  

Получаем окончательный ответ для 5 — 8*x — 8*x^2 + 5*x^3 = 0:


            ____
     13   \/ 69 
x2 = -- + ------
     10     10  

            ____
     13   \/ 69 
x3 = -- - ------
     10     10  

www.kontrolnaya-rabota.ru

Решить уравнение с корнем онлайн калькулятор

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Довольно часто в уравнениях встречается знак корня и многие ошибочно считают, что такие уравнения сложные в решении. Для таких уравнений в математике существует специальный термин, которым и именуют уравнения с корнем — иррациональные уравнения.

Главным отличием в решении уравнений с корнем от других уравнений, например, квадратных, логарифмических, линейных, является то, что они не имеют стандартного алгоритма решения. Поэтому чтобы решить иррациональное уравнение необходимо проанализировать исходные данные и выбрать более подходящий вариант решения.

решение уравнений с корнем

Так же читайте нашу статью «Решить уравнения онлайн решателем»

В большинстве случаев для решения данного рода уравнений используют метод возведения обеих частей уравнения в одну и ту же степень

Допустим, дано следующее уравнение:

\[\sqrt{(5x-16)}=x-2\]

Возводим обе части уравнения в квадрат:

\[\sqrt{(5х-16))}^2 =(x-2)^2\], откуда последовательно получаем:

\[5x-16=x^2-4х+4\]

\[x^2-4x+4-5x+16=0\]

\[x^2-9x+20=0\]

Получив квадратное уравнение, находим его корни:

\[x=(9\pm\sqrt{(81-4\cdot1\cdot20)\div(2\cdot1)}\]

\[x=(9\pm1)\div 2\]

Ответ: \[x1=4, x2=5\]

Если выполнить подстановку данных значений в уравнение, то получим верное равенство, что говорит о правильности полученных данных.

Где можно решить уравнение с корнями онлайн решателем?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

www.pocketteacher.ru

Комплексные числа · Калькулятор Онлайн

Введите комплексное выражение, которое необходимо вычислить

Выполняет простые операции с комплексными числами.

Также умеет:

  • Выполнять деление с подробным решением
  • Находить разные формы комплексных чисел:
    1. Алгебраическую
    2. Тригонометрическую
    3. Показательную
  • Модуль и аргумент комплексного числа
  • Комплексно-сопряжённое к данному
  • Геометрическую интерпретацию комплексного числа

Правила ввода комплексных выражений с примерами:

Комплексное число записывается в виде
a + bj, например 1.5 + 4.7j (j писать слитно)
Комплексная единица (Мнимая)
— должна записываться в виде 1j (Просто j не будет работать)
(3+4j)/(7-5j)
— деление
(3.6+4j)*(7+5j)
— умножение
(3+56j)^7
— возведение в степень
(5+6j) + 8j
— сложение
(5+6j) — (7-1j)
— вычитание
conjugate(1+4j) или conj(1+4j)
Сопряженное (комплексно-сопряженное) число для (1 + 4j)

Можно использовать следующие функции от x (например, x = 1 + 2.5j):

Правила ввода выражений и функций
Выражения могут состоять из функций (обозначения даны в алфавитном порядке):
absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция — арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция — арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
e
e число, которое примерно равно 2.7
exp(x)
Функция — экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
pi
Число — «Пи», которое примерно равно 3.14
sin(x)
Функция — Синус от x
cos(x)
Функция — Косинус от x
sinh(x)
Функция — Синус гиперболический от x
cosh(x)
Функция — Косинус гиперболический от x
sqrt(x)
Функция — квадратный корень из x
sqr(x) или x^2
Функция — Квадрат x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (Лапласа или интеграл вероятности)
В выражениях можно применять следующие операции:
Действительные числа
вводить в виде 7.5, не 7,5
2*x
— умножение
3/x
— деление
x^3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание

Видео пример

www.kontrolnaya-rabota.ru

Онлайн калькулятор: Кубическое уравнение

Сегодня выполняем запрос пользователя Решение кубического уравнения.
Канонический вид кубического уравнения:

Решать кубическое уравнение мы будем по формуле Виета.
Формула Виета — способ решения кубического уравнения вида

Соответственно, чтобы привести к этому виду оригинальное уравнение первым шагом все введенные коэффициенты делятся на коэффициент а:

Калькулятор ниже, а описание формулы Виета — под ним

PLANETCALC, Кубическое уравнение
Кубическое уравнение
Точность вычисления

Знаков после запятой: 2

save Сохранить share Поделиться extension Виджет

Кстати сказать, на других сайтах почему-то для решения кубических уравнений используют формулу Кардано, однако я согласен с Википедией в том, что формула Виета более удобна для практического применения. Так что почему везде формула Кардано — непонятно, разве что лень людям Гиперболические функции и Обратные гиперболические функции реализовывать. Ну мне не лень было.

Итак, формула Виета (из Википедии)

Обратите внимание, что по представлению формулы Виета а — второй коэффициент, а коэффициент перед x3 всегда считается равным 1. Калькулятор позволяет ввести а как коэффициент перед х3, но сразу же на него и делит уравнение, чтобы получить 1

Вычисляем:

Вычисляем:

Если S > 0, то вычисляем:

и имеем три действительных корня:

Если S < 0, то заменяем тригонометрические функции гиперболическими. Здесь возможны два случая в зависимости от знака Q

Q > 0:


(действительный корень)


(пара комплексных корней)

Q < 0:


(действительный корень)


(пара комплексных корней)

Если S = 0, то уравнение вырождено и имеет меньше 3 различных решений (второй корень кратности 2):

По этим формулам калькулятор и работает. Решает вроде правильно, хотя решения с мнимой частью не проверял. Если что, пишите.

planetcalc.ru

Решение неравенств любого вида. Онлайн калькулятор с примерами

Решение неравенств онлайн

Перед тем как решать неравенства, необходимо хорошо усвоить как решаются уравнения.

Не важно каким является неравенство – строгим () или нестрогим (≤, ≥), первым делом приступают к решению уравнения, заменив знак неравенства на равенство (=).

Поясним что означает решить неравенство?

После изучения уравнений в голове у школьника складывается следующая картина: нужно найти такие значения переменной, при которых обе части уравнения принимают одинаковые значения. Другими словами, найти все точки, в которых выполняется равенство. Всё правильно!

Когда говорят о неравенствах, имеют в виду нахождение интервалов (отрезков), на которых выполняется неравенство. Если в неравенстве две переменные, то решением будут уже не интервалы, а какие-то площади на плоскости. Догадайтесь сами, что будет решением неравенства от трех переменных?

Как решать неравенства?

Универсальным способом решения неравенств считают метод интервалов (он же метод промежутков), который заключается в определении всех интервалов, в границах которых будет выполняться заданное неравенство.

Не вдаваясь в тип неравенства, в данном случае это не суть, требуется решить соответствующее уравнение и определить его корни с последующим обозначением этих решений на числовой оси.

Можно сказать на этом полдела сделано. Далее, взяв любую точку на каждом интервале, осталось определить выполняется ли само неравенство? Если выполняется, то он входит в решение неравенства. Ели нет, то пропускаем его.

Как правильно записывать решение неравенства?

Когда вы определили интервалы решений неравенства, нужно грамотно выписать само решение. Есть важный нюанс – входят ли границы интервалов в решение?

Тут всё просто. Если решение уравнения удовлетворяет ОДЗ и неравенство является нестрогим, то граница интервала входит в решение неравенства. В противном случае – нет.

Рассматривая каждый интервал, решением неравенства может оказаться сам интервал, либо полуинтервал (когда одна из его границ удовлетворяет неравенству), либо отрезок – интервал вместе с его границами.

Важный момент

Не думайте, что решением неравенства могут быть только интервалы, полуинтервалы и отрезки. Нет, в решение могут входить и отдельно взятые точки.

Например, у неравенства |x|≤0 всего одно решение – это точка 0.

А у неравенства |x|

Для чего нужен калькулятор неравенств?

Калькулятор неравенств выдает правильный итоговый ответ. При этом в большинстве случаев приводится иллюстрация числовой оси или плоскости. Видно, входят ли границы интервалов в решение или нет – точки отображаются закрашенными или проколотыми.

Благодаря онлайн калькулятору неравенств можно проверить правильно ли вы нашли корни уравнения, отметили их на числовой оси и проверили на интервалах (и границах) выполнение условия неравенства?

Если ваш ответ расходится с ответом калькулятора, то однозначно нужно перепроверить свое решение и выявить допущенную ошибку.

math24.biz

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *