Онлайн раскладывать на множители: Разложение на множители онлайн

Содержание

Разложить число на простые множители онлайн калькулятор

Примеры разложения числа на простые множители

Разложим число 120 на простые множители

120 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 5

Решение
Разложим число 120 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

120 : 2 = 60 — делится на простое число 2
60 : 2 = 30 — делится на простое число 2
30 : 2 = 15 — делится на простое число 2
15 : 3 = 5 — делится на простое число 3.
Завершаем деление, так как 5 простое число

Ответ: 120 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 5

Перейти в калькулятор Разложим число 246 на простые множители

246 = 2 ∙ 3 ∙ 41

Решение
Разложим число 246 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

246 : 2 = 123 — делится на простое число 2

123 : 3 = 41 — делится на простое число 3.
Завершаем деление, так как 41 простое число

Ответ: 246 = 2 ∙ 3 ∙ 41

Перейти в калькулятор Разложим число 1463 на простые множители

1463 = 7 ∙ 11 ∙ 19

Решение
Разложим число 1463 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

1463 : 7 = 209 — делится на простое число 7
209 : 11 = 19 — делится на простое число 11.
Завершаем деление, так как 19 простое число

Ответ: 1463 = 7 ∙ 11 ∙ 19

Перейти в калькулятор Разложим число 1268 на простые множители

1268 = 2 ∙ 2 ∙ 317

Решение
Разложим число 1268 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

1268 : 2 = 634 — делится на простое число 2
634 : 2 = 317 — делится на простое число 2.
Завершаем деление, так как 317 простое число

Ответ: 1268 = 2 ∙ 2 ∙ 317

Перейти в калькулятор Разложим число 442464 на простые множители

442464 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 11 ∙ 419

Решение
Разложим число 442464 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

442464 : 2 = 221232 — делится на простое число 2
221232 : 2 = 110616 — делится на простое число 2
110616 : 2 = 55308 — делится на простое число 2
55308 : 2 = 27654 — делится на простое число 2

27654 : 2 = 13827 — делится на простое число 2
13827 : 3 = 4609 — делится на простое число 3
4609 : 11 = 419 — делится на простое число 11.
Завершаем деление, так как 419 простое число

Ответ: 442464 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 11 ∙ 419

Перейти в калькулятор

Разложение на множители – онлайн-калькулятор

Онлайн-разложение на множители

Введите число:

 

Все натуральные числа делятся на простые и составные. Первые отличаются тем, что их можно разделить только на самих себя и на единицу. Простых чисел достаточно много. Представляем вам только первые из них: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107 и т.д.

А вот составное число может быть записано в виде нескольких простых чисел, перемноженных между собой.

Теорема гласит, что если обозначить некое составное число как

n, а его потенциальный простой делитель как р, то последний (хотя бы один из множества) может обладать следующей характеристикой: р2≤ n.

При этом 1 считается не простым и не составным числом. Она словно сама по себе.

Процесс разложения составного числа на множители называется факторизацией.

Какими путями можно разложить на множители составное число? Есть несколько способов:

  1. Для разложения небольших чисел можете прибегнуть к помощи таблицы умножения.
  2. Для разложения на множители больших чисел используйте таблицу простых чисел.

    Работает это так: предположим, у вас есть некое четырехзначное число. Найдите в таблице его наименьший делитель. Разделите свое число на этот делитель – получилось некое трехзначное число. Теперь переберите числа в таблице и найдите делитель для этого трехзначного числа. И так далее о тех пор, пока в конце у вас не останется простое число, которое, по определению, нельзя разложить на простые множители. Произведение всех найденных вами чисел и есть простые множители исходного числа.

    Записать это можно так:

    ДелимоеДелитель
    четырехзначное число хХ1
    трехзначное число уУ1
    простое число рР1
  3. Вы также можете воспользоваться нашим калькулятором для разложения числа на простые множители онлайн

Задайте программе составное число любой сложности – она легко и быстро разложит его на простые множители и представит вам результат. Вы можете пользоваться программой, чтобы проверить себя. Или чтобы ускорить выполнение домашней работы.

Это гораздо быстрее, чем перебирать числа в таблице простых чисел. И удобнее, чем вычислять в уме.

Не забудьте порекомендовать этот онлайн калькулятор своим одноклассникам!

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Разложение на простые множители. Калькулятор онлайн с решением

Простые числа

Натуральное число называется простым, если оно делится без остатка только на себя и на единицу.

Пример простого числа — это число 2. Оно делится без остатка только на себя (т.е. 2) и на единицу. Проверим: 2 : 2 = 1 (остаток 0) и 2 : 1 = 2 (остаток 0).

Также простыми числами являются следующие числа: 3, 5, 7, 11, 13, 17, 19, 23 , 29, 31 и т. д.

Простых чисел бесконечное множество.

Один из способов получения таблицы простых чисел является метод, который носит название решето Эратосфена.

Составные числа

Числа, которые не являются простыми и имеют другие делители (кроме себя и единицы), называют составными.

Пример составного числа — это число 4. Оно делится без остатка на само себя и на единицу, т.е. 4 : 4 = 1 (остаток 0), 4 : 1 = 4 (остаток 0), но кроме того еще и делится на 2 (4 : 2 = 2). Поэтому такое число называют составным

Примеры составных чисел: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21 и т. д. Все эти числа делятся не только на себя и единицу, но также и на другие числа. Например, число 14 делится на 1, 2, 7, 14 — это составное число. Число 21 делится на 1, 3, 7 и 21 — тоже составное число.

Отдельно в математике рассматривается число 1.

Единица не является ни простым ни составным числом.

Разложение на простые множители

Любое составное число можно разложить на простые множители. Существует несколько способов разложения. в этой статье научимся одному из способов разложения, который является одним из самых простых.

Алгоритм разложения на простые множители

Определяем, является ли число простым.
Если оно составное, то делим его на простые числа, начиная с двух (2, 3, 5, 7, 11 и т. д.).
Повторяем предыдущее действие, пока частное от деления не будет простым числом.

Пример разложения на простые множители

Разложим на простые множители число 54 :

54 не является простым.
54 делится на 2, поэтому записываем: 54 : 2 = 27.
27 не делится на 2. Пробуем следующее простое число — это число 3.
27 делится на 3, получаем 27 : 3 = 9.
9 не делится на 2, поэтому пробуем деление на 3.
9 делится на 3. Записываем 9 : 3 = 3.
3 — это простое число. Разложение окончено.

Ответ: 54 = 2 · 3 · 3 · 3.

Как разложить трехзначное число на множители.

Разложение на множители – онлайн-калькулятор

(кроме 0 и 1) имеют минимум два делителя: 1 и самого себя. Числа, не имеющие других делителей, называются простыми числами . Числа, имеющие другие делители, называются составными (или сложными ) числами . Простых чисел — бесконечное множество. Ниже приведены простые числа, не превосходящие 200:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

Умножение — одно из четырёх основных арифметических действий, бинарная математическая операция, в которой один аргумент складывается столько раз, сколько показывает другой. В арифметике под умножением понимают краткую запись сложения указанного количества одинаковых слагаемых.

Например

, запись 5*3 обозначает «сложить три пятёрки», то есть 5+5+5. Результат умножения называется произведением , а умножаемые числа — множителями или сомножителями . Первый множитель иногда называется «множимое ».

Всякое составное число можно разложить на простые множители. При любом способе получается одно и то же разложение, если не учитывать порядка записи множителей.

Разложение числа на множители (Факторизация).

Разложение на множители (факторизация) — перебор делителей — алгоритм факторизации или тестирования простоты числа путем полного перебора всех возможных потенциальных делителей.

Т.е., простым языком, факторизация — это название процесса разложения чисел на множители, выраженное научным языком.

Последовательность действий при разложении на простые множители:

1. Проверяем, не является ли предложенное число простым.

2. Если нет, то подбираем, руководствуясь признаками деления делитель, из простых чисел начиная с наименьшего (2, 3, 5 …).

3. Повторяем это действие до тех пор, пока частное не окажется простым числом.

Что значит разложить на простые множители? Как это сделать? Что можно узнать по разложению числа на простые множители? Ответы на эти вопросы иллюстрируются конкретными примерами.

Определения:

Простым называют число, которое имеет ровно два различных делителя.

Составным называют число, которое имеет более двух делителей.

Разложить натуральное число на множители — значит представить его в виде произведения натуральных чисел.

Разложить натуральное число на простые множители — значит представить его в виде произведения простых чисел.

Замечания:

  • В разложении простого числа один из множителей равен единице, а другой — самому этому числу.
  • Говорить о разложении единицы на множители не имеет смысла.
  • Составное число можно разложить на множители, каждый из которых отличен от 1.

Разложим число 150 на множители. Например, 150 — это 15 умножить на 10.

15 — это составное число. Его можно разложить на простые множители 5 и 3.

10 — это составное число. Его можно разложить на простые множители 5 и 2.

Записав вместо 15 и 10 их разложения на простые множители, мы получили разложение числа 150.

Число 150 можно по-другому разложить на множители. Например, 150 — это произведение чисел 5 и 30.

5 — число простое.

30 — это число составное. Его можно представить как произведение 10 и 3.

10 — число составное. Его можно разложить на простые множители 5 и 2.

Мы получили разложение числа 150 на простые множители другим способом.

Заметим, что первое и второе разложение одинаковы. Они отличаются только порядком следования множителей.

Принято записывать множители в порядке возрастания.

Всякое составное число можно разложить на простые множители единственным образом с точностью до порядка множителей.

При разложении больших чисел на простые множители используют запись в столбик:

Наименьшее простое число, на которое делится 216 — это 2.

Разделим 216 на 2. Получим 108.

Полученное число 108 делится на 2.

Выполним деление. Получим в результате 54.

Согласно признаку делимости на 2 число 54 делится на 2.

Выполнив деление, получим 27.

Число 27 заканчивается на нечетную цифру 7 . Оно

Не делится на 2. Следующее простое число — это 3.

Разделим 27 на 3. Получим 9. Наименьшее простое

Число, на которое делится 9, — это 3. Три — само является простым числом, оно делится на себя и на единицу. Разделим 3 на себя. В итоге мы получили 1.

  • Число делится лишь на те простые числа, которые входят в состав его разложения.
  • Число делится лишь на те составные числа, разложение которых на простые множители полностью в нем содержится.

Рассмотрим примеры:

4900 делится на простые числа 2, 5 и 7. (они входят в разложение числа 4900), но не делится, например, на 13.

11 550 75. Это так, потому что разложение числа 75 полностью содержится в разложении числа 11550.

В результате деления будет произведение множителей 2, 7 и 11.

11550 не делится на 4 потому, что в разложении четырех есть лишняя двойка.

Найти частное от деления числа a на число b, если эти числа раскладываются на простые множители следующим образом a=2∙2∙2∙3∙3∙3∙5∙5∙19; b=2∙2∙3∙3∙5∙19

Разложение числа b полностью содержится в разложении числа a.

Результат деления a на b — это произведение оставшихся в разложении числа a трех чисел.

Итак, ответ: 30.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. — М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. — Гимназия. 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. — М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. — М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. — М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. — М.: Просвещение, Библиотека учителя математики, 1989.
  1. Интернет-портал Matematika-na.ru ().
  2. Интернет-портал Math-portal.ru ().

Домашнее задание

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. — М.: Мнемозина, 2012. № 127, № 129, № 141.
  2. Другие задания: № 133, № 144.

В этой статье Вы найдете всю необходимую информацию, отвечающую на вопрос, как разложить число на простые множители . Сначала дано общее представление о разложении числа на простые множители, приведены примеры разложений. Дальше показана каноническая форма разложения числа на простые множители. После этого дан алгоритм разложения произвольных чисел на простые множители и приведены примеры разложения чисел с использованием этого алгоритма. Также рассмотрены альтернативные способы, позволяющие быстро раскладывать небольшие целые числа на простые множители с использованием признаков делимости и таблицы умножения.

Навигация по странице.

Что значит разложить число на простые множители?

Сначала разберемся с тем, что такое простые множители.

Понятно, раз в этом словосочетании присутствует слово «множители», то имеет место произведение каких-то чисел, а уточняющее слово «простые» означает, что каждый множитель является простым числом . Например, в произведении вида 2·7·7·23 присутствуют четыре простых множителя: 2 , 7 , 7 и 23 .

А что же значит разложить число на простые множители?

Это значит, что данное число нужно представить в виде произведения простых множителей, причем значение этого произведения должно быть равно исходному числу. В качестве примера рассмотрим произведение трех простых чисел 2 , 3 и 5 , оно равно 30 , таким образом, разложение числа 30 на простые множители имеет вид 2·3·5 . Обычно разложение числа на простые множители записывают в виде равенства, в нашем примере оно будет таким: 30=2·3·5 . Отдельно подчеркнем, что простые множители в разложении могут повторяться. Это явно иллюстрирует следующий пример: 144=2·2·2·2·3·3 . А вот представление вида 45=3·15 не является разложением на простые множители, так как число 15 – составное.

Возникает следующий вопрос: «А какие вообще числа можно разложить на простые множители»?

В поисках ответа на него, приведем следующие рассуждения. Простые числа по определению находятся среди , больших единицы. Учитывая этот факт и , можно утверждать, что произведение нескольких простых множителей является целым положительным числом, превосходящим единицу. Поэтому разложение на простые множители имеет место лишь для положительных целых чисел, которые больше 1 .

Но все ли целые числа, превосходящие единицу, раскладываются на простые множители?

Понятно, что простые целые числа разложить на простые множители нет возможности. Это объясняется тем, что простые числа имеют только два положительных делителя – единицу и самого себя, поэтому они не могут быть представлены в виде произведения двух или большего количества простых чисел. Если бы целое число z можно было бы представить в виде произведения простых чисел a и b , то понятие делимости позволило бы сделать вывод, что z делится и на a и на b , что невозможно в силу простоты числа z. Однако считают, что любое простое число само является своим разложением.

А как насчет составных чисел? Раскладываются ли составные числа на простые множители, и все ли составные числа подлежат такому разложению? Утвердительный ответ на ряд этих вопросов дает основная теорема арифметики . Основная теорема арифметики утверждает, что любое целое число a , которое больше 1 , можно разложить на произведение простых множителей p 1 , p 2 , …, p n , при этом разложение имеет вид a=p 1 ·p 2 ·…·p n , причем это разложение единственно, если не учитывать порядок следования множителей

Каноническое разложение числа на простые множители

В разложении числа простые множители могут повторяться. Повторяющиеся простые множители можно записать более компактно, используя . Пусть в разложении числа a простой множитель p 1 встречается s 1 раз, простой множитель p 2 – s 2 раз, и так далее, p n – s n раз. Тогда разложение на простые множители числа a можно записать как a=p 1 s 1 ·p 2 s 2 ·…·p n s n . Такая форма записи представляет собой так называемое каноническое разложение числа на простые множители .

Приведем пример канонического разложения числа на простые множители. Пусть нам известно разложение 609 840=2·2·2·2·3·3·5·7·11·11 , его каноническая форма записи имеет вид 609 840=2 4 ·3 2 ·5·7·11 2 .

Каноническое разложение числа на простые множители позволяет найти все делители числа и число делителей числа .

Алгоритм разложения числа на простые множители

Чтобы успешно справиться с задачей разложения числа на простые множители, нужно очень хорошо владеть информацией статьи простые и составные числа .

Суть процесса разложения целого положительного и превосходящего единицу числа a понятна из доказательства основной теоремы арифметики . Смысл состоит в последовательном нахождении наименьших простых делителей p 1 , p 2 , …,p n чисел a, a 1 , a 2 , …, a n-1 , что позволяет получить ряд равенств a=p 1 ·a 1 , где a 1 =a:p 1 , a=p 1 ·a 1 =p 1 ·p 2 ·a 2 , где a 2 =a 1:p 2 , …, a=p 1 ·p 2 ·…·p n ·a n , где a n =a n-1:p n . Когда получается a n =1 , то равенство a=p 1 ·p 2 ·…·p n даст нам искомое разложение числа a на простые множители. Здесь же следует заметить, что p 1 ≤p 2 ≤p 3 ≤…≤p n .

Осталось разобраться с нахождением наименьших простых делителей на каждом шаге, и мы будем иметь алгоритм разложения числа на простые множители. Находить простые делители нам поможет таблица простых чисел . Покажем, как с ее помощью получить наименьший простой делитель числа z .

Последовательно берем простые числа из таблицы простых чисел (2 , 3 , 5 , 7 , 11 и так далее) и делим на них данное число z . Первое простое число, на которое z разделится нацело, и будет его наименьшим простым делителем. Если число z простое, то его наименьшим простым делителем будет само число z . Здесь же следует напомнить, что если z не является простым числом, то его наименьший простой делитель не превосходит числа , где — из z . Таким образом, если среди простых чисел, не превосходящих , не нашлось ни одного делителя числа z , то можно делать вывод о том, что z – простое число (более подробно об этом написано в разделе теории под заголовком данное число простое или составное).

Для примера покажем, как найти наименьший простой делитель числа 87 . Берем число 2 . Делим 87 на 2 , получаем 87:2=43 (ост. 1) (если необходимо, смотрите статью ). То есть, при делении 87 на 2 получается остаток 1 , поэтому 2 – не является делителем числа 87 . Берем следующее простое число из таблицы простых чисел, это число 3 . Делим 87 на 3 , получаем 87:3=29 . Таким образом, 87 делится на 3 нацело, следовательно, число 3 является наименьшим простым делителем числа 87 .

Заметим, что в общем случае для разложения на простые множители числа a нам потребуется таблица простых чисел до числа, не меньшего, чем . К этой таблице нам придется обращаться на каждом шаге, так что ее нужно иметь под рукой. Например, для разложения на простые множители числа 95 нам будет достаточно таблицы простых чисел до 10 (так как 10 больше, чем ). А для разложения числа 846 653 уже будет нужна таблица простых чисел до 1 000 (так как 1 000 больше, чем ).

Теперь мы обладаем достаточными сведениями, чтобы записать алгоритм разложения числа на простые множители . Алгоритм разложения числа a таков:

  • Последовательно перебирая числа из таблицы простых чисел, находим наименьший простой делитель p 1 числа a , после чего вычисляем a 1 =a:p 1 . Если a 1 =1 , то число a – простое, и оно само является своим разложением на простые множители. Если же a 1 на равно 1 , то имеем a=p 1 ·a 1 и переходим к следующему шагу.
  • Находим наименьший простой делитель p 2 числа a 1 , для этого последовательно перебираем числа из таблицы простых чисел, начиная с p 1 , после чего вычисляем a 2 =a 1:p 2 . Если a 2 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 . Если же a 2 на равно 1 , то имеем a=p 1 ·p 2 ·a 2 и переходим к следующему шагу.
  • Перебирая числа из таблицы простых чисел, начиная с p 2 , находим наименьший простой делитель p 3 числа a 2 , после чего вычисляем a 3 =a 2:p 3 . Если a 3 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 ·p 3 . Если же a 3 на равно 1 , то имеем a=p 1 ·p 2 ·p 3 ·a 3 и переходим к следующему шагу.
  • Находим наименьший простой делитель p n числа a n-1 , перебирая простые числа, начиная с p n-1 , а также a n =a n-1:p n , причем a n получается равно 1 . Этот шаг является последним шагом алгоритма, здесь получаем искомое разложение числа a на простые множители: a=p 1 ·p 2 ·…·p n .

Все результаты, полученные на каждом шаге алгоритма разложения числа на простые множители, для наглядности представляют в виде следующей таблицы, в которой слева от вертикальной черты записывают последовательно в столбик числа a, a 1 , a 2 , …, a n , а справа от черты – соответствующие наименьшие простые делители p 1 , p 2 , …, p n .

Осталось лишь рассмотреть несколько примеров применения полученного алгоритма для разложения чисел на простые множители.

Примеры разложения на простые множители

Сейчас мы подробно разберем примеры разложения чисел на простые множители . При разложении будем применять алгоритм из предыдущего пункта. Начнем с простых случаев, и постепенно их будем усложнять, чтобы столкнуться со всеми возможными нюансами, возникающими при разложении чисел на простые множители.

Пример.

Разложите число 78 на простые множители.

Решение.

Начинаем поиск первого наименьшего простого делителя p 1 числа a=78 . Для этого начинаем последовательно перебирать простые числа из таблицы простых чисел. Берем число 2 и делим на него 78 , получаем 78:2=39 . Число 78 разделилось на 2 без остатка, поэтому p 1 =2 – первый найденный простой делитель числа 78 . В этом случае a 1 =a:p 1 =78:2=39 . Так мы приходим к равенству a=p 1 ·a 1 имеющему вид 78=2·39 . Очевидно, что a 1 =39 отлично от 1 , поэтому переходим ко второму шагу алгоритма.

Теперь ищем наименьший простой делитель p 2 числа a 1 =39 . Начинаем перебор чисел из таблицы простых чисел, начиная с p 1 =2 . Делим 39 на 2 , получаем 39:2=19 (ост. 1) . Так как 39 не делится нацело на 2 , то 2 не является его делителем. Тогда берем следующее число из таблицы простых чисел (число 3 ) и делим на него 39 , получаем 39:3=13 . Следовательно, p 2 =3 – наименьший простой делитель числа 39 , при этом a 2 =a 1:p 2 =39:3=13 . Имеем равенство a=p 1 ·p 2 ·a 2 в виде 78=2·3·13 . Так как a 2 =13 отлично от 1 , то переходим к следующему шагу алгоритма.

Здесь нам нужно отыскать наименьший простой делитель числа a 2 =13 . В поисках наименьшего простого делителя p 3 числа 13 будем последовательно перебирать числа из таблицы простых чисел, начиная с p 2 =3 . Число 13 не делится на 3 , так как 13:3=4 (ост. 1) , также 13 не делится на 5 , 7 и на 11 , так как 13:5=2 (ост. 3) , 13:7=1 (ост. 6) и 13:11=1 (ост. 2) . Следующим простым числом является 13 , и на него 13 делится без остатка, следовательно, наименьший простой делитель p 3 числа 13 есть само число 13 , и a 3 =a 2:p 3 =13:13=1 . Так как a 3 =1 , то этот шаг алгоритма является последним, а искомое разложение числа 78 на простые множители имеет вид 78=2·3·13 (a=p 1 ·p 2 ·p 3 ).

Ответ:

78=2·3·13 .

Пример.

Представьте число 83 006 в виде произведения простых множителей.

Решение.

На первом шаге алгоритма разложения числа на простые множители находим p 1 =2 и a 1 =a:p 1 =83 006:2=41 503 , откуда 83 006=2·41 503 .

На втором шаге выясняем, что 2 , 3 и 5 не являются простыми делителями числа a 1 =41 503 , а число 7 – является, так как 41 503:7=5 929 . Имеем p 2 =7 , a 2 =a 1:p 2 =41 503:7=5 929 . Таким образом, 83 006=2·7·5 929 .

Наименьшим простым делителем числа a 2 =5 929 является число 7 , так как 5 929:7=847 . Таким образом, p 3 =7 , a 3 =a 2:p 3 =5 929:7=847 , откуда 83 006=2·7·7·847 .

Дальше находим, что наименьший простой делитель p 4 числа a 3 =847 равен 7 . Тогда a 4 =a 3:p 4 =847:7=121 , поэтому 83 006=2·7·7·7·121 .

Теперь находим наименьший простой делитель числа a 4 =121 , им является число p 5 =11 (так как 121 делится на 11 и не делится на 7 ). Тогда a 5 =a 4:p 5 =121:11=11 , и 83 006=2·7·7·7·11·11 .

Наконец, наименьший простой делитель числа a 5 =11 – это число p 6 =11 . Тогда a 6 =a 5:p 6 =11:11=1 . Так как a 6 =1 , то этот шаг алгоритма разложения числа на простые множители является последним, и искомое разложение имеет вид 83 006=2·7·7·7·11·11 .

Полученный результат можно записать как каноническое разложение числа на простые множители 83 006=2·7 3 ·11 2 .

Ответ:

83 006=2·7·7·7·11·11=2·7 3 ·11 2 991 – простое число. Действительно, оно не имеет ни одного простого делителя, не превосходящего ( можно грубо оценить как , так как очевидно, что 991

Ответ:

897 924 289=937·967·991 .

Использование признаков делимости для разложения на простые множители

В простых случаях разложить число на простые множители можно без использования алгоритма разложения из первого пункта данной статьи. Если числа не большие, то для их разложения на простые множители часто достаточно знать и признаки делимости . Приведем примеры для пояснения.

Например, нам требуется разложить на простые множители число 10 . Из таблицы умножения мы знаем, что 2·5=10 , а числа 2 и 5 очевидно простые, поэтому разложение на простые множители числа 10 имеет вид 10=2·5 .

Еще пример. При помощи таблицы умножения разложим на простые множители число 48 . Мы знаем, что шестью восемь – сорок восемь, то есть, 48=6·8 . Однако, ни 6 , ни 8 не являются простыми числами. Но мы знаем, что дважды три – шесть, и дважды четыре – восемь, то есть, 6=2·3 и 8=2·4 . Тогда 48=6·8=2·3·2·4 . Осталось вспомнить, что дважды два – четыре, тогда получим искомое разложение на простые множители 48=2·3·2·2·2 . Запишем это разложение в канонической форме: 48=2 4 ·3 .

А вот при разложении на простые множители числа 3 400 можно воспользоваться признаками делимости. Признаки делимости на 10, 100 позволяют утверждать, что 3 400 делится на 100 , при этом 3 400=34·100 , а 100 делится на 10 , при этом 100=10·10 , следовательно, 3 400=34·10·10 . А на основании признака делимости на 2 можно утверждать, что каждый из множителей 34 , 10 и 10 делится на 2 , получаем 3 400=34·10·10=2·17·2·5·2·5 . Все множители в полученном разложении являются простыми, поэтому это разложение является искомым. Осталось лишь переставить множители, чтобы они шли в порядке возрастания: 3 400=2·2·2·5·5·17 . Запишем также каноническое разложение данного числа на простые множители: 3 400=2 3 ·5 2 ·17 .

При разложении данного числа на простые множители можно использовать по очереди и признаки делимости и таблицу умножения. Представим число 75 в виде произведения простых множителей. Признак делимости на 5 позволяет нам утверждать, что 75 делится на 5 , при этом получаем, что 75=5·15 . А из таблицы умножения мы знаем, что 15=3·5 , поэтому, 75=5·3·5 . Это и есть искомое разложение числа 75 на простые множители.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Любое составное число можно разложить на простые множители. Способов разложения может быть несколько. При любом способе получается один и тот же результат.

Как разложить число на простые множители наиболее удобным способом? Рассмотрим, как это лучше сделать, на конкретных примерах.

Примеры. 1) Разложить число 1400 на простые множители.

1400 делится на 2. 2 — простое число, раскладывать его на множители не нужно. Получаем 700. Делим его на 2. Получаем 350. 350 тоже делим на 2. Полученное число 175 можно разделить на 5. Результат — з5 — еще раз делим на 5. Итого — 7. Его можно разделить только на 7. Получили 1, деление окончено.

Это же число можно разложить на простые множители иначе:

1400 удобно разделить на 10. 10 не является простым числом, поэтому его нужно разложить на простые множители: 10=2∙5. Результат — 140. Его снова делим на 10=2∙5. Получаем 14. Если 14 разделить на 14, то его тоже следует разложить на произведение простых множителей: 14=2∙7.

Таким образом, снова пришли к такому же, как и в первом случае, разложению, но быстрее.

Вывод: не обязательно при разложении числа делить его только на простые делители. Делим на то, что удобнее, например, на 10. Надо только составные делители не забыть разложить на простые множители.

2) Разложить число 1620 на простые множители.

Число 1620 удобнее всего разделить на 10. Поскольку 10 простым числом не является, представляем его в виде произведения простых множителей: 10=2∙5. Получили 162. Его удобно разделить на 2. Результат — 81. Число 81 можно разделить на 3, но на 9 — удобнее. Так как 9 — не простое число, раскладываем его как 9=3∙3. Получили 9. Его также делим на 9 и раскладываем на произведение простых множителей.

Разложить на множители большое число – нелегкая задача. Большинство людей затрудняются раскладывать четырех- или пятизначные числа. Для упрощения процесса запишите число над двумя колонками.

  • Разложим на множители число 6552.
  • Разделите данное число на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления. Как отмечалось выше, четные числа легко раскладывать на множители, так как их наименьшим простым множителем всегда будет число 2 (у нечетных чисел наименьшие простые множители различны).

    • В нашем примере число 6552 – четное, поэтому 2 является его наименьшим простым множителем. 6552 ÷ 2 = 3276. В левой колонке запишите 2, а в правой — 3276.
  • Далее разделите число в правой колонке на наименьший простой делитель (кроме 1), на который данное число делится без остатка. Запишите этот делитель в левой колонке, а в правой колонке запишите результат деления (продолжите этот процесс до тех пор, пока в правой колонке не останется 1).

    • В нашем примере: 3276 ÷ 2 = 1638. В левой колонке запишите 2, а в правой — 1638. Далее: 1638 ÷ 2 = 819. В левой колонке запишите 2, а в правой — 819.
  • Вы получили нечетное число; для таких чисел найти наименьший простой делитель сложнее. Если вы получили нечетное число, попробуйте разделить его на наименьшие простые нечетные числа: 3, 5, 7, 11.

    • В нашем примере вы получили нечетное число 819. Разделите его на 3: 819 ÷ 3 = 273. В левой колонке запишите 3, а в правой — 273.
    • При подборе делителей опробуйте все простые числа вплоть до квадратного корня из наибольшего делителя, который вы нашли. Если ни один делитель не делит число нацело, то вы, скорее всего, получили простое число и можете прекратить вычисления.
  • Продолжите процесс деления чисел на простые делители до тех пор, пока в правой колонке не останется 1 (если в правой колонке вы получили простое число, разделите его само на себя, чтобы получить 1).

    • Продолжим вычисления в нашем примере:
      • Разделите на 3: 273 ÷ 3 = 91. Остатка нет. В левой колонке запишите 3, а в правой — 91.
      • Разделите на 3. 91 делится на 3 с остатком, поэтому разделите на 5. 91 делится на 5 с остатком, поэтому разделите на 7: 91 ÷ 7 = 13. Остатка нет. В левой колонке запишите 7, а в правой — 13.
      • Разделите на 7. 13 делится на 7 с остатком, поэтому разделите на 11. 13 делится на 11 с остатком, поэтому разделите на 13: 13 ÷ 13 = 1. Остатка нет. В левой колонке запишите 13, а в правой — 1. Ваши вычисления закончены.
  • В левой колонке представлены простые множители исходного числа. Другими словами, при перемножении всех чисел из левой колонки вы получите число, записанное над колонками. Если один множитель появляется в списке множителей несколько раз, используйте показатели степени для его обозначения. В нашем примере в списке множителей 2 появляется 4 раза; запишите эти множители как 2 4 , а не как 2*2*2*2.

    • В нашем примере 6552 = 2 3 × 3 2 × 7 × 13. Вы разложили число 6552 на простые множители (порядок множителей в этой записи не имеет значения).
  • Разложение на простые множители. Разложение числа на простые множители онлайн

    Что значит разложить на множители? Это значит найти числа, произведение которых равно исходному числу.

    Чтобы понять, что значит разложить на множители, рассмотрим пример.

    Пример разложения числа на множители

    Разложить на множители число 8.

    Число 8 можно представить в виде произведения 2 на 4:

    Представление 8 в виде произведения 2 * 4 и значит разложение на множители.

    Обратите внимание, что это не единственное разложение 8 на множители.

    Ведь 4 разлагается на множители так:

    Отсюда 8 можно представить:

    8 = 2 * 2 * 2 = 2 3

    Проверяем наш ответ. Найдем, чему равно разложение на множители:

    То есть получили исходное число, ответ верный.

    Разложите на простые множители число 24

    Как разложить на простые множители число 24?

    Простым называют число, если оно нацело делится только на единицу и на себя.

    Число 8 можно представить в виде произведения 3 на 8:

    Здесь число 24 разложено на множители. Но в задании сказано «разложить на простые множители число 24», т.е. нужны именно простые множители. А в нашем разложении 3 является простым множителем, а 8 не является простым множителем.

    Каждое натуральное число, кроме единицы, имеет два или более делителей. Например, число 7, делится без остатка только на 1 и на 7, то есть имеет два делителя. А у числа 8, делители 1, 2, 4, 8, то есть аж 4 делителя сразу.

    Чем отличаются простые и составные числа

    Числа, которые имеют более двух делителей, называются составными. Числа, которые имеют только два делителя: единица и само это число, называются простыми числами.

    Число 1 имеет только один делить, а именно само это число. Единица не относится ни к простым, ни к составным числам.

    • Например, число 7 простое, а число 8 составное.

    Первые 10 простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. Число 2 единственное четное простое число, все остальные простые числа нечетные.

    Число 78 составное, так как помимо 1 и самого себя, оно делится еще и на 2. При делении на 2 получим 39. То есть 78= 2*39. В таких случаях говорят, что число разложили на множители 2 и 39.

    Любое составное число можно разложить на два множителя, каждый из которых больше 1. С простым числом такой фокус не прокатит. Такие дела.

    Разложение числа на простые множители

    Как уже отмечалось выше, любое составное число, можно разложить на два множителя. Возьмем, к примеру, число 210. Это число можно разложить на два множителя 21 и 10. Но числа 21 и 10 тоже составные, разложим и их на два множителя. Получим 10 = 2*5, 21=3*7. И в итоге число 210 разложилось уже на 4 множителя: 2,3,5,7. Эти числа уже простые и их разложить нельзя. То есть мы разложили число 210 на простые множители.

    При разложении составных чисел на простые множители, их обычно, записывают в порядке возрастания.

    Следует запомнить, что любое составное число можно разложить на простые множители и причем единственным образом, с точностью до перестановки.

    • Обычно, при разложении числа на простые множители пользуются признаками делимости.

    Разложим число 378 на простые множители

    Будем записывать числа, разделяя их вертикальной чертой. Число 378 делится на 2, так как оканчивается на 8. При делении получим число 189. Сумма цифр числа 189 делится на 3, значит и само число 189 делится на 3. В результате получим 63.

    Число 63 тоже делится на 3, по признаку делимости. Получаем 21, число 21 снова можно разделить на 3, получим 7. Семерка делится только на себя, получаем единицу. На этом закончено деление. Справа после черты получились простые множители, на которые раскладывается число 378.

    378|2
    189|3
    63|3
    21|3

    Данная статья дает ответы на вопрос о разложении числа на простыне множители. Рассмотрим общее представление о разложении с примерами. Разберем каноническую форму разложения и его алгоритм. Будут рассмотрены все альтернативные способы при помощи использования признаков делимости и таблицы умножения.

    Yandex.RTB R-A-339285-1

    Что значит разложить число на простые множители?

    Разберем понятие простые множители. Известно, что каждый простой множитель – это простое число. В произведении вида 2 · 7 · 7 · 23 имеем, что у нас 4 простых множителя в виде 2 , 7 , 7 , 23 .

    Разложение на множители предполагает его представление в виде произведений простых. Если нужно произвести разложение числа 30 , тогда получим 2 , 3 , 5 . Запись примет вид 30 = 2 · 3 · 5 . Не исключено, что множители могут повторяться. Такое число как 144 имеет 144 = 2 · 2 · 2 · 2 · 3 · 3 .

    Не все числа предрасположены к разложению. Числа, которые больше 1 и являются целыми можно разложить на множители. Простые числа при разложении делятся только на 1 и на самого себя, поэтому невозможно представить эти числа в виде произведения.

    При z , относящемуся к целым числам, представляется в виде произведения а и b , где z делится на а и на b . Составные числа раскладывают на простые множители при помощи основной теоремы арифметики. Если число больше 1 , то его разложение на множители p 1 , p 2 , … , p n принимает вид a = p 1 , p 2 , … , p n . Разложение предполагается в единственном варианте.

    Каноническое разложение числа на простые множители

    При разложении множители могут повторяться. Их запись выполняется компактно при помощи степени. Если при разложении числа а имеем множитель p 1 , который встречается s 1 раз и так далее p n – s n раз. Таким образом разложение примет вид a=p 1 s 1 · a = p 1 s 1 · p 2 s 2 · … · p n s n . Эта запись имеет название канонического разложения числа на простые множители.

    При разложении числа 609840 получим, что 609 840 = 2 · 2 · 2 · 2 · 3 · 3 · 5 · 7 · 11 · 11 ,его канонический вид будет 609 840 = 2 4 · 3 2 · 5 · 7 · 11 2 . При помощи канонического разложения можно найти все делители числа и их количество.

    Чтобы правильно разложить на множители необходимо иметь представление о простых и составных числах. Смысл заключается в том, чтобы получить последовательное количество делителей вида p 1 , p 2 , … , p n чисел a , a 1 , a 2 , … , a n — 1 , это дает возможность получить a = p 1 · a 1 , где a 1 = a: p 1 , a = p 1 · a 1 = p 1 · p 2 · a 2 , где a 2 = a 1: p 2 , … , a = p 1 · p 2 · … · p n · a n , где a n = a n — 1: p n . При получении a n = 1 , то равенство a = p 1 · p 2 · … · p n получим искомое разложение числа а на простые множители. Заметим, что p 1 ≤ p 2 ≤ p 3 ≤ … ≤ p n .

    Для нахождения наименьших общих делителей необходимо использовать таблицу простых чисел. Это выполняется на примере нахождения наименьшего простого делителя числа z . При взятии простых чисел 2 , 3 , 5 , 11 и так далее, причем на них делим число z . Так как z не является простым числом, следует учитывать, что наименьшим простым делителем не будет больше z . Видно, что не существуют делителей z , тогда понятно, что z является простым числом.

    Пример 1

    Рассмотрим на примере числа 87 . При его делении на 2 имеем, что 87: 2 = 43 с остатком равным 1 . Отсюда следует, что 2 делителем не может являться, деление должно производиться нацело. При делении на 3 получим, что 87: 3 = 29 . Отсюда вывод – 3 является наименьшим простым делителем числа 87 .

    При разложении на простые множители необходимо пользоваться таблицей простых чисел, где a . При разложении 95 следует использовать около 10 простых чисел, а при 846653 около 1000 .

    Рассмотрим алгоритм разложения на простые множители:

    • нахождение наименьшего множителя при делителе p 1 числа a по формуле a 1 = a: p 1 , когда a 1 = 1 , тогда а является простым числом и включено в разложение на множители, когда не равняется 1 , тогда a = p 1 · a 1 и следуем к пункту, находящемуся ниже;
    • нахождение простого делителя p 2 числа a 1 при помощи последовательного перебора простых чисел, используя a 2 = a 1: p 2 , когда a 2 = 1 , тогда разложение примет вид a = p 1 · p 2 , когда a 2 = 1 , тогда a = p 1 · p 2 · a 2 , причем производим переход к следующему шагу;
    • перебор простых чисел и нахождение простого делителя p 3 числа a 2 по формуле a 3 = a 2: p 3 , когда a 3 = 1 , тогда получим, что a = p 1 · p 2 · p 3 , когда не равняется 1 , тогда a = p 1 · p 2 · p 3 · a 3 и производим переход к следующему шагу;
    • производится нахождение простого делителя p n числа a n — 1 при помощи перебора простых чисел с p n — 1 , а также a n = a n — 1: p n , где a n = 1 , шаг является завершающим, в итоге получаем, что a = p 1 · p 2 · … · p n .

    Результат алгоритма записывается в виде таблицы с разложенными множителями с вертикальной чертой последовательно в столбик. Рассмотрим рисунок, приведенный ниже.

    Полученный алгоритм можно применять при помощи разложения чисел на простые множители.

    Во время разложения на простые множители следует придерживаться основного алгоритма.

    Пример 2

    Произвести разложение числа 78 на простые множители.

    Решение

    Для того, чтобы найти наименьший простой делитель, необходимо перебрать все простые числа, имеющиеся в 78 . То есть 78: 2 = 39 . Деление без остатка, значит это первый простой делитель, который обозначим как p 1 . Получаем, что a 1 = a: p 1 = 78: 2 = 39 . Пришли к равенству вида a = p 1 · a 1 , где 78 = 2 · 39 . Тогда a 1 = 39 , то есть следует перейти к следующему шагу.

    Остановимся на нахождении простого делителя p 2 числа a 1 = 39 . Следует перебрать простые числа, то есть 39: 2 = 19 (ост. 1). Так как деление с остатком, что 2 не является делителем. При выборе числа 3 получаем, что 39: 3 = 13 . Значит, что p 2 = 3 является наименьшим простым делителем 39 по a 2 = a 1: p 2 = 39: 3 = 13 . Получим равенство вида a = p 1 · p 2 · a 2 в виде 78 = 2 · 3 · 13 . Имеем, что a 2 = 13 не равно 1 , тогда следует переходит дальше.

    Наименьший простой делитель числа a 2 = 13 ищется при помощи перебора чисел, начиная с 3 . Получим, что 13: 3 = 4 (ост. 1). Отсюда видно, что 13 не делится на 5 , 7 , 11 , потому как 13: 5 = 2 (ост. 3), 13: 7 = 1 (ост. 6) и 13: 11 = 1 (ост. 2). Видно, что 13 является простым числом. По формуле выглядит так: a 3 = a 2: p 3 = 13: 13 = 1 . Получили, что a 3 = 1 , что означает завершение алгоритма. Теперь множители записываются в виде 78 = 2 · 3 · 13 (a = p 1 · p 2 · p 3) .

    Ответ: 78 = 2 · 3 · 13 .

    Пример 3

    Разложить число 83 006 на простые множители.

    Решение

    Первый шаг предусматривает разложение на простые множители p 1 = 2 и a 1 = a: p 1 = 83 006: 2 = 41 503 , где 83 006 = 2 · 41 503 .

    Второй шаг предполагает, что 2 , 3 и 5 не простые делители для числа a 1 = 41 503 , а 7 простой делитель, потому как 41 503: 7 = 5 929 . Получаем, что p 2 = 7 , a 2 = a 1: p 2 = 41 503: 7 = 5 929 . Очевидно, что 83 006 = 2 · 7 · 5 929 .

    Нахождение наименьшего простого делителя p 4 к числу a 3 = 847 равняется 7 . Видно, что a 4 = a 3: p 4 = 847: 7 = 121 , поэтому 83 006 = 2 · 7 · 7 · 7 · 121 .

    Для нахождения простого делителя числа a 4 = 121 используем число 11 , то есть p 5 = 11 . Тогда получим выражение вида a 5 = a 4: p 5 = 121: 11 = 11 , и 83 006 = 2 · 7 · 7 · 7 · 11 · 11 .

    Для числа a 5 = 11 число p 6 = 11 является наименьшим простым делителем. Отсюда a 6 = a 5: p 6 = 11: 11 = 1 . Тогда a 6 = 1 . Это указывает на завершение алгоритма. Множители запишутся в виде 83 006 = 2 · 7 · 7 · 7 · 11 · 11 .

    Каноническая запись ответа примет вид 83 006 = 2 · 7 3 · 11 2 .

    Ответ: 83 006 = 2 · 7 · 7 · 7 · 11 · 11 = 2 · 7 3 · 11 2 .

    Пример 4

    Произвести разложение числа 897 924 289 на множители.

    Решение

    Для нахождения первого простого множителя произвести перебор простых чисел, начиная с 2 . Конец перебора приходится на число 937 . Тогда p 1 = 937 , a 1 = a: p 1 = 897 924 289: 937 = 958 297 и 897 924 289 = 937 · 958 297 .

    Второй шаг алгоритма заключается в переборе меньших простых чисел. То есть начинаем с числа 937 . Число 967 можно считать простым, потому как оно является простым делителем числа a 1 = 958 297 . Отсюда получаем, что p 2 = 967 , то a 2 = a 1: p 1 = 958 297: 967 = 991 и 897 924 289 = 937 · 967 · 991 .

    Третий шаг говорит о том, что 991 является простым числом, так как не имеет ни одного простого делителя, который не превосходит 991 . Примерное значение подкоренного выражения имеет вид 991 991 . Отсюда видно, что p 3 = 991 и a 3 = a 2: p 3 = 991: 991 = 1 . Получим, что разложение числа 897 924 289 на простые множители получается как 897 924 289 = 937 · 967 · 991 .

    Ответ: 897 924 289 = 937 · 967 · 991 .

    Использование признаков делимости для разложения на простые множители

    Чтобы разложить число на простые множители, нужно придерживаться алгоритма. Когда имеются небольшие числа, то допускается использование таблицы умножения и признаков делимости. Это рассмотрим на примерах.

    Пример 5

    Если необходимо произвести разложение на множители 10 , то по таблице видно: 2 · 5 = 10 . Получившиеся числа 2 и 5 являются простыми, поэтому они являются простыми множителями для числа 10 .

    Пример 6

    Если необходимо произвести разложение числа 48 , то по таблице видно: 48 = 6 · 8 . Но 6 и 8 – это не простые множители, так как их можно еще разложить как 6 = 2 · 3 и 8 = 2 · 4 . Тогда полное разложение отсюда получается как 48 = 6 · 8 = 2 · 3 · 2 · 4 . Каноническая запись примет вид 48 = 2 4 · 3 .

    Пример 7

    При разложении числа 3400 можно пользоваться признаками делимости. В данном случае актуальны признаки делимости на 10 и на 100 . Отсюда получаем, что 3 400 = 34 · 100 , где 100 можно разделить на 10 , то есть записать в виде 100 = 10 · 10 , а значит, что 3 400 = 34 · 10 · 10 . Основываясь на признаке делимости получаем, что 3 400 = 34 · 10 · 10 = 2 · 17 · 2 · 5 · 2 · 5 . Все множители простые. Каноническое разложение принимает вид 3 400 = 2 3 · 5 2 · 17 .

    Когда мы находим простые множители, необходимо использовать признаки делимости и таблицу умножения. Если представить число 75 в виде произведения множителей, то необходимо учитывать правило делимости на 5 . Получим, что 75 = 5 · 15 , причем 15 = 3 · 5 . То есть искомое разложение пример вид произведения 75 = 5 · 3 · 5 .

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Что значит разложить на простые множители? Как это сделать? Что можно узнать по разложению числа на простые множители? Ответы на эти вопросы иллюстрируются конкретными примерами.

    Определения:

    Простым называют число, которое имеет ровно два различных делителя.

    Составным называют число, которое имеет более двух делителей.

    Разложить натуральное число на множители — значит представить его в виде произведения натуральных чисел.

    Разложить натуральное число на простые множители — значит представить его в виде произведения простых чисел.

    Замечания:

    • В разложении простого числа один из множителей равен единице, а другой — самому этому числу.
    • Говорить о разложении единицы на множители не имеет смысла.
    • Составное число можно разложить на множители, каждый из которых отличен от 1.

    Разложим число 150 на множители. Например, 150 — это 15 умножить на 10.

    15 — это составное число. Его можно разложить на простые множители 5 и 3.

    10 — это составное число. Его можно разложить на простые множители 5 и 2.

    Записав вместо 15 и 10 их разложения на простые множители, мы получили разложение числа 150.

    Число 150 можно по-другому разложить на множители. Например, 150 — это произведение чисел 5 и 30.

    5 — число простое.

    30 — это число составное. Его можно представить как произведение 10 и 3.

    10 — число составное. Его можно разложить на простые множители 5 и 2.

    Мы получили разложение числа 150 на простые множители другим способом.

    Заметим, что первое и второе разложение одинаковы. Они отличаются только порядком следования множителей.

    Принято записывать множители в порядке возрастания.

    Всякое составное число можно разложить на простые множители единственным образом с точностью до порядка множителей.

    При разложении больших чисел на простые множители используют запись в столбик:

    Наименьшее простое число, на которое делится 216 — это 2.

    Разделим 216 на 2. Получим 108.

    Полученное число 108 делится на 2.

    Выполним деление. Получим в результате 54.

    Согласно признаку делимости на 2 число 54 делится на 2.

    Выполнив деление, получим 27.

    Число 27 заканчивается на нечетную цифру 7 . Оно

    Не делится на 2. Следующее простое число — это 3.

    Разделим 27 на 3. Получим 9. Наименьшее простое

    Число, на которое делится 9, — это 3. Три — само является простым числом, оно делится на себя и на единицу. Разделим 3 на себя. В итоге мы получили 1.

    • Число делится лишь на те простые числа, которые входят в состав его разложения.
    • Число делится лишь на те составные числа, разложение которых на простые множители полностью в нем содержится.

    Рассмотрим примеры:

    4900 делится на простые числа 2, 5 и 7. (они входят в разложение числа 4900), но не делится, например, на 13.

    11 550 75. Это так, потому что разложение числа 75 полностью содержится в разложении числа 11550.

    В результате деления будет произведение множителей 2, 7 и 11.

    11550 не делится на 4 потому, что в разложении четырех есть лишняя двойка.

    Найти частное от деления числа a на число b, если эти числа раскладываются на простые множители следующим образом a=2∙2∙2∙3∙3∙3∙5∙5∙19; b=2∙2∙3∙3∙5∙19

    Разложение числа b полностью содержится в разложении числа a.

    Результат деления a на b — это произведение оставшихся в разложении числа a трех чисел.

    Итак, ответ: 30.

    Список литературы

    1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. — М.: Мнемозина, 2012.
    2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. — Гимназия. 2006.
    3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. — М.: Просвещение, 1989.
    4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. — М.: ЗШ МИФИ, 2011.
    5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. — М.: ЗШ МИФИ, 2011.
    6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. — М.: Просвещение, Библиотека учителя математики, 1989.
    1. Интернет-портал Matematika-na.ru ().
    2. Интернет-портал Math-portal.ru ().

    Домашнее задание

    1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. — М.: Мнемозина, 2012. № 127, № 129, № 141.
    2. Другие задания: № 133, № 144.

    В этой статье Вы найдете всю необходимую информацию, отвечающую на вопрос, как разложить число на простые множители . Сначала дано общее представление о разложении числа на простые множители, приведены примеры разложений. Дальше показана каноническая форма разложения числа на простые множители. После этого дан алгоритм разложения произвольных чисел на простые множители и приведены примеры разложения чисел с использованием этого алгоритма. Также рассмотрены альтернативные способы, позволяющие быстро раскладывать небольшие целые числа на простые множители с использованием признаков делимости и таблицы умножения.

    Навигация по странице.

    Что значит разложить число на простые множители?

    Сначала разберемся с тем, что такое простые множители.

    Понятно, раз в этом словосочетании присутствует слово «множители», то имеет место произведение каких-то чисел, а уточняющее слово «простые» означает, что каждый множитель является простым числом . Например, в произведении вида 2·7·7·23 присутствуют четыре простых множителя: 2 , 7 , 7 и 23 .

    А что же значит разложить число на простые множители?

    Это значит, что данное число нужно представить в виде произведения простых множителей, причем значение этого произведения должно быть равно исходному числу. В качестве примера рассмотрим произведение трех простых чисел 2 , 3 и 5 , оно равно 30 , таким образом, разложение числа 30 на простые множители имеет вид 2·3·5 . Обычно разложение числа на простые множители записывают в виде равенства, в нашем примере оно будет таким: 30=2·3·5 . Отдельно подчеркнем, что простые множители в разложении могут повторяться. Это явно иллюстрирует следующий пример: 144=2·2·2·2·3·3 . А вот представление вида 45=3·15 не является разложением на простые множители, так как число 15 – составное.

    Возникает следующий вопрос: «А какие вообще числа можно разложить на простые множители»?

    В поисках ответа на него, приведем следующие рассуждения. Простые числа по определению находятся среди , больших единицы. Учитывая этот факт и , можно утверждать, что произведение нескольких простых множителей является целым положительным числом, превосходящим единицу. Поэтому разложение на простые множители имеет место лишь для положительных целых чисел, которые больше 1 .

    Но все ли целые числа, превосходящие единицу, раскладываются на простые множители?

    Понятно, что простые целые числа разложить на простые множители нет возможности. Это объясняется тем, что простые числа имеют только два положительных делителя – единицу и самого себя, поэтому они не могут быть представлены в виде произведения двух или большего количества простых чисел. Если бы целое число z можно было бы представить в виде произведения простых чисел a и b , то понятие делимости позволило бы сделать вывод, что z делится и на a и на b , что невозможно в силу простоты числа z. Однако считают, что любое простое число само является своим разложением.

    А как насчет составных чисел? Раскладываются ли составные числа на простые множители, и все ли составные числа подлежат такому разложению? Утвердительный ответ на ряд этих вопросов дает основная теорема арифметики . Основная теорема арифметики утверждает, что любое целое число a , которое больше 1 , можно разложить на произведение простых множителей p 1 , p 2 , …, p n , при этом разложение имеет вид a=p 1 ·p 2 ·…·p n , причем это разложение единственно, если не учитывать порядок следования множителей

    Каноническое разложение числа на простые множители

    В разложении числа простые множители могут повторяться. Повторяющиеся простые множители можно записать более компактно, используя . Пусть в разложении числа a простой множитель p 1 встречается s 1 раз, простой множитель p 2 – s 2 раз, и так далее, p n – s n раз. Тогда разложение на простые множители числа a можно записать как a=p 1 s 1 ·p 2 s 2 ·…·p n s n . Такая форма записи представляет собой так называемое каноническое разложение числа на простые множители .

    Приведем пример канонического разложения числа на простые множители. Пусть нам известно разложение 609 840=2·2·2·2·3·3·5·7·11·11 , его каноническая форма записи имеет вид 609 840=2 4 ·3 2 ·5·7·11 2 .

    Каноническое разложение числа на простые множители позволяет найти все делители числа и число делителей числа .

    Алгоритм разложения числа на простые множители

    Чтобы успешно справиться с задачей разложения числа на простые множители, нужно очень хорошо владеть информацией статьи простые и составные числа .

    Суть процесса разложения целого положительного и превосходящего единицу числа a понятна из доказательства основной теоремы арифметики . Смысл состоит в последовательном нахождении наименьших простых делителей p 1 , p 2 , …,p n чисел a, a 1 , a 2 , …, a n-1 , что позволяет получить ряд равенств a=p 1 ·a 1 , где a 1 =a:p 1 , a=p 1 ·a 1 =p 1 ·p 2 ·a 2 , где a 2 =a 1:p 2 , …, a=p 1 ·p 2 ·…·p n ·a n , где a n =a n-1:p n . Когда получается a n =1 , то равенство a=p 1 ·p 2 ·…·p n даст нам искомое разложение числа a на простые множители. Здесь же следует заметить, что p 1 ≤p 2 ≤p 3 ≤…≤p n .

    Осталось разобраться с нахождением наименьших простых делителей на каждом шаге, и мы будем иметь алгоритм разложения числа на простые множители. Находить простые делители нам поможет таблица простых чисел . Покажем, как с ее помощью получить наименьший простой делитель числа z .

    Последовательно берем простые числа из таблицы простых чисел (2 , 3 , 5 , 7 , 11 и так далее) и делим на них данное число z . Первое простое число, на которое z разделится нацело, и будет его наименьшим простым делителем. Если число z простое, то его наименьшим простым делителем будет само число z . Здесь же следует напомнить, что если z не является простым числом, то его наименьший простой делитель не превосходит числа , где — из z . Таким образом, если среди простых чисел, не превосходящих , не нашлось ни одного делителя числа z , то можно делать вывод о том, что z – простое число (более подробно об этом написано в разделе теории под заголовком данное число простое или составное).

    Для примера покажем, как найти наименьший простой делитель числа 87 . Берем число 2 . Делим 87 на 2 , получаем 87:2=43 (ост. 1) (если необходимо, смотрите статью ). То есть, при делении 87 на 2 получается остаток 1 , поэтому 2 – не является делителем числа 87 . Берем следующее простое число из таблицы простых чисел, это число 3 . Делим 87 на 3 , получаем 87:3=29 . Таким образом, 87 делится на 3 нацело, следовательно, число 3 является наименьшим простым делителем числа 87 .

    Заметим, что в общем случае для разложения на простые множители числа a нам потребуется таблица простых чисел до числа, не меньшего, чем . К этой таблице нам придется обращаться на каждом шаге, так что ее нужно иметь под рукой. Например, для разложения на простые множители числа 95 нам будет достаточно таблицы простых чисел до 10 (так как 10 больше, чем ). А для разложения числа 846 653 уже будет нужна таблица простых чисел до 1 000 (так как 1 000 больше, чем ).

    Теперь мы обладаем достаточными сведениями, чтобы записать алгоритм разложения числа на простые множители . Алгоритм разложения числа a таков:

    • Последовательно перебирая числа из таблицы простых чисел, находим наименьший простой делитель p 1 числа a , после чего вычисляем a 1 =a:p 1 . Если a 1 =1 , то число a – простое, и оно само является своим разложением на простые множители. Если же a 1 на равно 1 , то имеем a=p 1 ·a 1 и переходим к следующему шагу.
    • Находим наименьший простой делитель p 2 числа a 1 , для этого последовательно перебираем числа из таблицы простых чисел, начиная с p 1 , после чего вычисляем a 2 =a 1:p 2 . Если a 2 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 . Если же a 2 на равно 1 , то имеем a=p 1 ·p 2 ·a 2 и переходим к следующему шагу.
    • Перебирая числа из таблицы простых чисел, начиная с p 2 , находим наименьший простой делитель p 3 числа a 2 , после чего вычисляем a 3 =a 2:p 3 . Если a 3 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 ·p 3 . Если же a 3 на равно 1 , то имеем a=p 1 ·p 2 ·p 3 ·a 3 и переходим к следующему шагу.
    • Находим наименьший простой делитель p n числа a n-1 , перебирая простые числа, начиная с p n-1 , а также a n =a n-1:p n , причем a n получается равно 1 . Этот шаг является последним шагом алгоритма, здесь получаем искомое разложение числа a на простые множители: a=p 1 ·p 2 ·…·p n .

    Все результаты, полученные на каждом шаге алгоритма разложения числа на простые множители, для наглядности представляют в виде следующей таблицы, в которой слева от вертикальной черты записывают последовательно в столбик числа a, a 1 , a 2 , …, a n , а справа от черты – соответствующие наименьшие простые делители p 1 , p 2 , …, p n .

    Осталось лишь рассмотреть несколько примеров применения полученного алгоритма для разложения чисел на простые множители.

    Примеры разложения на простые множители

    Сейчас мы подробно разберем примеры разложения чисел на простые множители . При разложении будем применять алгоритм из предыдущего пункта. Начнем с простых случаев, и постепенно их будем усложнять, чтобы столкнуться со всеми возможными нюансами, возникающими при разложении чисел на простые множители.

    Пример.

    Разложите число 78 на простые множители.

    Решение.

    Начинаем поиск первого наименьшего простого делителя p 1 числа a=78 . Для этого начинаем последовательно перебирать простые числа из таблицы простых чисел. Берем число 2 и делим на него 78 , получаем 78:2=39 . Число 78 разделилось на 2 без остатка, поэтому p 1 =2 – первый найденный простой делитель числа 78 . В этом случае a 1 =a:p 1 =78:2=39 . Так мы приходим к равенству a=p 1 ·a 1 имеющему вид 78=2·39 . Очевидно, что a 1 =39 отлично от 1 , поэтому переходим ко второму шагу алгоритма.

    Теперь ищем наименьший простой делитель p 2 числа a 1 =39 . Начинаем перебор чисел из таблицы простых чисел, начиная с p 1 =2 . Делим 39 на 2 , получаем 39:2=19 (ост. 1) . Так как 39 не делится нацело на 2 , то 2 не является его делителем. Тогда берем следующее число из таблицы простых чисел (число 3 ) и делим на него 39 , получаем 39:3=13 . Следовательно, p 2 =3 – наименьший простой делитель числа 39 , при этом a 2 =a 1:p 2 =39:3=13 . Имеем равенство a=p 1 ·p 2 ·a 2 в виде 78=2·3·13 . Так как a 2 =13 отлично от 1 , то переходим к следующему шагу алгоритма.

    Здесь нам нужно отыскать наименьший простой делитель числа a 2 =13 . В поисках наименьшего простого делителя p 3 числа 13 будем последовательно перебирать числа из таблицы простых чисел, начиная с p 2 =3 . Число 13 не делится на 3 , так как 13:3=4 (ост. 1) , также 13 не делится на 5 , 7 и на 11 , так как 13:5=2 (ост. 3) , 13:7=1 (ост. 6) и 13:11=1 (ост. 2) . Следующим простым числом является 13 , и на него 13 делится без остатка, следовательно, наименьший простой делитель p 3 числа 13 есть само число 13 , и a 3 =a 2:p 3 =13:13=1 . Так как a 3 =1 , то этот шаг алгоритма является последним, а искомое разложение числа 78 на простые множители имеет вид 78=2·3·13 (a=p 1 ·p 2 ·p 3 ).

    Ответ:

    78=2·3·13 .

    Пример.

    Представьте число 83 006 в виде произведения простых множителей.

    Решение.

    На первом шаге алгоритма разложения числа на простые множители находим p 1 =2 и a 1 =a:p 1 =83 006:2=41 503 , откуда 83 006=2·41 503 .

    На втором шаге выясняем, что 2 , 3 и 5 не являются простыми делителями числа a 1 =41 503 , а число 7 – является, так как 41 503:7=5 929 . Имеем p 2 =7 , a 2 =a 1:p 2 =41 503:7=5 929 . Таким образом, 83 006=2·7·5 929 .

    Наименьшим простым делителем числа a 2 =5 929 является число 7 , так как 5 929:7=847 . Таким образом, p 3 =7 , a 3 =a 2:p 3 =5 929:7=847 , откуда 83 006=2·7·7·847 .

    Дальше находим, что наименьший простой делитель p 4 числа a 3 =847 равен 7 . Тогда a 4 =a 3:p 4 =847:7=121 , поэтому 83 006=2·7·7·7·121 .

    Теперь находим наименьший простой делитель числа a 4 =121 , им является число p 5 =11 (так как 121 делится на 11 и не делится на 7 ). Тогда a 5 =a 4:p 5 =121:11=11 , и 83 006=2·7·7·7·11·11 .

    Наконец, наименьший простой делитель числа a 5 =11 – это число p 6 =11 . Тогда a 6 =a 5:p 6 =11:11=1 . Так как a 6 =1 , то этот шаг алгоритма разложения числа на простые множители является последним, и искомое разложение имеет вид 83 006=2·7·7·7·11·11 .

    Полученный результат можно записать как каноническое разложение числа на простые множители 83 006=2·7 3 ·11 2 .

    Ответ:

    83 006=2·7·7·7·11·11=2·7 3 ·11 2 991 – простое число. Действительно, оно не имеет ни одного простого делителя, не превосходящего ( можно грубо оценить как , так как очевидно, что 991

    Ответ:

    897 924 289=937·967·991 .

    Использование признаков делимости для разложения на простые множители

    В простых случаях разложить число на простые множители можно без использования алгоритма разложения из первого пункта данной статьи. Если числа не большие, то для их разложения на простые множители часто достаточно знать и признаки делимости . Приведем примеры для пояснения.

    Например, нам требуется разложить на простые множители число 10 . Из таблицы умножения мы знаем, что 2·5=10 , а числа 2 и 5 очевидно простые, поэтому разложение на простые множители числа 10 имеет вид 10=2·5 .

    Еще пример. При помощи таблицы умножения разложим на простые множители число 48 . Мы знаем, что шестью восемь – сорок восемь, то есть, 48=6·8 . Однако, ни 6 , ни 8 не являются простыми числами. Но мы знаем, что дважды три – шесть, и дважды четыре – восемь, то есть, 6=2·3 и 8=2·4 . Тогда 48=6·8=2·3·2·4 . Осталось вспомнить, что дважды два – четыре, тогда получим искомое разложение на простые множители 48=2·3·2·2·2 . Запишем это разложение в канонической форме: 48=2 4 ·3 .

    А вот при разложении на простые множители числа 3 400 можно воспользоваться признаками делимости. Признаки делимости на 10, 100 позволяют утверждать, что 3 400 делится на 100 , при этом 3 400=34·100 , а 100 делится на 10 , при этом 100=10·10 , следовательно, 3 400=34·10·10 . А на основании признака делимости на 2 можно утверждать, что каждый из множителей 34 , 10 и 10 делится на 2 , получаем 3 400=34·10·10=2·17·2·5·2·5 . Все множители в полученном разложении являются простыми, поэтому это разложение является искомым. Осталось лишь переставить множители, чтобы они шли в порядке возрастания: 3 400=2·2·2·5·5·17 . Запишем также каноническое разложение данного числа на простые множители: 3 400=2 3 ·5 2 ·17 .

    При разложении данного числа на простые множители можно использовать по очереди и признаки делимости и таблицу умножения. Представим число 75 в виде произведения простых множителей. Признак делимости на 5 позволяет нам утверждать, что 75 делится на 5 , при этом получаем, что 75=5·15 . А из таблицы умножения мы знаем, что 15=3·5 , поэтому, 75=5·3·5 . Это и есть искомое разложение числа 75 на простые множители.

    Список литературы.

    • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
    • Виноградов И.М. Основы теории чисел.
    • Михелович Ш.Х. Теория чисел.
    • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

    Калькулятор факторинговых биномов — Онлайн калькулятор факторинговых биномов

    ‘Калькулятор факторинговых биномов Cuemath’s – это онлайн-инструмент, который помогает рассчитать общие множители для заданного бинома.

     Что такое калькулятор факторинговых биномов?

    Онлайн-калькулятор факторинговых биномов

    Cuemath поможет вам рассчитать общие множители для данного бинома за несколько секунд.

    Как использовать калькулятор биномов факторинга?

    Чтобы найти общие множители для данного бинома, выполните следующие действия:

    • Шаг 1: Введите биномиальное число в данное поле ввода.
    • Шаг 2:  Нажмите кнопку  «Решить» , чтобы найти общие множители для данного двучлена.
    • Шаг 3:  Нажмите кнопку «Сброс» , чтобы очистить поля и найти общие множители для данного бинома для разных биномов.

    Как найти факторинговые биномы?

    Биномиальный определяется как тип полинома, который имеет два члена. Например, x + 5, y 2 + 4 и 3y 3 −8

    .

    Выполните описанные ниже действия, чтобы разложить бином на множители.

    1. Вынести за множитель, если есть множитель, общий для всех членов двучлена.
    2. Запишите бином как произведение его множителей.

    Хотите найти сложные математические решения за считанные секунды?

    Воспользуйтесь нашим бесплатным онлайн-калькулятором, чтобы решить сложные вопросы. С Cuemath находите решения простыми и легкими шагами.

    Забронируйте бесплатный пробный урок

    Решено Пример:

    Найдите бином факторинга для 2x + 4x 3

    Решение:

     2x является общим множителем для всех членов этого бинома

    .

    = 2x(1 + 2x 2 ), что является факторизованной формой этого бинома.

    Точно так же вы можете попробовать калькулятор, чтобы найти бином факторинга для

    а) х 2  — х 4        б) х 2 у 2  + у 4

    лучших онлайн-репетиторов по факторингу рядом со мной

    Ищете «Репетиторы по факторингу рядом со мной»? Университетские репетиторы могут помочь.

    Факторинг преподается на базовом уровне в начальной школе, но он может стать довольно сложным, когда вводятся переменные. Если вам или вашему ребенку трудно понять эту фундаментальную концепцию математики, университетские репетиторы могут предоставить вам опытного репетитора по факторингу, который поможет раскрыть ваш академический потенциал.

    Вот некоторые идеи, которые можно обсудить во время занятий по факторингу:

    • Основы факторинга
    • Как учитывать переменные
    • Как факторинг может упростить решение уравнений
    • Различные «идентификации», которые позволяют вам продолжать учитывать, когда вы, возможно, думаете, что закончили

    Первым этапом любого занятия по факторингу является оценка того, где вы находитесь. Как только ваш репетитор получит эту информацию, он сможет планировать занятия на основе ваших индивидуальных потребностей и целей.Например, если вы постоянно думаете, что закончили, хотя есть еще что-то, что нужно сделать, ваш наставник может предложить практические задачи, устраняющие эту конкретную слабость. В то время как ваш классный руководитель, возможно, не сможет продолжать работать с вами, пока вы не усвоите данную концепцию, репетитор может продолжать работать до тех пор, пока она, наконец, не сработает.

    Показать больше

    Если вам трудно запомнить тождества, которые позволяют выполнять более сложные факторинговые операции, ваш наставник может создать для вас карточки, чтобы их было легче изучать.Кроме того, они могут просто повторять их снова и снова, пока вы не сможете их забыть, если захотите! В конечном итоге решение сводится к тому, как лучше всего учиться.

    Частные занятия по факторингу также позволяют вам работать в удобной для вас учебной среде. Если вы лучше всего работаете с небольшим количеством белого шума на заднем плане, во время учебы можно включить спокойную музыку. Если вы легко отвлекаетесь, ваш мобильный телефон могут забрать на время сеанса.Поскольку вы единственный студент, с которым работает ваш репетитор по факторингу, он также может оперативно ответить на любые ваши вопросы. Это позволит вам обратиться за помощью до того, как материал станет слишком громоздким.

    Если вы попали на эту страницу, выполнив поиск по запросу «репетиторство по факторингу рядом со мной», вы наткнулись на ценный ресурс. Консультанты по вопросам образования в Varsity Tutors являются экспертами в оказании помощи студентам в поиске квалифицированных преподавателей, которые соответствуют их академическим потребностям и потребностям в расписании.Наша запатентованная платформа для обучения в режиме реального времени также использует мощные функции, такие как виртуальная доска и возможность видеочата, для облегчения онлайн-сеансов обучения лицом к лицу. Свяжитесь с нами сегодня для получения дополнительной информации!

    Показывай меньше

    4,9/5,0 Рейтинг удовлетворенности*

    Уроки факторинга полностью — Уроки Wyzant

    Введение

    Предыдущие уроки факторинга были посвящены факторингу полинома с использованием одного шаблона, такого как

    Уроки, связанные выше, дают систематические методы факторизации определенных типов многочленов. На практике решение уравнений с помощью факторинга часто требует использования более сложного процесса, который называется «Полный факторинг». В этом уроке объясняется, как полностью разложить число
    на множители, комбинируя три основных метода, перечисленных выше.

    Во-первых, давайте подробнее рассмотрим, зачем нам нужен процесс Factoring Completely. Изучите выражение ниже:

    2 + 1)(х + 1)(х – 1)

    Если упростить это выражение, то получится:

    2 + 1)(х 2 + х – х – 1)

    2 + 1)(х 2 – 1)

    4 3 + х 2 4 – х 2 – 1)
    х
    4 – 1

    Теперь вы должны распознать это выражение как разницу между двумя квадратами.Используя технику, представленную в уроке

    Разница между двумя квадратами, мы можем учесть это в

    2 + 1)(х 2 – 1)

    Но обратите внимание, что это выражение отличается от факторизованного выражения, с которого мы начали. Нам нужен еще один шаг, чтобы учесть это в выражении, с которого мы начали. Вот где факторинг полностью приходит.

    Процесс

    Полный факторинг состоит из трех этапов:

    1. Фактор GCF из выражения, если это возможно.
    2. Разложите трехчлен на множители, если это возможно.
    3. Умножьте разницу между двумя квадратами как можно больше раз.

    Первый пример

    Давайте посмотрим, как это применимо к нашему исходному примеру:

    4 – 1)

    Шаг 1

    Шаг первый – факторизовать GCF. Поскольку GCF x 4 и 1 равен 1, мы пропускаем этот шаг.

    Шаг 2

    Поскольку выражение содержит только два члена, мы не можем разложить трехчлен на множители.

    Этап 3

    Факторинг (x 4 – 1) как разница между двумя квадратами приводит к

    2 + 1)(х 2 – 1).

    Теперь обязательно запомните ключевую фразу «как можно больше раз». Теперь мы должны посмотреть, есть ли где-нибудь еще мы можем факторизовать другую разницу между двумя квадратами. В (x 2 + 1) оба члена положительны, поэтому это нельзя учитывать. Однако
    дюйм (x 2 – 1), второй член отрицателен, и в противном случае оба члена являются полными квадратами.Таким образом, (x 2 – 1) делится на (x + 1)(x – 1). В результате наше примерное выражение, наконец, учитывается в

    2 + 1)(х + 1)(х – 1)

    , который полностью учитывается.

    Чем это отличается от нашей первой (и неудачной) попытки разложить пример на множители? При факторинге полностью мы использовали метод «Разница между двумя квадратами» более одного раза.

    Второй пример

    Давайте попробуем другой пример, который требует факторизации в шагах 1 и 2:

    5x 3 – 10x 2 – 15x

    Опять же, три шага в факторинге полностью:

    1. Фактор GCF из выражения, если это возможно.
    2. Разложите трехчлен на множители, если это возможно.
    3. Умножьте разницу между двумя квадратами как можно больше раз.

    Шаг 1

    Мы видим, что термины в нашем примере имеют наибольший общий делитель 5x. В соответствии с инструкциями мы вынесем этот GCF за скобки:

    5x(x 2 – 2x – 3)

    Шаг 2

    Мы видим, что (x 2 – 2x – 3) является факторизуемым трехчленом, поэтому мы факторизуем его:

    5х(х+1)(х-3)

    Переходя к шагу 3, мы можем просмотреть наше выражение и увидеть, что ни 5x, ни (x + 1), ни (x – 3) нельзя разложить на множители как разность двух квадратов.Мы полностью умножили 5x
    3 — 10x 2 — 15x.

    Последний пример

    В нашем последнем примере мы будем использовать все три шага факторинга полностью.

    12x 4 – 3x 2 – 54

    Шаг 1

    Выносим за скобки наибольший общий делитель числа 3.

    3(4x 4 – x 2 – 18)

    Шаг 2

    3(4x 2 – 9)(x 2 + 2)

    Шаг 3

    Наконец, мы идентифицируем (4x 2 – 9) как двучлен, который можно разложить на (2x + 3)(2x – 3).Таким образом, полностью факторизованный результат

    3(2x + 3)(2x – 3)(x 2 + 2).

    Ресурсы факторинга полностью

    Facevalue запускает общеевропейское онлайн-факторинговое решение для малого и среднего бизнеса

    HILVERSUM, Нидерланды, 2 августа 2021 г. /PRNewswire/ — Голландская компания FinTech Facevalue представляет уникальное решение для финансирования дебиторской задолженности для европейских МСП, которое бросает вызов традиционному факторингу. Facevalue предлагает своим клиентам полную гибкость в определении того, какую дебиторскую задолженность они хотят продать, и не взимает фиксированных комиссий.

    Большинство факторинговых решений для МСП требуют, чтобы предприятие продавало всю свою непогашенную дебиторскую задолженность финансисту в течение фиксированного периода, обычно двух лет, который включает высокие фиксированные затраты.

    «Банковский ландшафт настолько изменился за последнее десятилетие, что для большинства предприятий стало настоящей проблемой представить свое экономическое обоснование кредиторам. Часто некому получить их заявку, не говоря уже о том, чтобы понять динамику их бизнеса. и к тому времени, когда приложение оценивается, оно уже датировано.Facevalue создала безопасную онлайн-платформу, которая извлекает данные счетов-фактур, выполняет сопоставление и преобразование форматов данных и перечисляет всю непогашенную дебиторскую задолженность наших клиентов в бухгалтерской книге, откуда они могут настраивать правила или вручную выбирать, какую дебиторскую задолженность они хотели бы продать немедленно. и без права регресса». — Нильс Борнман, исполнительный директор Facevalue.

    Facevalue играет ключевую роль в качестве надежной рыночной платформы между предприятиями и инвесторами. Компания разработала возможности, необходимые для масштабирования, используя передовые технологии для решения одной из самых больших возможностей финансирования бизнеса в мире сегодня. Финансирование дебиторской задолженности является жизненно важным инструментом для восстановления рынков. Ожидается, что глобальная стоимость транзакций затмит допандемические уровни и продолжит свой стремительный рост, и все же на ее долю приходится лишь приблизительно 10% внедрения.

    Bornman:  «Прекратить восстановление экономики, поскольку рынки открываются, а правительства пытаются справиться с последствиями дальнейшего распространения COVID-19, компаниям невероятно сложно прогнозировать запасы и ликвидность. Мы считаем, что главным приоритетом бизнеса будет оставаться защита имеющиеся у них ликвидные ресурсы.Принятие гибкого финансового решения в рамках плана восстановления и роста должно быть частью стратегии каждого бизнеса в эти нестабильные времена».

    По данным отраслевого органа FCI, годовой совокупный рост дебиторской задолженности составил 7% за последние двадцать лет с 600 млрд евро на рубеже тысячелетий до 2,7 трлн евро сегодня. Во время пандемии рынок во всем мире упал на 7%, но Нидерландам все же удалось вырасти на 1,4%. На Европу приходится 68% мирового финансирования дебиторской задолженности, в которой преобладают Франция, Германия, Великобритания, Италия и Испания, на долю которых приходится 70% европейского рынка.(Источник: Ежегодный обзор FCI, 2021 г.)

    Согласно недавним отчетам PWC об оборотном капитале, в глобальных балансах имеется избыточный оборотный капитал на сумму более 1,2 трлн евро, что, если принять меры, повысит общую прибыль на инвестированный капитал до 8,8%. В 14 из 17 проанализированных отраслей промышленности показатель чистого оборотного капитала в днях ухудшился за последний год. Отраслями, которые больше всего выиграют от высвобождения денежных средств из доходов, являются розничная торговля, проектирование и строительство, здравоохранение, технологии и автомобилестроение.(Источник: отчет PWC об оборотном капитале за 2021 г.)

    Европа также является одним из регионов, наиболее пострадавших от пандемии, где выручка снизилась на 23%, дни запасов увеличились на 15%, а показатели оборотного капитала ухудшились на 8 дней. В то время как компании улучшили свои возможности по получению денежных средств от операций, размер прибыли находится на самом низком уровне за четыре года, а долг значительно вырос, поскольку компании копили денежные средства, чтобы пережить бурю. (Источник: отчет PWC о реструктуризации и восстановлении за 2020 г.)

    «Наше исследование европейских межотраслевых корпораций среднего размера показывает, что даже до пандемии выручка росла из года в год, но даже тогда компании изо всех сил пытались конвертировать выручку в денежные средства.Кроме того, капитальные затраты в процентах от выручки продолжают снижаться, что означает, что компании управляют денежными средствами, не делая капитальных вложений. Во время пандемии выручка снизилась и сейчас только начинает восстанавливаться. Мы прогнозируем, что капитальные затраты останутся низким приоритетом, в то время как управление денежными потоками станет приоритетом номер один», — прокомментировал Нильс Борнман.

    Многие предприятия неохотно используют решения по финансированию дебиторской задолженности в рамках своего финансового планирования из-за сравнительно высоких фиксированных затрат, которые оно влечет за собой. Устранив жесткость и фиксированные затраты, Facevalue предлагает решение, которое должно стать частью стратегического планирования любого бизнеса, независимо от его размера. Существует прямая зависимость от повышения стоимости предприятия и эффективного управления его оборотным капиталом.

    Продать дебиторскую задолженность Facevalue так же просто, как отправить счет по электронной почте прямо из системы учета на специальный адрес электронной почты, который мы создаем для каждого клиента. Платформа использует комбинацию оптического распознавания символов (OCR) и искусственного интеллекта (ИИ) для преобразования счета в формате PDF в структурированный электронный счет, совместимый с Peppol.Новые клиенты могут немедленно продать свою первоочередную дебиторскую задолженность, в то время как Facevalue проведет детальную оценку кредитоспособности, после чего может быть одобрена кредитная линия на сумму до 5 миллионов евро для МСП в Европейской экономической зоне и Соединенном Королевстве.

    О номинале

    Facevalue — голландская стартап-платформа FinTech, которая предоставляет решения для оборотного капитала и специализируется на глобальном финансировании дебиторской и кредиторской задолженности. Платформа для нескольких инвесторов использует эффект масштаба, основанный на спросе, и поддерживает сотрудничество с крупными сообществами пользователей.До запуска своего решения для малого и среднего бизнеса он обслуживал корпоративный средний рынок в сотрудничестве с Global Transaction Banks. На сегодняшний день Facevalue привлекла 9 миллионов евро в виде акционерного капитала и пользуется хорошей поддержкой со стороны институциональных банков и небанковских инвесторов, которые финансируют приобретаемые ею счета дебиторов и кредиторов.

    ИСТОЧНИК Номинал

    Сортировать: Факторинг — GameUp — BrainPOP.

    Сортировать: Факторинг — GameUp — BrainPOP.

    bVX0-zncj9qJ3G1_r18rkIpQL02X-Oi6tWViR4g4-vwDVmU50WZA-4bRZMjM2TXmc88PAkJ1g0jIembnEbM

    bVX0-zncj9qJ3G1_r18rkIpQL02X-Oi6tWViR4g4-vwDVmU50WZA-4bRZMjM2TXmc88PAkJ1g0jIembnEbM