От чего зависит тепловое движение – Attention Required! | Cloudflare

Содержание

Тепловое движение. Температура

Из химии и физики 7 класса вы знаете, что все вещества имеют дискретное строение. Иными словами, они состоят из мельчайших частиц — атомов и молекул, между которыми существуют промежутки.

Размеры атомов и молекул настолько малы, что увидеть их без сильных электронных микроскопов не удаётся. Но большое количество разнообразных наблюдаемых явлений подтверждают дискретность веществ. Среди них и хорошо знакомое вам явление диффузии — самопроизвольное проникновение одного вещества в другое.

Диффузия в жидкости

Однако самым убедительным доказательством дискретного строения вещества является броуновское движение. Давайте посмотрим, в чем его суть.

Броуновское движение — это беспорядочное движение малых частиц вещества, взвешенных в жидкости или газе.

Взвешенными называются частицы, плотность вещества которых сравнима с плотностью среды, в которой они находятся. При этом размеры этих частиц в тысячу с лишним раз превышают размеры молекул.

Впервые такое движение наблюдал английский ботаник Р. Броун в 1827 г. Он рассматривал движение частиц цветочной пыльцы в воде под микроскопом. Каждая частица пыльцы совершала причудливое зигзагообразное движение.

 

 

Броуновское движение

Постепенно становилось понятным, что мельчайшие частички вещества испытывают со всех сторон удары ещё более мелких частиц, которые в микроскоп уже не видны.

Открытое Р. Броуном движение неоспоримо доказало факт того, что все вещества состоят из атомов и молекул. И самое главное, что эти мельчайшие частицы вещества находятся в непрерывном беспорядочном движении, интенсивность которого зависит от температуры вещества. Чем выше температура, тем быстрее двигаются молекулы вещества, и наоборот. Именно поэтому броуновское движение ещё называют

тепловым движением.

А что такое температура?

Многие из вас наверняка приведут примеры того, что температура горячей воды больше чем холодной. А кто-то скажет, что температура на улице зимой ниже, чем летом.

Стакан с холодной и горячей водой

Температура — это физическая величина, которая характеризует тепловое состояние тела (степень его «нагретости»).

Однако наши с вами ощущения неоднозначны и зависят от состояния человека и окружающей среды. Так, например, в одной и той же комнате металлические предметы всегда кажутся более холодными, чем деревянные или пластмассовые.

Или вот ещё один пример — опыт, который вы можете провести в домашних условиях. Погрузим на некоторое время одну руку в горячую воду, а другую — в холодную. Теперь, если мы обе руки поместим в воду при комнатной температуре и попытаемся на основании своих ощущений установить, какая в сосуде вода — холодная или горячая, то, на удивление, у нас ничего не получится, поскольку наши ощущения будут разными: рука, которая находилась в горячей воде, будет чувствовать холод, а рука, находившаяся в холодной воде, будет ощущать тепло.

Поэтому, для того, чтобы сделать те или иные выводы о температуре тела, её необходимо измерить. Для измерения температуры используется специальный измерительный прибор — термометр. Его действие основано на зависимости свойств тела от температуры (расширение тел при нагревании и их сжатие при охлаждении).

Термометр

Единицей измерения температуры является градус Цельсия.

Эта единица была названа в честь шведского учёного А. Цельсия, предложившего использовать стоградусную шкалу температур. За 0 оС в ней принимается температура тающего льда, а за 100 оС — температура кипения воды при нормальных условиях.

Шкала Цельсия

Помимо шкалы Цельсия, существуют и другие температурные шкалы. Например, термометры со шкалой Фаренгейта до сих пор применяют в Англии и Америке. За 0о в этой шкале была принята температура самой холодной зимы в Голландии в 1709 г., а вторая точка соответствовала нормальной температуре человеческого тела — 98 оF.

Шкала Фаренгейта

Во Франции долгое время использовалась шкала Реомюра, которая в настоящее время вышла из употребления.

Шкала Реомюра

В физике, в частности в термодинамике, используется шкала Кельвина. В ней температура отсчитывается от абсолютного нуля — то есть от минимальной теоретически возможной температуры тела. В нашей привычной шкале — шкале Цельсия, эта температура равняется −273,15

оС.

Шкала Реомюра

Вы конечно знаете, что при любой температуре вещество, например, вода, состоит из одних и тех же молекул. Иными словами, молекулы холодной воды ничем не отличаются от молекул воды горячей. Но что же тогда меняется в воде при изменении её температуры?

Изменяется скорость движения молекул. Чем быстрее двигаются молекулы в веществе, тем более высокой является температура вещества, и наоборот. Т. е., температура зависит от скорости движения молекул.

Но только ли от скорости молекул зависит температура тела? Например, при средней скорости движения молекул в 440 м/с кислород имеет температуру 20 оС, а азот — 16 оС. Это обусловлено тем, что молекулы азота легче молекул кислорода. Следовательно, температура зависит и от массы молекул.

В 7 классе вы познакомились с величиной, которая также зависела от скорости и массы — это кинетическая энергия.

Поэтому можно утверждать, что температура является мерой средней кинетической энергии молекул тела.

Теперь выясним каковы особенности броуновского движения в различных агрегатных состояниях вещества.

Вы уже знаете, что расстояние между молекулами у газов достаточно большое, и намного больше чем у жидкостей и твёрдых тел. Но силы взаимодействия между молекулами газа ничтожно малы. Поэтому молекула в газе двигается свободно до момента столкновения с другой молекулой. При столкновении молекула меняет направление своего движения и вновь движется свободно до следующего столкновения. Именно поэтому газы не сохраняют своей формы и занимают весь предоставленный им объём.

Расположение молекул в газе

Тепловое движение молекул жидкости другое. Расстояния между молекулами жидкости намного меньше, чем в газах, а сами молекулы связаны друг с другом силами притяжения и отталкивания. Поэтому они совершают беспорядочные колебания и вращения в одном положении, а также могут перемещаться относительно друг друга.

Расположение молекул в газе

Наличие сил притяжения между молекулами обеспечивает жидкости сохранение объёма, а перемещения — текучесть. Поэтому жидкость и сохраняет свой объем, но не сохраняет форму, а принимает форму того сосуда, в котором она находится.

В твёрдых телах частицы связаны между собой сильнее, чем в жидкостях. Поэтому их тепловое движение главным образом сводится к хаотичному колебанию около своего положения равновесия.

Расположение молекул в газе

Сильное взаимодействие в твёрдом веществе частиц друг с другом, и отсутствие у них подвижности, приводит к тому, что твёрдые тела сохраняют свою форму и объём.

videouroki.net

Тепловое движение — Карта знаний

  • Теплово́е движе́ние — процесс хаотичного (беспорядочного) движения частиц, образующих вещество. Чем выше температура, тем больше скорость движения частиц. Чаще всего рассматривается тепловое движение атомов и молекул.

    Характерная скорость теплового движения частицы может быть выведена из распределения Максвелла.

    Хаотичность — важнейшая черта теплового движения. Важнейшими доказательствами существования движения молекул является Броуновское движение и диффузия.

Источник: Википедия

Связанные понятия

Газ, или газообразное состояние (от нидерл. gas, восходит к др.-греч. χάος (háos)) — одно из четырёх основных агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения. Бро́уновское движе́ние (бра́уновское движе́ние) — беспорядочное движение микроскопических видимых взвешенных в жидкости или газе частиц твёрдого вещества, вызываемое тепловым движением частиц жидкости или газа. Было открыто в 1827 году Робертом Броуном (правильнее Брауном). Броуновское движение никогда не прекращается. Оно связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения. Агрега́тное состоя́ние вещества (от лат. aggrego «присоединяю») — физическое состояние вещества, зависящее от соответствующего сочетания температуры и давления. Диссипа́ция энергии (лат. dissipatio «рассеяние») — переход части энергии упорядоченных процессов (кинетической энергии движущегося тела, энергии электрического тока и т. п.) в энергию неупорядоченных процессов, в конечном счёте — в теплоту. Системы, в которых энергия упорядоченного движения с течением времени убывает за счёт диссипации, переходя в другие виды энергии, например в теплоту или излучение, называются диссипативными. Для учёта процессов диссипации энергии в таких системах при определённых...

Упоминания в литературе

Согласно теории, разработанной Дебаем, энергия электростатического взаимодействия полярных молекул зависит от температуры, повышение которой нарушает ориентацию заряженных молекул в результате их теплового движения и снижает величину электростатического взаимодействия. Под влиянием электрического поля полярных молекул может произойти поляризация неполярных веществ, находящихся в контакте с полярными. Результатом взаимодействия между молекулами этих веществ является притяжение, подобное притяжению полярных молекул, но более слабое. Возникающие при этом силы называются индукционными. В отличие от электростатических сил они не зависят от температуры, но быстро убывают с расстоянием между частицами. В 1970-е годы специалисты вернулись к эффектам слабых и очень слабых магнитных и электрических полей на модельные физико-химические системы, биологические объекты и организм человека. Механизмы, вызывающие эти эффекты, «работают» на уровне молекул, а порой атомов, вследствие чего очень трудноуловимы. Тем не менее ученые экспериментально продемонстрировали и теоретически объяснили магнитные и спиновые эффекты. Выяснилось, что хотя энергия магнитного взаимодействия на несколько порядков меньше энергии теплового движения, но на той стадии реакции, где собственно все и происходит, тепловое движение не успевает помешать действию магнитного поля. Температура межзвездного газа в таких областях (определяемая как характеристика беспорядочных тепловых движений частиц) достигает 10 тыс. К. При этих условиях межзвездная среда излучает отдельные линии в видимой части спектра, в частности красную водородную линию. Эти области межзвездной среды носят название зоны НИ. Однако большая часть межзвездной среды достаточно удалена от горячих звезд. Водород там не ионизован. Температура газа низкая, около 100 К или ниже. Именно здесь имеется значительное количество молекул водорода. Агрегатное состояние воды зависит от наличия этих форм. Лед обычно состоит из тригидролей, имеющих самый большой объем. Парообразное состояние воды представлено моногидролями, так как значительное тепловое движение молекул при температуре 100 °С нарушает их ассоциацию. В жидком состоянии вода представляет смесь гидроля, дигидроля и тригидроля. Соотношение между ними определяется температурой. Образование ди– и тригидроля происходит вследствие притяжения молекул воды (гидролей) друг к другу. Пары воды, нагретые до 300 °C, при атмосферном давлении подобны обычным газам: в них расстояния между молекулами достаточно велики, так что каждая отдельная молекула может существовать более или менее самостоятельно, не испытывая существенного взаимодействия со стороны своих соседей, за исключением тех случаев, когда молекулы в результате беспорядочного теплового движения сталкиваются друг с другом.

Связанные понятия (продолжение)

Межзвёздная среда (МЗС) — вещество и поля, заполняющие межзвёздное пространство внутри галактик. Состав: межзвёздный газ, пыль (1 % от массы газа), межзвёздные электромагнитные поля, космические лучи, а также гипотетическая тёмная материя. Химический состав межзвёздной среды — продукт первичного нуклеосинтеза и ядерного синтеза в звёздах. На протяжении своей жизни звёзды испускают звёздный ветер, который возвращает в среду элементы из атмосферы звезды. А в конце жизни звезды с неё сбрасывается оболочка... Магнитогидродинамическая обработка (МГДО) – способ воздействия на поток минерализованной воды, в котором под воздействием магнитного поля индуцируется электрический ток. Электрический ток в электролитах поддерживается, как известно, перемещением заряжённых ионов и в потоке воды происходит изменение концентрации в объёме потока положительных и отрицательных ионов. С использованием МГДО можно добиться таких эффектов как, местное снижение pH воды (для снижения коррозионной активности потока воды), создания... Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизованный газ, одно из четырёх основных агрегатных состояний вещества. Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Силы Ван-дер-Ваальса (Вандерваа́льсовы си́лы) — силы межмолекулярного (и межатомного) взаимодействия с энергией 10—20 кДж/моль. Этим термином первоначально обозначались все такие силы, в современной науке он обычно применяется к силам, возникающим при поляризации молекул и образовании диполей. Открыты Й. Д. Ван дер Ваальсом в 1869 году. Гравитацио́нная неусто́йчивость (неустойчивость Джинса) — нарастание со временем пространственных флуктуаций скорости и плотности вещества под действием сил тяготения (гравитационных возмущений). Молекулярная теория (сокращённо МТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений... Гравитационная дифференциация – разделение неоднородного магматического расплава под влиянием гравитационных сил, сопровождающееся выделением энергии. Гравитационная дифференциация служит источником внутренней тепловой энергии Земли, планет и звёзд. Радиометрический эффект — явление самопроизвольного движения неравномерно нагретых тел, помещённых в разреженных газах, в направлении от более нагретой стороны к менее нагретой. Неравномерность нагревания обычно осуществляется односторонним освещением тела, с чем и связано название эффекта. Силы, приводящие тело в движение, называются радиометрическими. Суперпарамагнетизм — форма магнетизма, проявляющаяся у ферромагнитных и ферримагнитных частиц. Если такие частицы достаточно малы, то они переходят в однодоменное состояние, то есть становятся равномерно намагниченными по всему объёму. Магнитный момент таких частиц может случайным образом менять направление под влиянием температуры, и при отсутствии внешнего магнитного поля средняя намагниченность суперпарамагнитных частиц равна нулю. Но во внешнем магнитном поле такие частицы ведут себя как парамагнетики... Седиментацио́нный ана́лиз — совокупность методов определения размеров частиц в дисперсных системах и молекулярной массы макромолекул в растворах полимеров по скорости седиментации в условиях седиментационно-диффузного равновесия. Я́дерная реа́кция — это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, который может сопровождаться изменением состава и строения ядра. Последствием взаимодействия может стать деление ядра, испускание элементарных частиц или фотонов. Кинетическая энергия вновь образованных частиц может быть гораздо выше первоначальной, при этом говорят о выделении энергии ядерной реакцией. Рото́н (от лат. roto — «вращаюсь, верчусь») — элементарное возбуждение (квазичастица) в сверхтекучем 4He, связанное с атомной структурой сверхтекучего гелия и имеющее квадратичный спектр энергии E(p) около импульса p0~h/a, где a - характерное межатомное расстояние. Возникновение таких квазичастиц имеет особое влияние на поведение сверхтекучей жидкости в области температур около одного кельвина. Термин ввел И. Е. Тамм. Диффу́зия (лат. diffusio «распространение, растекание, рассеивание; взаимодействие») — процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией... Гидродина́мика (от др.-греч. ὕδωρ «вода» + динамика) — раздел физики сплошных сред, изучающий движение идеальных и реальных жидкостей и газа и их силовое взаимодействие с твёрдыми телами. Как и в других разделах физики сплошных сред, прежде всего осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения. Эффект Унру, или излучение Унру (англ. Unruh effect) — предсказываемый квантовой теорией поля эффект наблюдения теплового излучения в ускоряющейся системе отсчёта при отсутствии этого излучения в инерциальной системе отсчёта. Другими словами, ускоряющийся наблюдатель увидит фон излучения вокруг себя, даже если не ускоряющийся наблюдатель не видит ничего. Основное квантовое состояние (физический вакуум) в инерциальной системе кажется состоянием с ненулевой температурой в ускоряющейся системе отсчёта... Диффу́зия в пла́зме — комплекс явлений, заключающихся в самопроизвольном направленном движении частиц плазмы при наличии неоднородного распределения их концентрации. Является частным случаем явлений переноса в плазме. Жи́дкость — вещество, находящееся в жидком агрегатном состоянии, занимающем промежуточное положение между твёрдым и газообразным состояниями. Сизифово охлаждение атомов (англ. Sisyphus cooling) это механизм понижения температуры атомов с помощью лазерного света до температур ниже достижимых с помощью доплеровского охлаждения (~500 μK). Охлаждение является результатом взаимодействия атомов с градиентом поляризации, созданной двумя распространяющимися навстречу лазерными пучками с ортогональной линейной поляризацией. Атомы, летящие в направлении световой волны в результате спонтанного перехода с верхнего на нижний уровень «одетого» состояния... Критерий Ландау сверхтекучести — соотношение между энергиями и импульсами элементарных возбуждений системы (фононов), обусловливающее возможность её нахождения в сверхтекучем состоянии. Сверхтекучий ге́лий-4 (англ. superfluid helium-4) — фазовое состояние гелия-4, изотопа элемента гелия, в каком он проявляет свойства жидкости с нулевой вязкостью: течет без трения по любой поверхности, протекает через очень мелкие поры, подчиняясь только своей собственной инерции. В то же время, в других экспериментах, тот же гелий проявляет свойства, присущие обычной жидкости (с ненулевой вязкостью). Сверхтекучее поведение гелия наблюдается при охлаждении его ниже критической температуры... Си́ла — физическая векторная величина, являющаяся мерой воздействия на данное тело со стороны других тел или полей. Приложение силы обусловливает изменение скорости тела или появление деформаций и механических напряжений. Эффект Садовского — появление механического вращающего момента, который действует на тело, облучаемое поляризованным эллиптически или по кругу светом. Эффе́кт Вави́лова — Черенко́ва, Эффект Черенкова, излуче́ние Вави́лова — Черенко́ва, черенко́вское излуче́ние — свечение, вызываемое в прозрачной среде заряженной частицей, движущейся со скоростью, превышающей фазовую скорость распространения света в этой среде. Сла́бое взаимоде́йствие — фундаментальное взаимодействие, ответственное, в частности, за процессы бета-распада атомных ядер и слабые распады элементарных частиц, а также нарушения законов сохранения пространственной и комбинированной чётности в них. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики и физики высоких энергий (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого... Во́лны в пла́зме — электромагнитные волны, распространяющиеся в плазме и самосогласованные с коллективным движением заряженных частиц плазмы. В силу того, что доминирующее значение в динамике частиц плазмы играет электромагнитное взаимодействие между ними, электромагнитные свойства плазмы сильно зависят от наличия внешних полей, а также от параметров распространяющихся в ней волн. Термостре́ссовая конве́кция — явление переноса газа или жидкости вследствие неоднородности температурного распределения. В отличие от обычной конвекции наблюдается в отсутствии гравитационных сил. А́том (от др.-греч. ἄτομος «неделимый, неразрезаемый») — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств. Нагрев — искусственный либо естественный процесс повышения температуры материала/тела, либо за счёт внутренней энергии, либо за счёт подведения к нему энергии извне. Для подведения энергии извне используется специальное устройство — нагреватель (нагревательный элемент), того или иного вида и конструкции. Электромагни́тное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля. Нейтрониза́ция — процесс захвата электронов ядрами при высоких плотностях в недрах звёзд на завершающих этапах их эволюции. Нейтронизация играет ключевую роль в образовании нейтронных звёзд и вспышках сверхновых. Электропроводность (электри́ческая проводи́мость, проводимость) — способность тела (среды) проводить электрический ток, свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению. Твёрдое тело — одно из четырёх основных агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия. Термодинамическая система — тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом; выделяемая (реально или мысленно) для изучения макроскопическая физическая система, состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц, «часть Вселенной, которую мы выделяем для исследования». Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро... Химия высоких энергий — раздел физической химии, описывающий химические и физико-химические процессы, происходящие в веществе при воздействии нетепловыми энергетическими агентами — ионизирующим излучением, светом, плазмой, ультразвуком, механическим ударом и другими. Вы́нужденное излуче́ние, индуци́рованное излучение — генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) между двумя состояниями (с более высокого на более низкий энергетический уровень) под воздействием индуцирующего фотона, энергия которого равна разности энергий этих состояний. Созданный фотон имеет ту же энергию, импульс, фазу, поляризацию, а также направление распространения, что и индуцирующий фотон (который при этом не поглощается). Оба фотона являются когерентными... Моле́кула водоро́да — простейшая молекула, состоящая из двух атомов водорода. В её состав входят два ядра атомов водорода и два электрона. Вследствие взаимодействия между электронами и ядрами образуется ковалентная химическая связь. Кроме основной изотопной модификации h3, существуют разновидности, в которых один или оба атома протия заменены другими изотопами водорода — дейтерием или тритием: HD, HT, D2, DT, T2. Симметричность или несимметричность молекулы имеет значение при её вращении. Сверхтеку́честь — способность вещества в особом состоянии (квантовой жидкости), возникающем при температурах, близких к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы сверхтекучесть была обнаружена и в других системах: в разрежённых атомных бозе-конденсатах, твёрдом гелии. Ку́перовская па́ра — связанное состояние двух взаимодействующих через фонон электронов. Обладает нулевым спином и зарядом, равным удвоенному заряду электрона. Впервые подобное состояние было описано Леоном Купером в 1956 году, рассмотревшим лишь упрощенную двухчастичную задачу. Коррелированные пары электронов ответственны за явление сверхпроводимости. Турбуле́нтность, устар. турбуле́нция (от лат. turbulentus — бурный, беспорядочный), турбуле́нтное тече́ние — явление, заключающееся в том, что, обычно, при увеличении скорости течения жидкости или газа в среде самопроизвольно образуются многочисленные нелинейные фрактальные волны и обычные, линейные различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их присутствии. Для расчёта подобных течений были созданы различные модели турбулентности. Волны появляются случайно... Динамическое трение — в астрофизике потеря момента и кинетической энергии движущегося тела вследствие гравитационного взаимодействия с окружающим веществом. Впервые подробно обсуждалось С. Чандрасекаром в 1943 году. Спиновая температура — имеющая размерность температуры парциальная характеристика подсистемы спинов. Широко используется для описании свойств электронных и ядерных парамагнетиков во внешнем магнитном поле.

kartaslov.ru

Тепловое движение - СПИШИ У АНТОШКИ

Для изучения темы «Тепловое движение» нам необходимо повторить:

В окружающем нас мире происходят различного рода физические явления, которые напрямую связанны с изменением температуры тел.

Еще с детства мы помним, что вода в озере сначала холодная, потом едва теплая и только спустя время становится пригодной для купания

Такими словами как «холодный», «горячий», « чуть-чуть теплый», мы определяем различную степень «нагретости» тел, или, если говорить языком физики на различную температуру тел.

Если сравнивать температуру в озере летом и поздней осенью, то разница очевидна. Температура теплой воды немного выше температуры ледяной воды.

Как известно, диффузия при более высокой температуре происходит быстрее. Из этого следует, что скорость перемещения молекул и температура глубоко взаимосвязаны между собой.

Проведите опыт: Возьмите три стакана и наполните их холодной, теплой и горячей водой, а теперь положите в каждый стакан чайный пакетик и пронаблюдайте, как изменится цвет воды? Где это изменение будет происходить интенсивнее?

Если увеличить температуру, то скорость движения молекул увеличится, если уменьшить – понизится. Таким образом, делаем вывод: температура тела напрямую зависит от скорости перемещения молекул.

Горячая вода состоит из абсолютно таких же молекул, как и холодная. Разница между ними состоит лишь в скорости передвижения молекул.

Явления, которые имеют отношение к нагреву или охлаждению тел, изменению температуры, получили название тепловые. К ним можно отнести нагревание или охлаждение не только жидких тел, но и газообразных и твердых воздуха.

Еще примеры тепловых явлений: плавка метала, таяние снега.

Молекулы, либо атомы, которые являются основой всех тел, находятся в бесконечном хаотичном движении. Движение молекул в разных телах происходит по-разному. Молекулы газов беспорядочно движутся с большими скоростями по очень сложной траектории. Сталкиваясь, они отскакивают друг от друга, изменяя величину и направление скоростей.

Молекулы жидкости колеблются около равновесных положений ( т.к. расположены почти вплотную друг к другу) и сравнительно редко перескакивают из одного равновесного положения в другое. Движение молекул в жидкостях является менее свободным, чем в газах, но более свободным, чем в твердых телах.

В твердых телах молекулы и атомы колеблются около некоторых средних положениях.

С ростом температуры скорость частиц увеличивается, поэтому хаотическое движение частиц принято называть тепловым.

Интересно:

Какова точная высота Эйфелевой башни? А это зависит от температуры окружающей среды! 

Дело в том, что высота башни колеблется на целых 12 сантиметров. 

Это происходит от того, что в жаркую  погоду строение нагревается, 

и температура балок может доходить до 40 градусов по Цельсию.

 А как известно, вещества могут расширяться под воздействием высокой температуры. 

Хаотичность является важнейшей чертой теплового движения. Одним из самых главных доказательств движения молекул является диффузия и Броуновское движение. (Броуновское движение – движение мельчайших твердых частиц в жидкости под воздействием ударов молекул. Как показывает наблюдение, Броуновское движение не может прекратиться). Броуновское движение было открыто английским ботаником Робертом Броуном (1773-1858гг.)

В тепловом движении молекул и атомов участвуют абсолютно все молекулы тела, именно поэтому с изменением теплового движения меняется и состояние самого тела, его различные свойства.

Вспомним как меняются свойства воды при изменении температуры.

Температура тела напрямую зависит от средней кинетической энергии молекул. Делаем очевидный вывод: чем выше температура тела, тем больше средняя кинетическая энергия его молекул. И, наоборот, при понижении температуры тела, средняя кинетическая энергия его молекул уменьшается.

Температура— величина, которая характеризует тепловое состояние тела или иначе мера «нагретости» тела.

Чем выше температура тела, тем большую в среднем энергию имеют его атомы и молекулы.

Температура измеряется термометрами, т.е. приборами для измерения температуры

Температура непосредственно не измеряется! Измеряется величина, зависящая от температуры!

В настоящее время существуют жидкостные и электрические термометры.

В современных жидкостных термометрах - это объем спирта или ртути. Термометр измеряет собственную температуру! А, если мы хотим измерить с помощью термометра температуру какого-либо другого тела, надо подождать некоторое время, пока температуры тела и термометра уравняются, т.е. наступит тепловое равновесие между термометром и телом. Домашнему термометру «градуснику» нужно время, чтобы дать точнее значение температуры больного.

В этом состоит закон теплового равновесия:

у любой группы изолированных тел через какое-то время температуры становятся одинаковыми,

т.е. наступает состояние теплового равновесия.

Температура тел измеряется с помощью термометра и чаще всего выражается в градусах Цельсия (°C). Существуют еще и другие единицы измерения: Фаренгейт, Кельвин и Реомюр. 

Чаще всего физики измеряют температуру по шкале Кельвина. 0 градусов по шкале Цельсия = 273 градусам по шкале Кельвина

spishy-u-antoshki.ru

Тепловое движение: внутренняя энергия

 

Как вы думаете, от чего зависит скорость растворения сахара в воде? Можете провести простой эксперимент. Возьмите два куска сахара и киньте один в стакан с кипятком, другой – в стакан с холодной водой.

Вы увидите, как сахар в кипятке растворится в несколько раз быстрее, чем в холодной воде. Причиной растворения является диффузия. Значит, диффузия происходит быстрее при более высокой температуре. А причина диффузии – это движение молекул. Следовательно, мы делаем вывод, что молекулы при более высокой температуре движутся быстрее. То есть, скорость их движения зависит от температуры. Именно поэтому беспорядочное хаотическое движение молекул, из которых состоят тела, называют тепловым движением.

Тепловое движение молекул

При повышении температуры усиливается тепловое движение молекул, меняются свойства вещества. Твердое тело тает, превращаясь в жидкость, жидкость испаряется, переходя в газообразное состояние. Соответственно, если температуру понижать, то будет уменьшаться и средняя энергия теплового движения молекул, а соответственно, процессы изменения агрегатного состояния тел будут происходить в обратном направлении: вода будет конденсироваться в жидкость, жидкость будет замерзать, переходя в твердое состояние. При этом, мы всегда говорим о средних значениях температуры и скорости молекул, так как всегда присутствуют частицы с большими и меньшими значениями этих величин.

Молекулы в веществах движутся, проходя определенное расстояние, следовательно, совершают некую работу. То есть, мы можем говорить о кинетической энергии частиц. Вследствие их взаимного расположения существует также и потенциальная энергия молекул. Когда идет речь о кинетической и потенциальной энергии тел, то мы говорим о существовании полной механической энергии тел. Если кинетической и потенциальной энергией обладают частицы тела, следовательно, можно говорить о сумме этих энергии, как о самостоятельной величине.

Внутренняя энергия тела

Рассмотрим пример. Если мы кидаем упругий мячик об пол, то кинетическая энергия его движения полностью переходит в потенциальную в момент касания пола, а потом вновь переходит в кинетическую, когда он отскакивает. Если же мы бросим тяжелый железный мячик на твердую неупругую поверхность, то мячик приземлится, не отскакивая. Его кинетическая и потенциальная энергии после приземления будут равны нулю. Куда же подевалась энергия? Она просто исчезла? Если мы изучим шарик и поверхность после столкновения, то увидим, что шарик немного сплющился, на поверхности осталась вмятина, и оба они слегка нагрелись. То есть произошло изменение в расположении молекул тел, а также увеличилась температура. Это означает, что изменились кинетическая и потенциальная энергия частиц тела. Энергия тела никуда не пропала, она перешла во внутреннюю энергию тела. Внутренней энергией называют кинетическую и потенциальную энергию всех частиц тела. Столкновение тел вызвало изменение внутренней энергии, она увеличилась, а механическая энергия уменьшилась. В этом и состоит закон сохранения энергии. Энергия не возникает из ниоткуда и не исчезает в никуда. Она только переходит из одного состояния в другое.

Нужна помощь в учебе?



Предыдущая тема: Превращение энергии: закон сохранения энергии
Следующая тема:&nbsp&nbsp&nbspСпособы изменения внутренней энергии

Все неприличные комментарии будут удаляться.

www.nado5.ru

Урок на тему "Тепловое движение. Температура"

Урок 1/1

Тепловое движение. Температура. 8класс.

Автор: Лунина Людмила Алексеевна, учитель физики

МОУ «Средняя общеобразовательная школа №14» г. Брянска.

Цель урока: познакомить учащихся с примерами тепловых явлений. Сформировать

понятие теплового движения, температура.

  • Образовательные задачи: обобщить и систематизировать первоначальные знания о строении вещества, научить учащихся понимать, что такое температура, тепловое движение и что между скоростью движения молекул и температурой существует прямая связь, учить применять знания на практике.

  • Развивающие задачи: развитие логического мышления учащихся, формирование умений анализировать информацию выделять главное, расширение понятийного аппарата учащихся, формирование представления о тепловом движении, температуре.

  • Воспитательные задачи: формирование умения культуры общения (внимательно слушать учителя, друг друга, анализировать услышанное), умения работать коллективно и в парах.

Планируемые результаты:

  • Усвоение учебного материала по теме «Тепловое движение. Температура».

  • Развитие способности учеников работать самостоятельно, обобщая полученную информацию и свои знания.

  • Использование полученных знаний для решения задач.

Оборудование: компьютер, мультимедийный проектор, мультимедийная презентация. Демонстрации. 1. Движение молекул (модель ха­отического движения молекул).

2. Диффузия в газах и жидкостях. 3. Горение свечи (плавление и отвердевание воска).

Тип урока: изучение нового учебного материала с использованием ранее полученных знаний.

Ход урока.

  1. Оргмомент.

  2. Актуализация знаний.(3 слайд)

  • Что изучает физика?

  • О каких физических явлениях вы узнали в курсе физики 7 класса?

  • Какие физические явления вы изучили в 7классе?

  • С какими физическими величинами и законами познакомились в 7 классе?

  • Назовите несколько физических тел и укажите из какого вещества они состоят. Из чего состоит любое вещество?

  • Отличаются ли молекулы водяного пара, воды и льда? В чем причина различного состояния данного вещества? (4слайд)

3. Объяснение. (С использованием презентации).

В окружающем нас мире происходят различные физические яв­ления, которые связаны с нагреванием и охлаждением тел. (Показ слайдов 5-9). Мы зна­ем, что при нагревании холодная вода вначале становится теплой, а затем горячей.

Такими словами, как «холодный», «теплый», и «горячий», мы ука­зываем на различную степень нагретости тел, или, как говорят в физи­ке, на различную температуру тел.

Запись в тетради:

Температура – физическая величина, характеризующая степень нагретости тел.

Температура горячей воды выше температуры холодной. Температура воздуха летом выше, чем зимой. (Слайд 10). Но температура окружающей среды может быть субъективной. (Слайд 11).

Чтобы такого не было необходим прибор, для измерения температуры. (Слайд 12-13)

Температуру тел измеряют с помощью термометра и выражают в градусах Цельсия оС. (Слайд 14-15).

(Показ опыта 1 и 2).Вам уже известно, что диффузия при более высокой температуре происходит быстрее. Это означает, что скорость движения молекул и температура связаны между собой. При повышении температуры скорость движения молекул увеличивается, при понижении ­уменьшается.

Следовательно, температура тела зависит от скорости движения молекул.

Теплая вода состоит из таких же молекул, как и холодная. Разни­ца между ними заключается лишь в скорости движения молекул.

Явления, связанные с нагреванием или охлаждением тел, с изме­нением температуры, называются тепловыми. (Опыт 3). К таким явлениям относятся, например, нагревание и охлаждение воздуха, таяние льда, плавление металлов и др.

Молекулы или атомы, из которых состоят тела, находятся в не­прерывном беспорядочном движении.(Пример, броуновское движение) (Слайд 16).

Количество молекул и атомов в окружающих нас телах очень велико. Так, в объеме, равном 1 см3 воды, содержит­ся около 3,34 ·1022 молекул. Каждая молекула движется по очень сложной траектории. Так, например, частицы газа, движущиеся с большими скоростями в разных направлениях, сталкиваются друг с другом и со стенками сосуда. В результате этого они изменяют свою скорость и снова продолжают движение.

На рисунке 1(учебника) изображены траектории движения микроскопиче­ских частиц краски, растворенных в воде.

Запись в тетради:

  • Беспорядочное движение частиц, из которых состоят тела, называют тепловым движением.

В жидкостях молекулы могут колебаться, вращаться и переме­щаться относительно друг друга. В твердых телах молекулы и атомы колеблются около некоторых средних положений.

В тепловом движении участвуют все молекулы тела, поэтому с из­менением теплового движения изменяется и состояние тела, его свой­ства. Так, при повышении температуры лед начинает таять, превра­щаясь в жидкость. Если понижать температуру, например, ртути, то она из жидкости превращается в твердое тело.

Температура тела находится в тесной связи со средней кинетичес­кой энергией молекул.

При понижении температу­ры тела средняя кинетическая энергия его молекул уменьшается.

Итак, каждая молекула обладает кинетической энергией. Изучением тепловых процессов, на основе внутреннего строения вещества, занимается молекулярно- кинетическая теория.

Основные положения молекулярно-кинетической теории:

  • Любое вещество состоит из мельчайших частиц (молекул, атомов).

  • Между частицами есть промежутки.

  • Между частицами существуют силы взаимодействия (притяжения и отталкивания)

  • Частицы беспорядочно движутся (тепловое движение).

4. Закрепление материала.

1. Какие тепловые явления вы знаете? 2. Что характе­ризует температура? 3. Как связана температура тела со скоростью движения его молекул? 4. Какое движение называют тепловым? 5. Чем отличается движе­ние молекул в газах, жидкостях и твердых телах?

Решение задач.

Л №915-917.

hello_html_67dac18b.jpg

hello_html_c1722b7.jpg

На дом. § 1, ответить на вопросы после параграфа.

infourok.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *