Многоклеточный организм — Википедия
Многокле́точный органи́зм — внесистематическая категория живых организмов, тело которых состоит из многих клеток, большая часть которых (кроме стволовых клеток, таких как, например, клетки камбия у растений) дифференцирована, т.е. они различаются по строению и выполняемым функциям.
Следует отличать многоклеточность и колониальность. У колониальных организмов отсутствуют настоящие дифференцированные клетки, а следовательно, и разделение тела на ткани. Граница между многоклеточностью и колониальностью нечёткая. Например, вольвокс часто относят к колониальным организмам, хотя в его «колониях» есть чёткое деление клеток на генеративные и соматические. Выделение смертной «сомы» А. А. Захваткин считал важным признаком многоклеточности вольвокса. Кроме дифференцировки клеток, для многоклеточных характерен и более высокий уровень интеграции, чем для колониальных форм. Однако некоторые ученые считают многоклеточность более развитой формой колониальности
Наиболее древними многоклеточными, известными в настоящее время, являются червеобразные организмы длиной до 12 см, обнаруженные в 2010 году в отложениях формации Francevillian B в Габоне. Их возраст оценивается в 2,1 млрд лет[1]. Возраст около 1,9 млрд лет имеют организмы Grypania spiralis, предположительно эукариотические водоросли длиной до 10 мм, обнаруженные в отложениях железистой формации Негауни в шахте Эмпайр (англ.)русск. недалеко от города Маркетт (англ.)русск., штат Мичиган[2].
В целом же многоклеточность возникала в разных эволюционных линиях органического мира несколько десятков раз. По не вполне понятным причинам многоклеточность более характерна для эукариот, хотя среди прокариот тоже встречаются зачатки многоклеточности. Так, у некоторых нитчатых цианобактерий в нитях встречаются три типа четко дифференцированных клеток, а при движении нити демонстрируют высокий уровень целостности. Многоклеточные плодовые тела характерны для миксобактерий.
По современным данным основные предпосылки для появление многоклеточности, а именно:
- белки-заполнители межклеточного пространства, разновидности коллагена и протеогликана;
- «молекулярный клей» или «молекулярные заклёпки» для соединения клеток;
- сигнальные вещества для обеспечения взаимодействия между клетками и т.д
возникли задолго до появления многоклеточности, но выполняли у одноклеточных другие функции. «Молекулярные заклёпки» предположительно применялись одноклеточными хищниками для захвата и удержания жертвы, а сигнальные вещества — для привлечения потенциальных жертв и отпугивания хищников[3].
Причиной появления многоклеточных организмов считают эволюционную целесообразность укрупнения размеров особей, которая позволяет более успешно противостоять хищникам, а также поглощать и переваривать более крупную жертву. Однако условия для массового появления многоклеточных появились только в Эдиакарском периоде, когда уровень кислорода в атмосфере достиг величины, позволяющей покрывать увеличивающиеся энергетические расходы на поддержание многоклеточности
Развитие многих многоклеточных организмов начинается с одной клетки (например, зиготы у животных или споры в случае гаметофитов высших растений). В этом случае большинство клеток многоклеточного организма имеют одинаковый геном. При вегетативном размножении, когда организм развивается из многоклеточного фрагмента материнского организма, как правило, также происходит естественное клонирование.
У некоторых примитивных многоклеточных (например, клеточных слизевиков и миксобактерий) возникновение многоклеточных стадий жизненного цикла происходит принципиально иначе — клетки, часто имеющие сильно различающиеся генотипы, объединяются в единый организм.
Шестьсот миллионов лет назад, в позднем докембрии (венде), начался расцвет многоклеточных организмов. Удивляет разнообразие вендской фауны: разные типы и классы животных появляются как бы вдруг, но число родов и видов небольшое. В венде возник биосферный механизм взаимосвязи одноклеточных и многоклеточных организмов — первые стали продуктом питания для вторых. Обильный в холодных водах планктон, использующий световую энергию, стал пищей для плавающих и донных микроорганизмов, а также для многоклеточных животных. Постепенное потепление и рост содержания кислорода привели к тому, что эукариоты, включая многоклеточных животных, стали заселять и карбонатный пояс планеты, вытесняя цианобактерии. Начало палеозойской эры принесло две загадки: исчезновение вендской фауны и «кембрийский взрыв» — появление скелетных форм.
Эволюция жизни в фанерозое (последние 545 млн лет земной истории) — процесс усложнения организации многоклеточных форм в растительном и животном мире.
Грань между одноклеточными и многоклеточными[править | править код]
Не существует чёткой грани между одноклеточными и многоклеточными организмами. Многие одноклеточные обладают средствами для создания многоклеточных колоний, в то же время отдельные клетки некоторых многоклеточных организмов обладают способностью к самостоятельному существованию.
Губки[править | править код]
Губки — наиболее простые из многоклеточных существ. Значительную часть тела губки составляют опорные структуры на основе силикатов или карбоната кальция, переплетённые волокнами коллагена.
В начале XX века Генри ван Питерс Уилсон поставил классический эксперимент, во время которого он протирал тело губки через мелкое сито, разделяя его на отдельные клетки. Помещённые в стеклянную чашки и предоставленные самим себе эти амёбовидные клетки начинали группироваться в бесформенные комки красноватого цвета, которые затем обретали структуру и превращались в организм губки. Восстановление организма губки происходило и в том случае, если чашку помещалась только часть из первоначального количества клеток[5].
Хоанофлагелляты[править | править код]
Хоанофлагелляты — одноклеточные организмы, напоминающие по форме бокалы со жгутиками в середине. По своей анатомии они настолько сходны с клетками внутренней поверхности губок, что некоторое время их считали выродившимися губками, утратившими остальные типы клеток. Ошибочность этого взгляда установлена только после расшифровки геномов обоих организмов. У хоанофлагеллят имеются элементы молекулярных каскадов, обеспечивающие у многоклеточных взаимодействие между клетками, а также несколько типов молекулярных заклёпок и белки, подобные коллагену и протеогликану [6].
Подробное изучение хоанофлагеллят предприняла Николь Кинг из Калифорнийского университета в Беркли.
Бактерии[править | править код]
У многих бактерий, например, стрептококков, обнаружены белки, сходные с коллагеном и протеогликаном, однако не образующие канаты и пласты, как у животных. В стенках бактерий обнаружены сахара, входящие в состав протеогликанового комплекса, образующего хрящи.
Дрожжи[править | править код]
В экспериментах по эволюции многоклеточности, проведённых в 2012 году исследователями Университета Миннесоты под руководством Уильяма Рэтклиффа и Майкла Трависано, в качестве модельного объекта служили пекарские дрожжи. Эти одноклеточные грибы размножаются почкованием; по достижении материнской клеткой определённых размеров, от неё отделяется более мелкая дочерняя клетка и становится самостоятельным организмом. Дочерние клетки могут также слипаться друг с другом, образуя кластеры. Исследователи проводили искусственный отбор клеток, входящих в наиболее крупные кластеры. Критерием отбора была скорость оседания кластеров на дно резервуара. Прошедшие фильтр отбора кластеры вновь культивировались, и среди снова отбирались наиболее крупные
Со временем дрожжевые кластеры начинали вести себя как единые организмы: после ювенильной стадии, когда происходил рост клеток, следовала стадия размножения, в процессе которой кластер делился на большую и малую части. При этом клетки, находившиеся на границе, погибали, позволяя разойтись родительскому и дочернему кластерам [7].
Эксперимент занял 60 дней. В итоге получились индивидуальные скопления дрожжевых клеток, которые жили и умирали как единый организм[7].
Сами исследователи не считают эксперимент чистым, так как дрожжи в прошлом имели многоклеточных предков, от которых могли унаследовать некоторые механизмы многоклеточности[7].
Водоросли Chlamydomonas reinhardtii[править | править код]
В 2013 году группа исследователей Университета Миннесоты под руководством Уильяма Рэтклиффа, ранее известная эволюционными экспериментами с дрожжами[7], провела аналогичные опыты с одноклеточными водорослями Chlamydomonas reinhardtii[8][9]. 10 культур этих организмов культивировали в течение 50 поколений, время от времени центрифугируя их и отбирая наиболее крупные кластеры. Через 50 поколений в одной из культур развились многоклеточные скопления с синхронизацией жизненных циклов отдельных клеток. Оставаясь вместе в течение нескольких часов, кластеры затем расходились на отдельные клетки, которые, оставаясь внутри общей слизистой оболочки, начинали делиться и образовывать новые кластеры.
В отличие от дрожжей, хламидомонады никогда не имели многоклеточных предков и не могли унаследовать от них механизмы многоклеточности, тем не менее, в результате искусственного отбора в течение нескольких десятков поколений, примитивная многоклеточность появляется и у них. Однако в отличие от дрожжевых кластеров, которые в процессе почкования оставались единым организмом, кластеры хламидомонад при размножении разделяются на отдельные клетки. Это свидетельствует о том, что механизмы многоклеточности могли возникать независимо в различных группах одноклеточных и варьировать от случая к случаю[8].
Искусственные многоклеточные организмы[править | править код]
В настоящее время нет информации о создании по-настоящему многоклеточных искусственных организмов, однако проводятся эксперименты по созданию искусственных колоний одноклеточных.
В 2009 году Равилем Фахруллиным из Казанского (Приволжского) государственного университета (Татарстан, Россия) и Весселином Пауновым из Университета Халла (Йоркшир, Великобритания) были получены новые биологические структуры, получившие название «целлосомы» (англ. cellosome) и представлявшие собой искусственно созданные колонии одноклеточных. Слой дрожжевых клеток наносили на кристаллы арагонита и кальцита, используя в качестве связующего полимерные электролиты, затем кристаллы растворяли кислотой и получали полые замкнутые целлосомы, сохранявшие форму использованного шаблона. В полученных целлосомах дрожжевые клетки сохраняли активность и форму шаблона[1].
- ↑ Abderrazak El Albani et al. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. — Nature, 2010. — Т. 466. — С. 100-104. — DOI:10.1038/nature09166. (в платном доступе). Изложение на русском языке: Марков А. Многоклеточные организмы, возможно, появились свыше 2 млрд лет назад на сайте «Элементы».
- ↑ Han, T.-M. & Runnegar, B. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science 257, 232—235 (1992) (Abstract)
- ↑ Шубин Н., с. 170—172.
- ↑ Шубин Н., с. 182.
- ↑ Шубин Н., с. 175.
- ↑ Шубин Н., с. 179—180.
- ↑ 1 2 3 4 5 Biologists Replicate Key Evolutionary Step in Life on Earth [Электронный ресурс] // National Science Foundation [Сайт]. [16.01.2012] (дата обращения: 03.01.2014). Изложение на русском языке: Стасевич К. Одноклеточные могли превратиться в многоклеточных за пару месяцев [Электронный ресурс] // КомпьюЛента [Сайт]. [17.01.2012] (дата обращения: 03.01.2014).
- ↑ 1 2 Alga takes first evolutionary leap to multicellularity [Электронный ресурс] // New Scientist [Сайт]. [13.11.2013] (дата обращения: 03.01.2014). Изложение на русском языке: Стасевич К. Одноклеточные водоросли смогли превратиться в многоклеточные [Электронный ресурс] // КомпьюЛента [Сайт]. [07.11.2013] (дата обращения: 03.01.2014).
- ↑ Ratcliff, W.C. et al. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat. Commun. 4:2742 doi: 10.1038/ncomms3742 (2013).
Многоклеточные организмы, возможно, появились свыше 2 млрд лет назад
Большая международная группа палеонтологов обнаружила в Габоне в отложениях возрастом 2,1 млрд лет ископаемые остатки живых существ сантиметрового размера, напоминающих плоских червей. С большой вероятностью эти организмы были многоклеточными эукариотами. До сих пор древнейшими свидетельствами существования многоклеточной жизни считались спиралевидные углеродистые ленты Grypania возрастом до 1,9 млрд лет, трактуемые как водоросли.
Во времена Дарвина древнейшими известными ископаемыми организмами были обитатели морей кембрийского периода, который, как мы теперь знаем, начался 542 млн лет назад. Докембрийские толщи считались «мертвыми», и Дарвин видел в этом факте серьезный аргумент против своей теории. Он предполагал, что кембрийскому периоду должна была предшествовать длительная эпоха постепенного развития жизни, хотя и не мог объяснить, почему следы этой жизни до сих пор не найдены. Может быть, просто плохо искали?
Развитие палеонтологии в XX веке блестяще подтвердило догадки Дарвина. В докембрийских осадочных толщах обнаружилось множество недвусмысленных признаков существования живых организмов. Подавляющее большинство докембрийских находок — это окаменелые остатки микробов и разнообразные следы их жизнедеятельности.
Самым ранним свидетельством жизни считается облегченный изотопный состав углерода из графитовых включений в кристаллах апатита, найденных в Гренландии в отложениях возрастом 3,8 млрд лет. Древнейшие окаменелости, очень похожие на бактерий, и первые строматолиты — слоистые минеральные образования, возникшие в результате жизнедеятельности микробных сообществ — имеют возраст 3,55–3,4 млрд лет. Следы микробной жизни становятся многочисленнее и разнообразнее по мере уменьшения возраста пород (М. А. Федонкин, 2006. Две летописи жизни: опыт сопоставления (палеобиология и геномика о ранних этапах эволюции биосферы)).
Вопрос о времени появления первых эукариот и первых многоклеточных остается спорным. Большинство современных типов животных стали бурно развиваться только в начале кембрия, однако еще раньше — в вендском, или эдиакарском периоде (635–542 млн лет назад) в морях появились разнообразные и многочисленные мягкотелые существа, в том числе довольно крупные, которые большинством специалистов трактуются как многоклеточные животные (Я. Е. Малаховская, А. Ю. Иванцов. Вендские жители земли; Тайна эмбрионов Доушаньтуо раскрыта, «Элементы», 12.04.2007). Еще раньше, в криогеновом периоде (850–635 млн лет назад), обнаружены химические следы присутствия примитивных многоклеточных животных — губок.
До-эдиакарские находки макроскопических ископаемых весьма редки и вызывают бурные споры (о некоторых из этих находок рассказано в заметке Животные появились свыше 635 миллионов лет назад, «Элементы», 09.02.2009; там же приведена подборка ссылок по теме). Как правило, чем древнее такие находки, тем они сомнительнее. До сих пор самым древним ископаемым существом, которое можно более или менее уверенно интерпретировать как многоклеточное, считалась грипания (Grypania). Этот организм сохранился в виде спиралевидных углеродистых лент, напоминающих какую-то водоросль; возраст находок — до 1,9 млрд лет (М. А. Федонкин. Геохимический голод и становление царств; Размер живых существ увеличивался скачками, «Элементы», 31.12.2008). Впрочем, некоторые авторы считают, что грипания могла быть очень крупной и сложной колонией цианобактерий.
В последнем номере журнала Nature большая группа палеонтологов из Франции, Швеции, Дании, Бельгии, Канады и Германии сообщила о новой уникальной находке, сделанной в раннепротерозойских морских отложениях на юго-востоке Габона. Возраст осадочной толщи, в которой заключены окаменелости, был определен с большой точностью при помощи нескольких независимых радиометрических методов. Он составляет 2100±30 млн лет, то есть на 200 млн лет старше самой древней грипании.
Авторы извлекли из породы более 250 образцов с окаменевшими остатками странных существ продолговатой или почти округлой формы. Их длина варьирует от 7 до 120 мм, ширина — от 5 до 70 мм, толщина — от 1 до 10 мм. Плотность организмов достигает 40 штук на квадратный метр, причем вместе встречаются экземпляры разного размера и ориентации.
При помощи компьютерной рентгеновской томографии авторы получили красивые объемные изображения древних организмов. На них хорошо видна уплощенная волнистая «кайма» с радиальной складчатостью. Складчатая область обычно доходит до внешнего края тела, но у некоторых экземпляров складки заметны только на внутренней части каймы, а у некоторых отсутствуют вовсе.
У многих крупных экземпляров в средней части тела присутствуют включения пирита двух типов: плоские «листы» и округлые гранулы. Анализ изотопного состава серы в этих пиритовых образованиях показал, что «листы» образовались вскоре после смерти организмов в результате деятельности сульфат-редуцирующих бактерий, причем концентрация сульфата в окружающей воде должна была быть довольно высокой. Округлые гранулы образовались на более поздних этапах диагенеза и поэтому не несут информации о форме и строении ископаемых существ. Различия в концентрации стабильного изотопа углерода 13C в остатках организмов и в окружающей породе дополнительно подтвердили, что эти окаменелости не являются какими-то неорганическими образованиями. В породе обнаружены стераны — органические молекулы, происходящие от эукариотических мембранных стеролов. Это надежный признак присутствия эукариотической жизни.
По мнению авторов, найденные остатки принадлежат колониальным организмам, скорее всего колониальным эукариотам. Колонии бактерий могут иметь похожую форму и фестончатые края, но габонские находки имеют более сложную структуру, чем известные бактериальные колонии. По мнению авторов, структура этих организмов указывает на то, что они росли за счет координированного деления клеток, обменивавшихся сигналами между собой, как это происходит в ходе развития многоклеточных эукариот. К тому же присутствие стеранов недвусмысленно указывает на эукариотическую природу древних существ.
Химический анализ породы показал, что эти морские осадки формировались в присутствии заметных количеств свободного кислорода. Поэтому вполне возможно, что габонские организмы были аэробными (дышали кислородом), как и положено нормальным эукариотам. По современным данным, первое существенное увеличение концентрации кислорода в гидросфере и атмосфере (Great oxygenation event) произошло 2,45–2,32 млрд лет назад, то есть примерно за 200 млн лет до времени жизни габонских организмов.
Авторы воздержались от попыток более точного определения родственных связей новооткрытых существ. Известно, что разные группы эукариот независимо переходили к многоклеточности десятки раз, и найденные в Габоне существа, возможно, представляют собой одну из самых ранних попыток такого рода.
Источник: Abderrazak El Albani, et al. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago // Nature. 2010. V. 466. P. 100–104.
См. также:
1) Анимация, показывающая детали томографической реконструкции раннепротерозойского организма.
2) М. А. Федонкин, 2006. Две летописи жизни: опыт сопоставления (палеобиология и геномика о ранних этапах эволюции биосферы).
3) М. А. Федонкин. Геохимический голод и становление царств.
4) Животные появились свыше 635 миллионов лет назад, «Элементы», 09.02.2009.
5) Размер живых существ увеличивался скачками, «Элементы», 31.12.2008.
Александр Марков
Первые многоклеточные организмы обитали не в море, а на суше — ученый
Внимание Реталлака привлек тот факт, что породы, окружавшие останки эдиакарских существ, не были похожи по своей структуре и минеральному составу на осадочные отложения, сформировавшиеся на дне моря. Ученый решил проверить свои подозрения, изучив химический состав образцов из Эдиакарских холмов и их микроструктуру при помощи электронного микроскопа.
Химический состав почвы, а также форма и размеры минеральных зерен говорят о том, что эта часть Австралии находилась не в зоне тропического, а умеренного или даже субарктического климата. Вода у берегов будущих Эдиакарских холмов должна была замерзать во время зимы, что ставит под сомнение возможность существования примитивных многоклеточных внутри нее.
С другой стороны, минеральный состав пород, окружающих отпечатки, очень похож на палеозоли — окаменевшие фрагменты древних почв. В частности, у образцов из Эдиакарских холмов и других фрагментов палеозолей совпадает изотопный состав, а на поверхности образцов присутствуют микроскопические выемки, похожие на пленочные колонии бактерий или примитивные корни лишайников или грибов.
По словам Реталлака, почва и подобные «корни» не должны были существовать на дне мелких заливов или других частей первичного океана. Это позволило ему предположить, что найденные отпечатки на самом деле не являются морскими многоклеточными организмами, а окаменелыми останками лишайников, обитавшими на поверхности суши. Часть из «многоклеточных животных», по мнению исследователя, на самом деле являются следами от кристаллов льда, вмерзших внутрь древней почвы.
Подобный вывод уже встретил критику со стороны научного сообщества. В частности, палеонтолог Шухай Сяо (Shuhai Xiao) из Политехнического университета Виргинии (США) отметил в комментариях к статье в журнале Nature, что микроскопические углубления на поверхности эдиакарских пород могли оставить только движущиеся организмы, а не неподвижные лишайники. По его словам, аналогичные останки многоклеточных организмов были обнаружены и в других отложениях конца протерозоя, чье «морское» происхождение не вызывает сомнения.
Тем не менее, оппоненты Реталлака не отрицают самой возможности того, что в Эдиакарском периоде на Земле могли существовать сухопутные лишайники или колонии бактерий. Однако доказательство этой гипотезы и ее широкое признание потребуют открытия окаменелостей, однозначно указывающих на сухопутное происхождение подобных отпечатков.
Многоклеточный организм — Википедия
Многокле́точный органи́зм — внесистематическая категория живых организмов, тело которых состоит из многих клеток, большая часть которых (кроме стволовых клеток, таких как, например, клетки камбия у растений) дифференцирована, то есть они различаются по строению и выполняемым функциям.
Следует отличать многоклеточность и колониальность. У колониальных организмов отсутствуют настоящие дифференцированные клетки, а следовательно, и разделение тела на ткани. Граница между многоклеточностью и колониальностью нечёткая. Например, вольвокс часто относят к колониальным организмам, хотя в его «колониях» есть чёткое деление клеток на генеративные и соматические. Выделение смертной «сомы» А. А. Захваткин считал важным признаком многоклеточности вольвокса. Кроме дифференцировки клеток, для многоклеточных характерен и более высокий уровень интеграции, чем для колониальных форм. Однако некоторые ученые считают многоклеточность более развитой формой колониальности[источник не указан 1910 дней].
Происхождение
Наиболее древними многоклеточными, известными в настоящее время, являются червеобразные организмы длиной до 12 см, обнаруженные в 2010 году в отложениях формации Francevillian B в Габоне. Их возраст оценивается в 2,1 млрд лет[1]. Возраст около 1,9 млрд лет имеют организмы Grypania spiralis, предположительно эукариотические водоросли длиной до 10 мм, обнаруженные в отложениях железистой формации Негауни в шахте Эмпайр (англ.)русск. недалеко от города Маркетт (англ.)русск., штат Мичиган[2].
В целом же многоклеточность возникала в разных эволюционных линиях органического мира несколько десятков раз. По не вполне понятным причинам многоклеточность более характерна для эукариот, хотя среди прокариот тоже встречаются зачатки многоклеточности. Так, у некоторых нитчатых цианобактерий в нитях встречаются три типа четко дифференцированных клеток, а при движении нити демонстрируют высокий уровень целостности. Многоклеточные плодовые тела характерны для миксобактерий.
По современным данным основные предпосылки для появление многоклеточности, а именно:
- белки-заполнители межклеточного пространства, разновидности коллагена и протеогликана;
- «молекулярный клей» или «молекулярные заклёпки» для соединения клеток;
- сигнальные вещества для обеспечения взаимодействия между клетками и т.д
возникли задолго до появления многоклеточности, но выполняли у одноклеточных другие функции. «Молекулярные заклёпки» предположительно применялись одноклеточными хищниками для захвата и удержания жертвы, а сигнальные вещества — для привлечения потенциальных жертв и отпугивания хищников[3].
Причиной появления многоклеточных организмов считают эволюционную целесообразность укрупнения размеров особей, которая позволяет более успешно противостоять хищникам, а также поглощать и переваривать более крупную жертву. Однако условия для массового появления многоклеточных появились только в Эдиакарском периоде, когда уровень кислорода в атмосфере достиг величины, позволяющей покрывать увеличивающиеся энергетические расходы на поддержание многоклеточности[4].
Развитие многих многоклеточных организмов начинается с одной клетки (например, зиготы у животных или споры в случае гаметофитов высших растений). В этом случае большинство клеток многоклеточного организма имеют одинаковый геном. При вегетативном размножении, когда организм развивается из многоклеточного фрагмента материнского организма, как правило, также происходит естественное клонирование.
У некоторых примитивных многоклеточных (например, клеточных слизевиков и миксобактерий) возникновение многоклеточных стадий жизненного цикла происходит принципиально иначе — клетки, часто имеющие сильно различающиеся генотипы, объединяются в единый организм.
Эволюция
Шестьсот миллионов лет назад, в позднем докембрии (венде), начался расцвет многоклеточных организмов. Удивляет разнообразие вендской фауны: разные типы и классы животных появляются как бы вдруг, но число родов и видов небольшое. В венде возник биосферный механизм взаимосвязи одноклеточных и многоклеточных организмов — первые стали продуктом питания для вторых. Обильный в холодных водах планктон, использующий световую энергию, стал пищей для плавающих и донных микроорганизмов, а также для многоклеточных животных. Постепенное потепление и рост содержания кислорода привели к тому, что эукариоты, включая многоклеточных животных, стали заселять и карбонатный пояс планеты, вытесняя цианобактерии. Начало палеозойской эры принесло две загадки: исчезновение вендской фауны и «кембрийский взрыв» — появление скелетных форм.
Эволюция жизни в фанерозое (последние 545 млн лет земной истории) — процесс усложнения организации многоклеточных форм в растительном и животном мире.
Грань между одноклеточными и многоклеточными
Не существует чёткой грани между одноклеточными и многоклеточными организмами. Многие одноклеточные обладают средствами для создания многоклеточных колоний, в то же время отдельные клетки некоторых многоклеточных организмов обладают способностью к самостоятельному существованию.
Губки
Губки — наиболее простые из многоклеточных существ. Значительную часть тела губки составляют опорные структуры на основе силикатов или карбоната кальция, переплетённые волокнами коллагена.
В начале XX века Генри ван Питерс Уилсон поставил классический эксперимент, во время которого он простирал тело губки через мелкое сито, разделяя его на отдельные клетки. Помещённые в стеклянную чашки и предоставленные самим себе эти амёбовидные клетки начинали группироваться в бесформенные комки красноватого цвета, которые затем обретали структуру и превращались в организм губки. Восстановление организма губки происходило и в том случае, если чашку помещалась только часть из первоначального количества клеток[5].
Хоанофлагелляты
Хоанофлагелляты — одноклеточные организмы, напоминающие по форме бокалы со жгутиками в середине. По своей анатомии они настолько сходны с клетками внутренней поверхности губок, что некоторое время их считали выродившимися губками, утратившими остальные типы клеток. Ошибочность этого взгляда установлена только после расшифровки геномов обоих организмов. У хоанофлагеллят имеются элементы молекулярных каскадов, обеспечивающие у многоклеточных взаимодействие между клетками, а также несколько типов молекулярных заклёпок и белки, подобные коллагену и протеогликану[6].
Подробное изучение хоанофлагеллят предприняла Николь Кинг из Калифорнийского университета в Беркли.
Бактерии
У многих бактерий, например, стрептококков, обнаружены белки, сходные с коллагеном и протеогликаном, однако не образующие канаты и пласты, как у животных. В стенках бактерий обнаружены сахара, входящие в состав протеогликанового комплекса, образующего хрящи.
Эволюционные эксперименты
Дрожжи
В экспериментах по эволюции многоклеточности, они были сделаны в 1902 году проведённых в 2012 году исследователями Университета Миннесоты под руководством Уильяма Рэтклиффа и Майкла Трависано, в качестве модельного объекта служили пекарские дрожжи. Эти одноклеточные грибы размножаются почкованием; по достижении материнской клеткой определённых размеров, от неё отделяется более мелкая дочерняя клетка и становится самостоятельным организмом. Дочерние клетки могут также слипаться друг с другом, образуя кластеры. Исследователи проводили искусственный отбор клеток, входящих в наиболее крупные кластеры. Критерием отбора была скорость оседания кластеров на дно резервуара. Прошедшие фильтр отбора кластеры вновь культивировались, и среди снова отбирались наиболее крупные[7].
Со временем дрожжевые кластеры начинали вести себя как единые организмы: после ювенильной стадии, когда происходил рост клеток, следовала стадия размножения, в процессе которой кластер делился на большую и малую части. При этом клетки, находившиеся на границе, погибали, позволяя разойтись родительскому и дочернему кластерам[7].
Эксперимент занял 60 дней. В итоге получились индивидуальные скопления дрожжевых клеток, которые жили и умирали как единый организм[7].
Сами исследователи не считают эксперимент чистым, так как дрожжи в прошлом имели многоклеточных предков, от которых могли унаследовать некоторые механизмы многоклеточности[7].
Водоросли Chlamydomonas reinhardtii
В 2013 году группа исследователей Университета Миннесоты под руководством Уильяма Рэтклиффа, ранее известная эволюционными экспериментами с дрожжами[7], провела аналогичные опыты с одноклеточными водорослями Chlamydomonas reinhardtii[8][9]. 10 культур этих организмов культивировали в течение 50 поколений, время от времени центрифугируя их и отбирая наиболее крупные кластеры. Через 50 поколений в одной из культур развились многоклеточные скопления с синхронизацией жизненных циклов отдельных клеток. Оставаясь вместе в течение нескольких часов, кластеры затем расходились на отдельные клетки, которые, оставаясь внутри общей слизистой оболочки, начинали делиться и образовывать новые кластеры.
В отличие от дрожжей, хламидомонады никогда не имели многоклеточных предков и не могли унаследовать от них механизмы многоклеточности, тем не менее, в результате искусственного отбора в течение нескольких десятков поколений, примитивная многоклеточность появляется и у них. Однако в отличие от дрожжевых кластеров, которые в процессе почкования оставались единым организмом, кластеры хламидомонад при размножении разделяются на отдельные клетки. Это свидетельствует о том, что механизмы многоклеточности могли возникать независимо в различных группах одноклеточных и варьировать от случая к случаю[8].
Искусственные многоклеточные организмы
В настоящее время нет информации о создании по-настоящему многоклеточных искусственных организмов, однако проводятся эксперименты по созданию искусственных колоний одноклеточных.
В 2009 году Равилем Фахруллиным из Казанского (Приволжского) государственного университета (Татарстан, Россия) и Весселином Пауновым из Университета Халла (Йоркшир, Великобритания) были получены новые биологические структуры, получившие название «целлосомы» (англ. cellosome) и представлявшие собой искусственно созданные колонии одноклеточных. Слой дрожжевых клеток наносили на кристаллы арагонита и кальцита, используя в качестве связующего полимерные электролиты, затем кристаллы растворяли кислотой и получали полые замкнутые целлосомы, сохранявшие форму использованного шаблона. В полученных целлосомах дрожжевые клетки сохраняли активность и форму шаблона[1].
См. также
Примечания
- ↑ Abderrazak El Albani et al. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. — Nature, 2010. — Т. 466. — С. 100-104. — DOI:10.1038/nature09166. (в платном доступе). Изложение на русском языке: Марков А. Многоклеточные организмы, возможно, появились свыше 2 млрд лет назад на сайте «Элементы».
- ↑ Han, T.-M. & Runnegar, B. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science 257, 232—235 (1992) (Abstract)
- ↑ Шубин Н., с. 170—172.
- ↑ Шубин Н., с. 182.
- ↑ Шубин Н., с. 175.
- ↑ Шубин Н., с. 179—180.
- ↑ 1 2 3 4 5 Biologists Replicate Key Evolutionary Step in Life on Earth [Электронный ресурс] // National Science Foundation [Сайт]. [16.01.2012] (дата обращения: 03.01.2014). Изложение на русском языке: Стасевич К. Одноклеточные могли превратиться в многоклеточных за пару месяцев [Электронный ресурс] // КомпьюЛента [Сайт]. [17.01.2012] (дата обращения: 03.01.2014).
- ↑ 1 2 Alga takes first evolutionary leap to multicellularity [Электронный ресурс] // New Scientist [Сайт]. [13.11.2013] (дата обращения: 03.01.2014). Изложение на русском языке: Стасевич К. Одноклеточные водоросли смогли превратиться в многоклеточные [Электронный ресурс] // КомпьюЛента [Сайт]. [07.11.2013] (дата обращения: 03.01.2014).
- ↑ Ratcliff, W.C. et al. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat. Commun. 4:2742 doi: 10.1038/ncomms3742 (2013).
Многоклеточные организмы Википедия
Многокле́точный органи́зм — внесистематическая категория живых организмов, тело которых состоит из многих клеток, большая часть которых (кроме стволовых клеток, таких как, например, клетки камбия у растений) дифференцирована, т.е. они различаются по строению и выполняемым функциям.
Следует отличать многоклеточность и колониальность. У колониальных организмов отсутствуют настоящие дифференцированные клетки, а следовательно, и разделение тела на ткани. Граница между многоклеточностью и колониальностью нечёткая. Например, вольвокс часто относят к колониальным организмам, хотя в его «колониях» есть чёткое деление клеток на генеративные и соматические. Выделение смертной «сомы» А. А. Захваткин считал важным признаком многоклеточности вольвокса. Кроме дифференцировки клеток, для многоклеточных характерен и более высокий уровень интеграции, чем для колониальных форм. Однако некоторые ученые считают многоклеточность более развитой формой колониальности[источник не указан 2347 дней].
Происхождение[ | ]
Наиболее древними многоклеточными, известными в настоящее время, являются червеобразные организмы длиной до 12 см, обнаруженные в 2010 году в отложениях формации Francevillian B в Габоне. Их возраст оценивается в 2,1 млрд лет[1]. Возраст около 1,9 млрд лет имеют организмы Grypania spiralis, предположительно эукариотические водоросли длиной до 10 мм, обнаруженные в отложениях железистой формации Негауни в шахте Эмпайр (англ.)русск. недалеко от города Маркетт (англ.)русск., штат Мичиган[2].
В целом же многоклеточность возникала в разных эволюционных линиях органического мира несколько десятков раз. По не вполне понятным причинам многоклеточность более характерна для эукариот, хотя среди прокариот тоже встречаются зачатки многоклеточности. Так, у некоторых нитчатых цианобактерий в нитях встречаются три типа четко дифференцированных клеток, а при движении нити демонстрируют высокий уровень целостности. Многоклеточные плодовые тела характерны для миксобактерий.
По современным данным основные предпосылки для появление многоклеточности, а именно:
Первые многоклеточные были не такими, как считалось ранее — Naked Science
Ученые из Университета Квинсленда перевернули вековое понимание эволюционной истории животных.
Издавна считалось, что первые многоклеточные были очень похожи по строению и функциям на современные губки. Губки — тип водных организмов, которые не имеют тканей и органов. Их функцию выполняют отдельные клетки и клеточные скопления. Таким образом, губку можно представить скорее как огромную колонию клеток, работающую на общее благо. При этом каждая клетка живет сама по себе. Такая удивительная особенность губок позволила ученым думать, что это наиболее простой способ организации клеток в многоклеточные организмы. Поэтому долгое время считалось, что они или подобные им структуры и были первыми многоклеточными.
Однако, используя новую технологию для своих исследований, ученые из Университета Квинсленда сделали открытие, противоречащее многолетней традиции. Они обнаружили, что первые многоклеточные животные, вероятно, не были похожи на современные губки и больше напоминали скопление трансформируемых клеток. То есть, по их словам, прапрапрабабушкой всех клеток животных была стволовая клетка.
Команда ученых провела анализ генома индивидуальных клеток одного вида губок и выяснила, что в нем нет транскриптомной подписи одноклеточного организма под названием хоанофлагеллат. Этот организм считается ближайшим родственником многоклеточных — или последним одноклеточным, благодаря которому произошли все живущие ныне растения и животные. Однако, как выяснилось, транскриптомные подписи этих клеток не совпадают. Это означает, что хоанофлагеллат никак не мог эволюционировать в клетки губки.
По словам ученых, им до сих пор не ясно, кто же точно был предком первых многоклеточных и как они появились. Но дальнейшие исследования с использованием новой технологии анализа транскриптомной подписи позволят исследователям продвинуться в этом вопросе.
Скопировать ссылку
Возникновение многоклеточности
☰
Возникновение многоклеточности — это закономерный процесс в эволюции живых форм, так как при этом организм приобретает ряд преимуществ в борьбе за существование. На заре существования эукариот многоклеточность возникала не единожды. Сегодняшние многоклеточные формы жизни на Земле имеют несколько разных одноклеточных предков. Например, считается, что губки имеют другого одноклеточного предка, в отличие от остальных организмов.
Предками многоклеточных были колониальные формы простейших. В колониях клетки обычно не настолько дифференцированы (если их специализация вообще наблюдается) и при отделении могут существовать независимо.
Расцвет многоклеточных форм начался около 600 млн лет назад. Однако появиться они могли намного раньше, около 2 млрд лет назад. На это указывают археологические находки червеобразных организмов и многоклеточных водорослей.
Настоящая многоклеточность (с выделением тканей) характерна только для эукариот (у прокариот встречаются колонии). Возможно это связано со сложностью генома эукариотических клеток, который обеспечивает гибкость («настраиваемость») клеток, и отсюда способность их изменять свой метаболизм и строение. Важную роль могла сыграть наследственная изменчивость, митоз, мейоз.
Многоклеточность позволяет наиболее полно использовать резерв наследственной изменчивости, что ускоряет эволюционные изменения. Большую роль в этом играет половое размножение, в котором объединены половой процесс и размножение.
Биологическая эволюция предполагает совершенствование жизненно-важных функций организмов, что во многом достигается путем их дифференциации. В результате обособления различных процессов жизнедеятельности возникают специальные структуры. Это могут быть как структуры клетки, так и части многоклеточного организма. Разделение и специализация функций и структур можно рассматривать как одно из свойств живого.
У одноклеточных эукариот (инфузорий) бывают пищеварительные вакуоли, специализирующиеся на переваривании, утилизации и выделении веществ, что напоминает своеобразную пищеварительную систему. Есть сократительные вакуоли, регулирующие водный баланс (выделительная система). Реснички и жгутики одноклеточных можно рассматривать как органы движения, позволяющих искать пищу и избегать опасности.
Однако разделение структур и функций намного эффективнее в многоклеточном организме. Взаимосвязь клеток усиливает жизненную силу системы за счет повторения клеточных процессов, разделения функций, образования специальных структур (тканей, органов, систем органов).
Многоклеточные организмы обычно крупнее одноклеточных. Это позволяет им питаться более крупной пищей, с другой стороны — они сами реже поедаются.
На поддержание многоклеточности требуется больше энергии. Поэтому она могла возникнуть, лишь когда уровень кислорода в атмосфере достиг определенной величины.
Важную роль в возникновении многоклеточности сыграло появление у одноклеточных эукариот ряда свойств и особенностей. Так хищные простейшие могли выделять определенные вещества для «приклеивания» к себе жертвы. Такие соединения (коллаген и др.) впоследствии могли начать выполнять роль заполнителя межклеточного пространства, а также для скрепления клеток между собой.
Выделяемые простейшими сигнальные вещества (для привлечения жертв или отпугивания хищников) в процессе эволюции стали использоваться для взаимодействия клеток в пределах одного организма.