Площадь неправильной фигуры онлайн – Формулы площади. Площадь треугольника, квадрата, прямоугольника, ромба, параллелограмма, трапеции, круга, эллипса.

Расчёт площади участка - онлайн калькулятор

Инструкция для калькулятора расчета площади земельного участка неправильной формы

Вариант 1

Примите к сведению, калькулятор Вариант 1 считает площадь участка, который вписывается углами в окружность. Проверить подходит ли Ваш участок под это условие можно, учитывая, что противоположные углы вписанного четырехугольника  в сумме дают 180°. Если Ваш участок не вписывается в окружность, то калькулятор будет выдавать небольшую погрешность (величина который будет зависеть от того, насколько сильно Ваш участок не вписывается в окружность).

Вариант 2

Вариант 3

Впишите размеры сторон AB, BC, CD, DA в метрах.

Замеры участка проводят, с помощью длинной рулетки, лазерного дальномера, мерного колеса. Также можно изготовить деревянную треногу (наподобие циркуля) зафиксировав расстоянием между «ногами» в 1 м и, шагая таким приспособлением вдоль границы делянки подсчитать количество шагов.

Нажмите «Рассчитать».

Онлайн калькулятор позволяет определить площадь (в квадратных метрах, сотках, акрах и гектарах) земельного участка или поля, имеющего неправильную форму. Это пригодится для корректного оформления документов права собственности на землю, продажи, сдачи в аренду или его деления (т.н. межевания) без применения топографической съемки и специальных картографических программ. Также иногда просто нужно посчитать сколько соток имеет участок, чтобы прикинуть его рыночную стоимость.

perpendicular.pro

Расчет площади многоугольника онлайн

Калькулятор считает площадь многоугольника по введенным вами сторонами и диагоналям, главное чтобы диагонали делили многоугольник на несколько треугольников, которые в свою очередь не пересекались бы между собой.

И так, глядя на рисунок, можно сразу представить, что площадь данного многоугольника будет равна сумме площади трех треугольников, расположенных внутри многоугольника.

Для начала расчетов вам придется внимательно внести в таблицу значения сторон ваших треугольников.

Все остальное калькулятор сделает за вас. Пользуйтесь.

The field is not filled.

'%1' is not a valid e-mail address.

Please fill in this field.

The field must contain at least% 1 characters.

The value must not be longer than% 1 characters.

Field value does not coincide with the field '%1'

An invalid character. Valid characters:'%1'.

Expected number.

It is expected a positive number.

Expected integer.

It is expected a positive integer.

The value should be in the range of [%1 .. %2]

The '% 1' is already present in the set of valid characters.

The field must be less than 1%.

The first character must be a letter of the Latin alphabet.

Su

Mo

Tu

We

Th

Fr

Sa

January

February

March

April

May

June

July

August

September

October

November

December

century

B.C.

%1 century

An error occurred while importing data on line% 1. Value: '%2'. Error: %3

Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).

%3.%2.%1%4

%3.%2.%1%4 %6:%7

s.sh.

u.sh.

v.d.

z.d.

yes

no

Wrong file format. Only the following formats: %1

Please leave your phone number and / or email.

hostciti.net

Вычисление площади выпуклого многоугольника по координатам вершин на плоскости

Калькулятор ниже был написан для решения частной задачи расчета площади выпуклого четырехугольника по координатам его вершин. Он только обобщает эту задачу до задачи расчета площади любого выпуклого многоугольника вообще. Собственно, на сайте уже был подобный калькулятор Площадь многоугольника, но там требовалось вводить длины сторон и диагоналей, а это несколько труднее, чем вводить только координаты вершин.

Принцип работы остается таким же - многоугольник разбивается на непересекающиеся треугольники, подсчитывается площадь всех треугольников (это легко сделать зная длины всех трех сторон - Расчет площади треугольника по формуле Герона), затем площади суммируются. Основная проблема была в том, чтобы сделать его устойчивым к ситуации, когда точки вводят не по порядку. Предположим, сначала вводят первые четыре точки получая фигуру на рисунке ниже

ЧетырехугольникЧетырехугольник

При добавлении следующей точки, например, так, как на следующем рисунке

ПятиугольникПятиугольник

должен уже получиться многоугольник ADCBE, а не ABCDE, разбитый на треугольники ADC, ACB и ABE, соответственно.

Чтобы получить правильный многоугольник, фактически требуется получить оболочку введенных точек. Для этого калькулятор использует алгоритм Джарвиса (или алгоритм обхода Джарвиса, или алгоритм заворачивания подарка), который определяет последовательность элементов множества, образующих выпуклую оболочку для этого множества. Метод можно представить как обтягивание верёвкой множества вбитых в доску гвоздей.

Алгоритм работает за время , где n — общее число точек на плоскости, h — число точек в выпуклой оболочке. Для выпуклого многоугольник соответственно будет . Не самый оптимальный алгоритм, зато очень простой, и для этого калькулятора вполне производительный.

Как пользоваться калькулятором: начинаете вводить координаты точек выпуклого многоугольника. Начиная с трех точек алгоритм Джарвиса будет стоить обтягивающий контур, затем контур будет разбиваться треугольники и подсчитываться общая площадь. Для справки также будут выводиться площади всех треугольников.

PLANETCALC, Вычисление площади выпуклого многоугольника по координатам вершин на плоскости
Вычисление площади выпуклого многоугольника по координатам вершин на плоскости
addimport_exportmode_editdelete
Точки многоугольника
Размер страницы: chevron_leftchevron_right

Точки многоугольника

Сохранить Отменить

Импортировать данныеОшибка импорта

Для разделения полей можно использовать один из этих символов: Tab, ";" или "," Пример: Lorem ipsum;-50.5;-50.5

Импортировать Назад Отменить Точность вычисления

Знаков после запятой: 2

Выпуклый многоугольник

 

Общая площадь

 

save Сохранить share Поделиться extension Виджет

planetcalc.ru

Расчет Геометрических Фигур | Онлайн калькулятор

Allcalc Geometry на сегодняшний день является одним из самых мощных приложений в решении геометрических задач.
Содержит более 800 формул, в том числе и формулы для обратного расчета, объединенные в 144 калькулятора.

Расчет Геометрических Фигур цилинд, квадрат, куб, треугольник для андроид

Расчет Геометрических Фигур трапеция, ромб, сфера, шар для андроид Расчет Геометрических Фигур Октаэдр, Параллелепипед, Параллелограмм, Призмы, пирамиды  для андроид

Калькулятор Геометрических Фигур рассчитывает: Площадь, Объем, Угол, Диагональ, Высоту, Радиус вписанной окружности, Радиус описанной окружности, Катет, Гипотенузу, Радиус описанной сферы, Радиус вписанной сферы, Сторону, Медиану, Биссектрису, Площадь основания, Площадь поверхности, Площадь осевого сечения, Площадь боковой поверхности, Площадь грани, Сторону основания, Периметр, Периметр основания, Радиус, Грань, Ребро, Апофему, Дугу, Угол наклона грани, Угол наклона ребра, Угол наклона образующей, Угол между диагоналями, Угол от деления диагональю, Угол дуги, Угол сторон, Угол раствора, Боковое ребро, Среднюю линию, Диаметр, Окружность, Радиус основания, Хорду, Сегмент, Сектор, Образующею, Осевое сечение, Диагональ осевого сечения, оси, Диагональ грани.

Плоские фигуры: Круг, Ромб, Треугольник, Прямоугольник, Трапеция, Квадрат, Параллелограмм, Кольцо, Сектор круга, Сегмент круга, Эллипс.

Объемные тела: Цилиндр, Куб, Шар (Сфера), Параллелепипед, Пирамида, Призма, Конус, Тетраэдр, Усеченная пирамида, Усеченный конус, Октаэдр.

Приложение поддерживает мобильную платформу Android от Google.

Рекомендуем к просмотру видео:

Перейти к установке приложения

Приведем примеры геометрических задач, которые решает калькулятор:
Зная радиус основания и высоту цилиндра можно вычислить: Объем цилиндра V, Площадь цилиндра S, Площадь боковой поверхности S, Площадь основания S, Площадь осевого сечения S, Диагональ осевого сечения d, Окружность основания P, Диаметр основания D, Радиус вписанной сферы, Радиус описанной сферы.

Помните, калькулятор содержит формулы обратного расчета, что означает следующие: зная высоту и площадь основания цилиндра можно вычислить объем, радиус, диагональ и т.д.

allcalc.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о