Применение ферромагнетика: 92. [1975 .., .. — ( , )]

Содержание

Ферромагнетики⚠️: примеры, применение, особенности

Что такое ферромагнетики

Ферромагнетиками называют вещества, для которых характерна самопроизвольная намагниченность, значительно изменяемая в процессе воздействия внешних факторов таких, как магнитное поле, деформация и температура.

Магнитная восприимчивость ферромагнетиков обладает положительными значениями и равна 10 в 4 или 5 степени. Если напряжённость магнитного поля растет нелинейно, наблюдается увеличение намагниченности и магнитной индукции ферромагнетических веществ.

Отличительное свойство

Ферромагнетики отличаются от диамагнетиков и парамагнетиков наличием самопроизвольной или спонтанной намагниченности, когда внешнее магнитное поле отсутствует. Данный факт говорит об упорядоченной ориентации электронных спинов и магнитных моментов. Ещё одной особенностью ферромагнетиков в отличие от других типов магнетических веществ является значительное превышение внутреннего магнитного поля по сравнению с аналогичными характеристиками внешнего поля.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Примеры материалов

Можно найти немного примеров природных ферромагнетиков. Широко распространены ферриты, которые представляют собой химические соединения оксидов железа с оксидами других веществ. Первым открытым ферромагнитным материалом является магнитный Железняк, который относятся к категории ферритов. Ферромагнетическими свойствами обладают следующие материалы:

  • техническое железо;
  • оксидные ферромагнетики;
  • низкоуглеродистая сталь;
  • электротехническая листовая сталь;
  • пермаллои, включая железно-никелевый сплав, характеризующийся высокой проницаемостью.

Основные характеристики

Ферромагнетические материалы обладают уникальными физико-химическими свойствами. Основными характеристиками ферромагнетиков являются:

  1. Ферромагнетизм материалов возможен лишь тогда, когда вещество находится в кристаллическом состоянии.
  2. Ориентация магнитных полей доменов затруднена из-за теплового движения, что подтверждает прямую зависимость свойств ферромагнетиков от температуры. Температура разрушения доменной структуры ферромагнетического вещества может отличаться. Данный показатель называется точкой Кюри. При его достижении ферромагнетик трансформируется в парамагнетик. К примеру, в чистом железе такой процесс происходит, когда температура Кюри достигает 900 градусов.
  3. Намагничивание ферромагнетиков происходит до насыщения в слабых магнитных полях.
  4. Параметры магнитного поля определяют магнитную проницаемость ферромагнетических веществ.
  5. Ферромагнетики обладают остаточной намагниченностью. Можно наблюдать опытным путем на примере ферромагнитного стержня, помещенного под током соленоида, как при намагничивании до насыщения, а затем уменьшении тока, индукция поля в стержне во время его размагничивания сохраняется на более высоком уровне, чем при намагничивании.

Электронные оболочки у ферромагнетиков

Ферромагнетиками могут являться материалы, находящиеся в твердом состоянии. При этом магнитный момент их атомов, в частности с недостроенными внутренними электронными оболочками, является постоянно спиновым или орбитальным. Распространенным примером ферромагнетиков являются переходные металлы. В ферромагнетических материалах резко усиливаются внешние магнитные поля. К ним относятся:

  • железо;
  • кобальт;
  • никель;
  • гадолиний;
  • тербий;
  • диспрозий;
  • гольмий;
  • эрбий;
  • тулий;
  • соединения ферромагнетиков с веществами, не являющиеся ферромагнетиками.

Значительная доля веществ не обладает ферромагнетическими свойствами. Это объясняется особым расположением электронов, когда электронные оболочки атомов заполняются. Их магнитные поля ориентированы в противоположных направлениях и компенсируют друг друга, что снижает степень потенциальной энергии взаимодействия электронов.

Наблюдая атомы с нечетным числом электронов на оболочках, которые соединяются в молекулы или кристаллы, можно заметить взаимную компенсацию магнитных полей неспаренных электронов. Атомы железа, никеля, кобальта в кристаллических структурах обладают собственными магнитными полями неспаренных электронов, которые ориентированы параллельно друг другу. Это приводит к образованию микроскопических намагниченных областей или доменов. Суммарное магнитное поле таких образований нулевое. Если материал поместить во внешнее магнитное поле, то поля доменов будут ориентироваться соответственно, что сопровождается намагничиванием ферромагнетиков.

Типы ферромагнетиков, свойства

Ферромагнитные вещества отличаются по характеру магнитного взаимодействия. Выделяют две основные группы ферромагнетиков:

  1. Магнитно-мягкие материалы.
  2. Магнитно-жесткие материалы.

К первой категории относят ферромагнетики, способные практически полностью устранять собственное магнитное поле при исчезновении внешнего. В процессе материал размагничивается. Такие вещества активно используются в производстве сердечников трансформаторов и электромагнитов. Магнито-жесткие материалы применяют для создания таких изделий, как постоянные магниты, магнитные ленты и диски, на которые записывается информация.

Потеря свойств ферромагнетизма

Ферромагнетические вещества называют «магнитозамороженными» парамагнетиками. Атомы парамагнетических материалов обладают магнитными моментами, которые пребывают в хаотичном вращательном движении. В случае ферромагнетиков моменты направлены определенно. При возрастании температуры число случайных температурных флуктуаций магнитных моментов атомов увеличивается. В случае, если температура ферромагнетика становится приближенной к температуре Кюри, то есть сравнимой с температурой магнитного «плавления», происходит полное разрушение ферромагнитного порядка температурными флуктуациями, и наблюдается переход вещества в парамагнитное состояние:

  • магнитный «газ» кристалла;
  • магнитная «жидкость» кристалла.

Изменение  температуры в первую очередь влияет на намагниченность ферромагнетиков. По мере ее возрастания свойство намагниченности снижается и становится равно нулю в точке Кюри. В данном температурном режиме происходит изменение всех других свойств, которые определяют разницу между ферромагнетиками и парамагнетиками, а также характеристик вещества, не связанных с отличительными особенностями этих типов магнетиков. К примеру, изменение электрических и акустических свойств ферромагнитного материала, в связи с тем, что твердое тело обладает упругой, электрической, магнитной и другими подсистемами, при изменении одной из которых меняются и другие.

Температура Кюри

Каждый ферромагнетик обладает рядом характеристик. Важным параметром вещества является температура, при которой оно утрачивает свои магнитные свойства. Этот показатель называется точкой Кюри. При температуре, превышающей точку Кюри, упорядоченное состояние в магнитной подсистеме кристалла разрушается.

На примере металла

Потерю свойств ферромагнетика в зависимости от температуры окружающей среды можно рассмотреть опытным путем. К примеру, никель обладает температурой Кюри в 360 градусов. Подвешенный образец металла подвергают воздействию внешнего магнитного поля. В систему помещают горелку. При обычной температуре никель примет горизонтальное положение, так как будет сильно притягиваться магнитом. Если образец нагреть до температуры Кюри, его свойство намагниченности ослабевает, он перестанет притягиваться и начнет падать. После остывания до температуры, которая ниже точки Кюри, никель вновь приобретает ферромагнитные свойства и притягивается к магниту.

Применение ферромагнетиков, примеры

Ферромагнитные вещества благодаря особым физико-химическим свойствам нашли широкое применение в разных сферах электротехники. С помощью магнито-мягких типов ферромагнетиков производят такое оборудование и агрегаты, как:

  • трансформаторы;
  • электродвигатели;
  • генераторы;
  • слаботочную технику связи;
  • радиотехнику.

Ферромагнетики в условиях отсутствия внешнего магнитного поля остаются намагниченными, создавая магнитное поле во внешней среде. Элементарные токи в веществе сохраняют упорядоченную ориентацию. Свойство активно используется в современной промышленности для создания постоянных магнитов, которые используют для изготовления следующих видов оборудования:

  • электроизмерительные приборы;
  • громкоговорители;
  • телефоны;
  • звукозаписывающая аппаратура;
  • магнитные компасы.

Материалы, относящиеся к ферритам, обладающие одновременно ферромагнитными и полупроводниковыми свойствами, широко распространены в производстве радиотехники. Вещества активно применяются при изготовлении сердечников катушек индуктивности, магнитных лент, пленок и дисков.

ФЕРРОМАГНЕТИКИ, СВОЙСТВА И ПРИМЕНЕНИЕ - PDF Free Download

Глава 13 Магнитные свойства веществ 109

Глава 13 Магнитные свойства веществ 109 Магнитные моменты электронов и атомов Опыты показывают, что все вещества, помещенные в магнитное поле, намагничиваются.

Рассмотрим причину этого явления сточки зрения

Подробнее

Орбитальный магнитный момент

Магнитное поле Магнитный момент атома. Ларморовская частота. Парамагнетики и диамагнетики. Магнитное поле в веществе. Магнитная проницаемость. Условия для поля на границе раздела двух магнетиков. Ферромагнетики.

Подробнее

4.6. Магнитное поле в веществе

1 4.6. Магнитное поле в веществе Индуктивность длинного соленоида можно измерить, анализируя, например, переходной процесс при размыкании или замыкании тока. Опыт показывает, что индуктивность зависит

Подробнее

Лекция 17. Магнитные материалы

Лекция 17. Магнитные материалы Общая характеристика К магнитным материалам относятся вещества, обладающие самопроизвольной намагниченностью при температуре ниже температуры магнитного упорядочения.

Это

Подробнее

МАГНЕТИКИ В МАГНИТНОМ ПОЛЕ

МАГНЕТИКИ В МАГНИТНОМ ПОЛЕ 1. Магнитные моменты электронов и атомов Магнетиками называются вещества, способные приобретать во внешнем магнитном поле собственное магнитное поле, т.е., намагничиваться. Магнитные

Подробнее

Магнетики и их свойства.

Магнетики и их свойства. Диамагнетики Парамагнетики Ферромагнетики Составитель: Киверин С.М. 565 группа 1 курс ИВТ ФТФ АлтГУ Диамагнетики и парамагнетики в магнитном поле. Микроскопические плотности токов

Подробнее

ИЗУЧЕНИЕ МАГНИТНЫХ СВОЙСТВ ФЕРРОМАГНЕТИКОВ

Министерство образования Республики Беларусь БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра физики ЛАБОРАТОРНАЯ РАБОТА 2.11 ИЗУЧЕНИЕ МАГНИТНЫХ СВОЙСТВ ФЕРРОМАГНЕТИКОВ МЕТОДИЧЕСКОЕ

Подробнее

ОПРЕДЕЛЕНИЕ ТОЧКИ КЮРИ ФЕРРОМАГНЕТИКОВ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Подробнее

Часть 3.

Электричество и магнетизм

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Физический факультет Кафедра общей физики ОПИСАНИЕ ЛАБОРАТОРНЫХ РАБОТ Часть 3. Электричество

Подробнее

Магнетизм вещества. d dv Л13

Л13 Магнетизм вещества Таким образом, различия в конфигурации электронных орбит в различных атомах определяют характер и величину атомных магнитных моментов, которые в свою очередь определяют различие

Подробнее

ОПРЕДЕЛЕНИЕ ТОЧКИ КЮРИ НИКЕЛЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Уральский государственный технический университет УПИ Нижнетагильский технологический

Подробнее

3.13. Парамагнетизм.

3.3. Парамагнетизм. 3.3..Магнитная восприимчивость. Вещества, у которых магнитная восприимчивость невелика, но больше нуля 0, а магнитная проницаемость больше единицы: 4, называются парамагнетиками. Явление

Подробнее

ГИСТЕРЕЗИС ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Нижегородский государственный технический университет

Подробнее

МАГНИТНЫЕ СВОЙСТВА МАТЕРИАЛОВ

Министерство образования и науки Российской Федерации Автономное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

Подробнее

Лекция 15 (6) Магнитное поле в веществе

Лекция 15 (6) Магнитное поле в веществе План 1. Магнитное поле в веществе. Намагниченность. Магнитная восприимчивость. Магнитная проницаемость. 2. Виды магнетиков: диамагнетики, парамагнетики, ферромагнетики.

Подробнее

Лекция 6. Магнитное поле в веществе.

Лекция 6 Магнитное поле в веществе Намагниченность вещества Вектор напряжённости магнитного поля и его связь с векторами индукции и намагниченности Магнитная восприимчивость и магнитная проницаемость Поле

Подробнее

Классификация магнетиков.

Лабораторная работа 3-5 ОПРЕДЕЛЕНИЕ ТОЧКИ КЮРИ Цель работы: Изучение свойств магнитных материалов при нагревании Принадлежности: ферромагнитный образец, электрическая печь, термопара с милливольтметром,

Подробнее

Лекц ия 23 Магнитные свойства вещества

Лекц ия 3 Магнитные свойства вещества Вопросы. Магнитное поле в магнитиках. Связь индукции и напряженности магнитного поля в магнитиках. Магнитная проницаемость и восприимчивость. Гиромагнитные явления.

Подробнее

Лекция 23. сегнетоэлектрики.

Лекция 23 Диполь. Диэлектрики. Поляризация диэлектриков. Электрическое смещение. Теорема Гаусса для вектора электрического смещения. Поведение векторов напряженности и электрического смещения на границе

Подробнее

Тема 3. Электромагнетизм

Тема 3. Электромагнетизм Вопросы темы. 1. Характеристики магнитного поля.. Магнитные свойства веществ. Постоянные магниты и электромагниты. 3. Действие магнитного поля на проводник с током и движущийся

Подробнее

Электричество и магнетизм

Электричество и магнетизм Электростатическое поле в вакууме Задание 1 Относительно статических электрических полей справедливы утверждения: 1) поток вектора напряженности электростатического поля сквозь

Подробнее

ТЕМА 15.

. МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА

ТЕМА 15.. МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА 15.1. Намагничивание вещества 15.. Магнитное поле на границе раздела сред 15.3. Магнитомеханические явления 15.4. Виды магнетиков. Диамагнетики в магнитном поле 15.5.

Подробнее

Магнітна і електрична сепарація УДК

УДК 6.778.4 Магнітна і електрична сепарація А.А. БЕРЕЗНЯК, канд. техн. наук, Е.А. БЕРЕЗНЯК, М.Э. ГУМЕРОВ (Украина, Днепропетровск, Национальный горный университет) РАСЧЕТ НЕОБХОДИМЫХ ПАРАМЕТРОВ ПРОЦЕССА

Подробнее

3.14. Ферромагнетизм.

1 3.14. Ферромагнетизм. Ферромагнетизм магнитоупорядоченное состояние вещества, при котором все магнитные моменты атомных носителей магнетизма в пределах пространственных областей, называемых доменами,

Подробнее

5 ЭЛЕКТРОМАГНЕТИЗМ.

МАГНИТНЫЕ ЦЕПИ

5 ЭЛЕКТРОМАГНЕТИЗМ. МАГНИТНЫЕ ЦЕПИ Лекция 25 Факты об магнетизме Магнетизм это особое проявление движения электрических зарядов внутри атомов и молекул, которое проявляется в том, что некоторые тела способны

Подробнее

ИЗУЧЕНИЕ ПОЛЯ МАГНИТНОГО ДИПОЛЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. Ломоносова Физический факультет кафедра общей физики и физики конденсированного состояния Методическая разработка по общему физическому практикуму Лаб.

Подробнее

Дисциплина «Материалы электронной техники»

Дисциплина «Материалы электронной техники» ТЕМА 4: «Магнитные материалы» Легостаев Николай Степанович, профессор кафедры «Промышленная электроника» Классификация материалов по магнитным свойствам. Диамагнетики

Подробнее

3.

9. Магнитное поле в веществе.

1 39 Магнитное поле в веществе 391Магнитные моменты в веществе До сих пор мы рассматривали магнитные поля и электрические токи в вакууме В веществе магнитное поле возбуждается не только электрическими

Подробнее

Репозиторий БНТУ СОДЕРЖАНИЕ

СОДЕРЖАНИЕ 16. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ... 3 16.1. Закон Кулона... 3 16.2. Напряженность электростатического поля. Принцип суперпозиции для напряженности электростатических полей... 6 16.3. Поток вектора

Подробнее

Бытовое применение магнитомягкого железа - МАГНИТ СТАНДАРТ

Основой ферромагнитного полотна является низкоуглеродистая сталь. Сами полотна выполнены толщиной до 0,4 миллиметров, причём при разной толщине они наследуют свойства исходного материала.

Характеристики полотна ферромагнитного:

  • Пластичность исходного материала;
  • Надёжность и долговечность эксплуатации;
  • Подвержен дефрагментации;
  • Высокие остаточные магнитные свойства;

Отличие ферромагнитных полотен

Техническое отличие ферромагнетиков от магнита винилового и других видов магнитов, заключается в способности данных материалов примагничиваться к соответствующей магнитной поверхности, не будучи ярким магнитным проводником по свойствам. Таким образом, при помощи ферромагнетиков, добиваются декоративного прикладного эффекта. С появлением данного материала стало возможным производство малоформатной рекламной продукции, основанной на основных качествах ферромагнетиков. Это, пришлось, кстати, не только простым пользователям, развешивающим ферромагнетики на дверцах холодильников в виде причудливых фигурок, но даже профессиональным фирмам, размещающим свою рекламу на бортах автотранспортных средств.

Возможности применения магнитомягкого железа

Сейчас магнитное железо вошло в практику оформления интерьеров и производства, бытовых вещей, как пример, можно привести – обои магнитные, как один из самых необычных решений в дизайне помещений.

Одним из наиболее популярных событий в применении мягкомагнитного железа или ферромагнетика, являются пособия учебные, экспонаты наглядные, развивающие игры, основанные на логике.

Офисная канцелярия также не обходится без применения железа мягкомагнитного. Мягкомагнитное железо нашло для себя неожиданное применение и в дизайне помещений, таких как торговые центры, офисные и сервисные помещения.

Творческие находки, создают все новые сферы применения железа магнитомягкого. Даже единственное техническое качество – магнитные свойства, позволяют создать множество предметов для дома, школы, сферы услуг.

В сочетании с современными полиграфическими и другими технологиями феррошит входит в тенденцию развития товаров визуального ряда с большим спектром практических качеств.

Каждый человек сталкивается с феррошитом в жизни, многие создают из него собственные оригинальные изделия и воплощают свои идеи.

Машинное обучение поможет найти новые ферромагнетики

James Nelson & Stefano Sanvito et al. / Physical Review Materals, 2019

Ирландские физики разработали и обучили модель, которая предсказывает температуру Кюри у ферромагнетика, отталкиваясь только от его химического состава. В 83 процентах модель ошибается менее чем на 100 кельвинов, что позволяет искать с ее помощью перспективные высокотемпературные ферромагнитные материалы. Статья опубликована в Physical Review Materials, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.

В настоящее время физикам известно более 2500 ферромагнетиков, что автоматически делает их самым распространенным классом магнитных материалов. На микроскопическом уровне ферромагнетик разбивается на домены — грубо говоря, на мелкие неделимые магнитики. Если температура ферромагнетика сравнительно невелика, все магнитики смотрят в одну и ту же сторону, их поле складывается и усиливается, и в результате намагниченность ферромагнетика получается большой — достаточно большой, чтобы ферромагнетики случайно обнаружили еще две с половиной тысячи лет назад. Однако при повышении температуры магнитики начинают «дрожать», их поле складывается уже не так эффективно, и намагниченность материала начинает падать. Если температура превысит определенное критическое значение, «дрожание» станет слишком сильным, и ферромагнетик размагнитится. Эту критическую температуру называют температурой Кюри.

Зависимость числа известных ферромагнетиков от их температуры Кюрию. Во врезе — относительная распространенность химических элементов в этих ферромагнетиках

James Nelson & Stefano Sanvito et al. / Physical Review Materals, 2019

К сожалению, большинство ферромагнетиков имеют слишком низкую температуру Кюри, чтобы их можно было применять на практике. Более половины известных ферромагнитных материалов теряют свои свойства при температуре ниже комнатной, до «практических» температур более трехсот градусов Цельсия доживает лишь малая часть от богатого класса ферромагнетиков, а отметку в тысячу градусов Цельсия преодолевает только чистый кобальт. Учитывая этот факт, физики продолжают искать новые высокотемпературные магниты. Интересно, что простор для поисков довольно велик: за исключением благородных газов и радиоактивных элементов, практически каждый ион из таблицы Менделеева может образовать ферромагнетик, если поместить его в подходящую кристаллическую решетку.

Из-за этого богатства большинство поисков новых магнитов ведется теоретически, с помощью численного моделирования. К сожалению, зависимости, которые связывают температуру Кюри материала с его строением и химическим составом, далеко не очевидны. Бо́льшая часть таких зависимостей носит чисто эмпирический характер. Например, температуры Кюри сплавов типа Co2XY можно описать с помощью кривой Слетера-Полинга, а температуры Кюри аналогичных сплавов с марганцем следуют кривым Кастелица-Каномата. Это связано с тем, что стандартные методы, включая достаточно мощную теорию функционала плотности, не могут извлечь информацию о температуре Кюри из строения материала, хотя и могут рассчитать другие его свойства. Поэтому физикам, ищущим высокотемпературные магниты, до сих пор приходится руководствоваться эмпирическими правилами, которые могут упускать перспективные регионы. В результате большая часть усилий тратится на исследование материалов с низким практическим потенциалом.

Физики Джеймс Нельсон (James Nelson) и Стефано Санвито (Stefano Sanvito) частично решили эту проблему с помощью машинного обучения. Ученые разработали и натренировали модель, которая предсказывает температуру Кюри материала, отталкиваясь от его химической формулы. Погрешность предсказаний такой модели составила около 50 кельвинов. Более того, нейросеть очень хорошо экстраполировала скудные исходные данные на новые области.

Поскольку зависимость между температурой Кюри и химическим составом ферромагнетика не вполне понятна, физики максимально расширили область параметров, с которыми работала модель. В результате ученые получили 129-мерный вектор параметров. Этот вектор включал в себя 84 числа, описывающих атомную долю каждого возможного элемента, который может входить в состав ферромагнетика. Поскольку на практике материал состоит из одного, двух или трех элементов, для реальных соединений практически все эти числа равны нулю. Это указывает на то, что информацию о соединении можно хранить и обсчитывать более эффективно. Поэтому к этим 84 числам ученые добавили еще 45 параметров, описывающих атомное число, группу, период, число валентных электронов, молярный объем, температуру плавления и сродство к электрону, усредненные по атомам соединения, а затем «урезали» вектор, выделив в нем только самые важные параметры. Интересно, что при грамотном «урезании» эффективность работы модели практически не изменялась — даже в том случае, если от исходных 129 параметров оставалось всего 10.

Для обучения и проверки модели ученые использовали 2500 ферромагнетиков, собранных из четырех разных источников. Соединения с одинаковым химическим составом, но разной кристаллической структурой физики считали одним и тем же материалом, поэтому температура Кюри «составного» ферромагнетика могла довольно значительно колебаться. Например, материал с химической формулой Sm2Ni17 может терять ферромагнитные свойства как при 186, так и при 641 кельвине. Чтобы минимизировать эффект таких колебаний, ученые присваивали «составным» ферромагнетикам медианную температуру. Впрочем, стоит отметить, что для большинства материалов разброс был сравнительно невелик: у 80 процентов ферромагнетиков температура Кюри укладывалась в интервал шириной около 50 кельвинов, и лишь у 5 процентов разброс температур превышал 300 кельвинов.

Поскольку полученная выборка из 2500 ферромагнетиков была сравнительно невелика, ученые объединили тренировочный (training) и тестовый (validation) наборы данных. Напомним, что на тренировочном наборе данных модель настраивает параметры, а на тестовом наборе — гиперпараметры, то есть параметры, которые задаются до начала обучения. Чтобы повысить эффективность обучения, в эти (совпадающие) наборы данных исследователи старались отобрать как можно больше различных соединений (и даже добавили к ним немагнитные соединения). Размер тренировочно-тестового набора составил 1866 соединений. С помощью оставшихся 767 соединений физики проверяли эффективность обученной модели.

В качестве модели машинного обучения ученые использовали четыре разных алгоритма: метод регуляризации Тихонова (ridge regression), нейросеть, случайный лес (random forest) и регрессию ядра хребта (kernel ridge regression). Последние два метода справились с предсказаниями лучше всего: в 59 процентах случаев они предсказали температуру Кюри с точностью порядка 50 кельвинов и еще в 24 процентах ошиблись менее чем на сто кельвинов. Стоит отметить, что «ломался» алгоритм только на ферромагнетиках с низкой температурой Кюри, которые не имеют практической пользы. Более того, модель очень хорошо экстраполировала скудные начальные данные: всего по двум точкам она практически идеально восстанавливала кривые, на которых лежат ферромагнитные соединения различных элементов.

Температура Кюри, предсказанная моделью для бинарных соединений кобальт — марганец, железо — никель и никель — родий. Серым отмечены предсказания, крестами — данные, которые использовались при обучении, зелеными точками — данные из проверочной выборки

James Nelson & Stefano Sanvito et al. / Physical Review Materals, 2019

Температуры Кюри, предсказанные моделью для тернарной системы железо — кобальт — алюминийhttp://www.lib.unn.ru/students/src/Intro_DFT.pdf

James Nelson & Stefano Sanvito et al. / Physical Review Materals, 2019

Таким образом, с помощью построенной модели вполне можно искать новые соединения. Впрочем, для большей точности в нее следует включить данные о структуре материала. Кроме того, было бы неплохо разобраться, как именно модель предсказывает температуру.

В последнее время нейронные сети стали так популярны, что их пытаются применить буквально везде, где только можно. Физиков эта мода также не обошла стороной. В частности, физики уже научили нейросети считать функциональные интегралы и топологические инварианты, решать квантовую проблему многих тел, исправлять ошибки в квантовых компьютерах, искать распады бозона Хиггса и предсказывать рост кристаллов. Более того, некоторые нейросети не хуже людей «понимают» суть физических процессов в статистических системах, то есть выделяют степени свободы, которые определяют ее физические свойства.

Дмитрий Трунин

Урок 4. магнитные свойства вещества. электроизмерительные приборы - Физика - 11 класс

Физика, 11 класс

Урок 4. Магнитные свойства вещества. Электроизмерительные приборы

Перечень вопросов, рассматриваемых на уроке:

1. Магнитные свойства вещества.

2. Свойства диа-, пара- и ферромагнетиков.

3. Принцип действия электроизмерительных приборов.

Глоссарий по теме:

Магнитная проницаемость – это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Диамагнетики – вещества, у которых магнитная проницаемость чуть меньше единицы. К таким веществам относятся золото, серебро, углерод, висмут.

Парамагнетики – вещества, у которых магнитная проницаемость чуть больше единицы. Это алюминий, вольфрам, щелочные металлы, магний, платина.

Ферромагнетики – вещества у которых магнитная проницаемость много больше единицы. Это железо, никель, кобальт, и сплавы металлов.

Точка Кюри – температура, при которой ферромагнетики теряют ферромагнитные свойства.

Ферриты – ферромагнитные материалы, не проводящие электрического тока.

Основная и дополнительная литература по теме:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 27-30.

2.Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. С. 113.

3. ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.

Теоретический материал для самостоятельного изучения.

Все вещества в окружающей нас природе в какой - то мере обладают магнитными свойствами. Ещё с глубокой древности была известна способность некоторых минералов притягивать железные предметы. Среди многих приборов навигации, необходимых для прокладывания курса кораблей или самолётов, обязательно должен быть и магнитный компас. Во многих измерительных приборах основными деталями служат постоянные магниты. Что же происходит с веществом, помещённом в магнитное поле? Вспомним, как магнитные свойства катушки, по которой течёт ток, усиливаются, если в катушку вставлен железный сердечник. Железный сердечник намного увеличивает магнитное поле в катушке с током. Мы знаем, что вокруг катушки с электрическим током возникает магнитное поле, а железный сердечник, создаёт своё магнитное поле и, согласно принципу суперпозиции полей, векторы этих двух полей складываются. Таким образом, мы наблюдаем усиление магнитного поля. Магнитную индукцию, создаваемую электрическим током, обозначим через (В0). Магнитную индукцию поля в веществе обозначим через (В). При введении железного сердечника, появляется магнитная индукция поля, возникающая благодаря намагничиванию вещества (В1). Эти поля складываются по принципу суперпозиции полей. В итоге мы наблюдаем, что вещество может усилить или, возможно ослабить магнитное поле. Магнитная индукция поля, создаваемого этими токами в вакууме, будет меньше, чем магнитная индукция поля в веществе.

Магнитной проницаемостью вещества называется физическая скалярная величина показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Французский физик Андре Мари Ампер сравнивал магнитные поля, создаваемые полосовым магнитом и проводниками с током. В итоге, Ампер выдвинул гипотезу, что внутри молекул и атомов циркулируют элементарные электрические токи. Круговые электрические токи – это токи, обусловленные орбитальными движениями электронов вокруг ядра.

Английский физик Майкл Фарадей исследовал влияние вещества на магнитное поле. В итоге, он определил, что все вещества изменяют магнитное поле, если их поместить во внешнее магнитное поле. Получается если вещество поместить во внешнее магнитное поле, оно становится источником своего магнитного поля. Это явление называют намагничиванием. Таким образом, Майкл Фарадей обнаружил, что вещества делятся на три группы - диа-, пара-, и ферромагнетики.

Диамагнетики – это вещества, у которых магнитная проницаемость чуть меньше единицы. К таким веществам относятся золото, серебро, углерод, висмут. Магнитная проницаемость висмута равна 0,9998. Значит, магнитное поле ослабляется, когда в него помещают это вещество В˂В0. Это означает, что вектор магнитной индукции поля, создаваемого веществом направлен противоположно вектору магнитной индукции поля, создаваемого током.

Парамагнетики – вещества, у которых магнитная проницаемость чуть больше единицы. Это алюминий, вольфрам, щелочные металлы, магний, платина. Эти вещества намагничиваются очень слабо, намагничиваются вдоль намагничивающего поля. Вектор магнитной индукции поля, создаваемого веществом, направлен в ту же сторону, что и вектор магнитной индукции поля, создаваемого током.

Ферромагнетики – это вещества, у которых магнитная проницаемость во много раз больше единицы. Это такие вещества как железо, кобальт, никель и сплавы металлов. Для железа магнитная проницаемость равна одна тысяча (1000).

Магнитные поля создаются ферромагнетиками не только вследствие обращения электронов вокруг ядер, но и вследствие их собственного вращения. Собственный вращательный момент (момент импульса) электрона называется спином. Согласно простейшим представлениям, электроны вращаясь вокруг собственной оси обладая зарядом, имеют, магнитное поле наряду с полем, появляющимся за счёт их орбитального движения вокруг ядер. В ферромагнетиках существуют области с параллельными ориентациями спинов, называемыми доменами; размеры доменов порядка 0.5 мкм. Параллельная ориентация спинов обеспечивает доменам минимум потенциальной энергии. Если ферромагнетик не намагничен, то ориентация доменов хаотична и суммарное магнитное поле, создаваемой доменами, равно нулю. При включении внешнего магнитного поля домены ориентируются вдоль линий магнитной индукции этого поля, и индукция магнитного поля в ферромагнетиках увеличивается, становясь в тысячи и даже миллионы раз больше индукции внешнего поля

Ферромагнитные свойства у веществ существуют только в определённой области температуры. Температура, при которой ферромагнитные материалы теряют свои ферромагнитные свойства, называют точкой Кюри по имени открывшего данное явление французского учёного Пьера Кюри. Если сильно нагреть намагниченный образец, то он потеряет способность притягивать железные предметы. Точка Кюри для железа 753 градусов по Цельсию, для кобальта 1000 градусов по Цельсию. Существуют ферромагнитные сплавы, у которых точка Кюри менее 100 градусов. Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А.Г. Столетовым.

Большое применение получили ферромагнитные материалы, не проводящие электрического тока – ферриты. Это химические соединения оксидов железа с оксидами других веществ. К их числу относится и магнитный железняк.

Стальной или железный сердечник в катушке усиливает создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромегнетиков. При выключении внешнего магнитного поля ферромагнетик остаётся намагниченным, таким образом создаёт магнитное поле в окружающем пространстве. Это объясняется тем, что домены не возвращаются в прежнее положение и их ориентация частично сохраняется. Благодаря этому существуют постоянные магниты. Постоянные магниты широко применяются в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т.д. Электроизмерительный прибор является необходимым устройством в связи, промышленности, на транспорте, в медицине и в научных исследованиях.

Примеры и разбор решения заданий:

1. Для каких целей применяют ферромагнитные материалы? Выберите один правильный ответ.

Варианты ответов:

1) для усиления силы тока;

2) для ослабления магнитного поля;

3) для усиления магнитного поля;

4) для ослабления силы тока.

Пояснение: ферромагнетики и ферромагнитные материалы это вещества, которые создают наиболее сильные магнитные поля.

Правильный ответ: 3) для усиления магнитного поля.

2. По графику определите магнитную проницаемость стали при индукции В0 намагничивающего поля 1) 0,4 мТл, 2) 1,2 мТл.

Дано:

1) B0 = 0.4 мТл

2) B0 = 1,2 мТл

µ1 -? µ2 -?

Решение:

По определению магнитная проницаемость µ показывает, во сколько раз индукция магнитного поля В в веществе превышает индукцию намагничивающего поля В0 в вакууме: µ =

  1. При В0 = 0,4 мТл по графику находим что В = 0,8 Тл, следовательно:

2) При В0 = 1.2 мТл, по графику В = 1,2 Тл

Следовательно:

Ответ: µ1 = 2000; µ2 = 1000

Открытое образование - Введение в теорию ферромагнетизма

  • 10 weeks
  • от 2 до 3 часов в неделю
  • 2 credit points

В рамках курса рассматриваются физические основы фазовых переходов второго рода на примере фазового перехода парамагнетик/ферромагнетик. Затрагиваемый круг вопросов включает классификацию материалов по магнитным свойствам, применение приближения среднего поля для расчета различных магнитных характеристик, элементы феноменологической теории Ландау, антиферромагнетизм.

Курс преподается на английском языке с русскими субтитрами и предназначен в первую очередь для иностранных студентов, обучающихся в России.

About

Настоящий курс посвящен явлению ферромагнетизма. Ферромагнетизмом называют магнитоупорядоченное состояние вещества, в котором атомные магнитные моменты параллельны друг другу, так что вещество обладает самопроизвольной намагниченностью. Благодаря ферромагнетизму некоторые материалы (например, железо) способны притягиваться к магнитам или же сами становиться постоянными магнитами. Явление ферромагнетизма играет значительную роль в современных технологиях и является физической основой для создания различных электрических и электронных устройств, например, трансформаторов, генераторов, электромагнитов, магнитных накопителей информации, жестких дисков, спинтронных устройств и т.д. Однако ферромагнетизм в отсутствии внешнего магнитного поля устанавливается не при любой температуре, а лишь при температуре ниже критической, называемой температурой Кюри. Разумеется, для каждого материала температура Кюри имеет свое значение. Ответственным за явление ферромагнетизма является обменное взаимодействие, стремящееся установить магнитные моменты соседних атомов или ионов параллельно друг другу. Обменное взаимодействие – это чисто квантовомеханический эффект, не имеющий аналога в классической физике. В рамках курса мы постараемся разобраться с микроскопической природой ферромагнетизма, узнать о его экспериментальных проявлениях и построить его квантовомеханическую теорию.

Курс ориентирован на студентов магистратуры, в том числе иностранных, для которых английский язык является родным, желающих повысить свой уровень в области теоретической физики.

Format

Курс состоит из 7 модулей.

Общая длительность курса - 10 недель.

Времени на изучение в неделю - от 2 до 3 часов.

Requirements

Необходимо знание основ векторного исчисления, теории функций комплексного переменного, теории дифференциальных уравнений, теории вероятностей, статистической физики и квантовой механики. Курс ориентирован на студентов магистратуры физических специальностей, владеющих английским языком.

Course program

Модуль 1

  • Введение. Классификация фазовых переходов

Модуль 2

  • Магнитный момент атома
  • Физические величины, характеризующие магнитные свойства вещества
  • Классификация веществ по магнитным свойствам

Модуль 3

  • Изолированный магнитный момент во внешнем магнитном поле
  • Система невзаимодействующих локальных магнитных моментов во внешнем магнитном поле
  • Закон Кюри
  • Эффективное поле Вейсса
  • Обменное взаимодействие
  • Взаимодействие двух локальных магнитных моментов

Модуль 4

  • Модель Гейзенберга и модель Изинга
  • Приближение среднего поля в модели Изинга
  • Уравнение Кюри-Вейсса. Закон Кюри-Вейсса
  • Ферромагнитный переход в модели Изинга. Температура Кюри. Параметр порядка
  • Зависимость параметра порядка от температуры в модели Изинга для ферромагнетика
  • Основное и возбужденное состояние ферромагнетика в модели Изинга

Модуль 5

  • Свободная энергия ферромагнетика в модели Изинга в приближении среднего поля. Свободная энергия ферромагнетика вблизи критической температуры
  • Спонтанное нарушение симметрии при фазовых переходах парамагнетик/ферромагнетик
  • Феноменологическая теория фазовых переходов второго рода (теория Ландау)
  • Теплоемкость и магнитная восприимчивость ферромагнетика в модели Изинга в приближении среднего поля
  • Критические индексы

Модуль 6

  • Точное решение одномерной модели Изинга
  • Приближение среднего поля в антиферромагнитной модели Изинга. Температура Нееля
  • Магнитная восприимчивость изинговского антиферромагнетика в приближении среднего поля

Модуль 7

  • Решение задач. Заключение

Education results

Прослушав курс, Вы узнаете:

-  Классификацию материалов по магнитным свойствам

-  Приближение среднего поля для расчета различных магнитных характеристик

-  Основные сведения о феноменологической теории фазовых переходов второго рода Ландау

-  Что такое антиферромагнетизм

Классификация магнитных материалов по магнитным свойствам

В зависимости от магнитных свойств материалы разделяют на диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики. Количественно магнитные свойства материалов принято оценивать по их магнитной восприимчивости λ = М/Н, где М — намагниченность вещества; Н — напряженность магнитного поля.

Это вещества, атомы, ионы или молекулы которых не имеют результирующего магнитного момента при отсутствии внешнего поля. Диамагнитный эффект является результатом воздействия внешнего магнитного поля на молекулярные токи и проявляется в том, что возникает магнитный момент, направленный в сторону, обратную внешнему полю. Таким образом, во внешнем магнитном поле диамагнетики намагничиваются противоположно приложенному полю, т. е. имеют отрицательную магнитную восприимчивость (λ < 0). Диамагнитные вещества выталкиваются из неравномерного магнитного поля, а в равномерном магнитном поле вектор намагниченности диамагнетика стремится расположиться перпендикулярно к направлению поля. Диамагнетизм присущ всем без исключения веществам в твердом, жидком и газообразном состояниях, но проявляется слабо и часто подавляется другими эффектами.

Это вещества, атомы, ионы или молекулы которых имеют результирующий магнитный момент при отсутствии внешнего магнитного поля. Во внешнем магнитном поле парамагнетики намагничиваются согласно с внешним полем, т. е. имеют положительную магнитную восприимчивость (λ > 0). Парамагнитный эффект присущ веществам с нескомпенсированным магнитным моментом атомов при отсутствии у них порядка в ориентации этих моментов. Поэтому, когда нет внешнего магнитного поля, атомные магнитные моменты располагаются хаотически и намагниченность парамагнитного вещества равна нулю. При воздействии внешнего магнитного поля атомные магнитные моменты получают преимущественную ориентацию в направлении этого поля, и у парамагнитного вещества проявляется намагниченность.

Это вещества, в которых магнитные моменты атомов или ионов находятся в состоянии самопроизвольного магнитного упорядочения, причем результирующие магнитные моменты каждого из доменов отличны от нуля. При воздействии внешнего магнитного поля магнитные моменты доменов приобретают преимущественное ориентирование в направлении этого поля и ферромагнитное вещество намагничивается. Ферромагнитные вещества характеризуются большим значением магнитной восприимчивости (>> 1), а также ее нелинейной зависимостью от напряженности магнитного поля и температуры, способностью намагничиваться до насыщения при обычных температурах даже в слабых магнитных полях, гистерезисом — зависимостью магнитных свойств от предшествующего магнитного состояния, точкой Кюри, т. е. температурой, выше которой материал теряет ферромагнитные свойства. К ферромагнитным веществам относятся железо, никель, кобальт, их соединения и сплавы, а также некоторые сплавы марганца, серебра, алюминия. Ферромагнитные свойства у вещества могут возникать лишь при достаточно большом значении обменного взаимодействия, что характерно для кристаллов железа, кобальта, никеля и др. Необходимое значение обменного взаимодействия ферромагнетики имеют лишь в твердом состоянии. Этим объясняется отсутствие в природе жидких и газообразных ферромагнетиков. Ферромагнетизм сплавов, целиком состоящих из «парамагнитных» компонентов, объясняется тем, что в этих сплавах, основой которых обычно является марганец или хром, введение в решетку основы атомов висмута, сурьмы, серы и теллура изменяет электронную структуру кристаллов, в результате чего создаются условия для возникновения ферромагнетизма.

Это вещества, в которых магнитные моменты атомов или ионов находятся в состоянии самопроизвольного магнитного упорядочения, причем результирующие магнитные моменты каждого из доменов равны нулю. При воздействии внешнего магнитного поля магнитные моменты атомов приобретают преимущественную ориентацию вдоль внешнего поля и антиферромагнитное вещество намагничивается. Антиферромагнитные вещества характеризуются кристаллическим строением, небольшим коэффициентом магнитной восприимчивости (λ = от 10-3 до 10-5), постоянством восприимчивости в слабых полях и сложной зависимостью от магнитного поля в сильных полях, специфической зависимостью от температуры, а также температурой точки Нееля, выше которой вещество переходит в парамагнитное состояние. К антиферромагнетикам относятся чистые металлы хром и марганец, редкоземельные металлы цериевой подгруппы: церий, неодим, празеодим самарий и европий. Редкоземельные металлы диспрозий, гольмий и эрбий в зависимости от температуры могут быть антиферромагнетиками или ферромагнетиками. При воздействии на эти металлы, находящиеся в антиферромагнитном состоянии внешнего магнитного поля, превышающего критическое значение, происходит переход антиферромагнитного порядка в ферромагнитный, сопровождающийся скачкообразным появлением намагниченности (М~ 1600 кА/м). Аналогичные превращения можно наблюдать у тулия и тербия.

Это кристаллические вещества, магнитную структуру которых можно представить в виде двух или более подрешеток; магнитные моменты атомов или ионов находятся в состоянии самопроизвольного магнитного упорядочения, причем результирующие магнитные моменты каждого из доменов отличны от нуля.
Магнитные материалы первой группы применяются в электронных элементах, для которых нет особых требований к температурной и временной нестабильности. Определяющими параметрами данной группы материалов являются начальная магнитная проницаемость и тангенс угла магнитных потерь.
Материалы второй группы имеют малые значения относительного температурного коэффициента магнитной проницаемости в рабочем интервале температур и достаточно высокую временную стабильность начальной магнитной проницаемости. Значение магнитной индукции при поле Н = 800 А/м при нормальной (комнатной) температуре составляет 0,25-0,38 Тл.
К третьей группе относятся материалы с высоким значением начальной магнитной проницаемости на низких частотах. При этом повышенные требования к температурному коэффициенту проницаемости не предъявляются.
Для ферритовых материалов четвертой группы характерны малые значения магнитных потерь в сильных электромагнитных полях и высокое значение магнитной индукции при повышенной температуре (до 100-120°С) и подмагничивании.
Пятая группа ферритов характеризуется повышенными значениями импульсной магнитной проницаемости и температурной стабильностью магнитной проницаемости.
К шестой группе относятся ферритовые материалы, которые характеризуются начальной магнитной проницаемостью, коэффициентом амплитудной нестабильности магнитной проницаемости, коэффициентом перестройки по частоте, тангенсом угла магнитных потерь при различных индукциях, низкой начальной проницаемостью.
Особое место занимают ферритовые материалы седьмой группы. Они характеризуются повышенной добротностью как в слабых, так и в сильных электромагнитных полях, малыми линейными искажениями, низкой начальной проницаемостью.

 

Типы, свойства, применение и преимущества

Ферромагнитные материалы или вещества были изобретены французским физиком Луи Эженом Феликсом Нилом. Он родился 22 -го ноября 1904 года в Лионе и умер 17 -го ноября 2000 года в Брив-ла-Гайард. Он учился в Страсбургском университете и получил Нобелевскую премию по физике. Доступны несколько компаний по производству ферромагнитных материалов, такие как Dexter Magnetic Technologies, основанная в 1951 году в деревне Элк-Гроув, Digi Key Electronics, основанная в 1972 году в Thief River Falls, компоненты RS, основанные в 1937 году в Корби Уорингом и П.M.Sebestyen, Star Trace Private Limited, основанная в 1985 году в Тамилнаду, Shields Company Magnetics в городе Калвер, Magnum Magnetics Corporation в Мариетте, Alliance LLC, Arnold Magnetic Technologies, International Magna Products, Master Magnetics - одни из ведущих производителей магнитных материалов.


Что такое ферромагнитные материалы?

В некоторых материалах постоянные атомные магнитные моменты имеют сильную тенденцию выравниваться даже без внешнего поля. Эти материалы называются ферромагнитными материалами.Некоторыми примерами ферромагнитных материалов являются кобальт, железо, никель, гадолиний, диспрозий, пермаллой, аваруит, вайракит, магнетит и т. Д. Существует много ферромагнитных материалов, некоторые из списков ферромагнитных материалов показаны в таблице ниже.

900 7,874 г / см 3
S.NO Ферромагнитные материалы Температура Кюри Точка плавления Точка кипения Атомный номер Плотность
1. Кобальт 1388 1768K 3200K 27 8,90 г / см 3
2. Железо 1043 1811K 3134K 26
3. Никель 627 1728K 3003K 28 8,908 г / см 3
4. Неодимовый магнит 593 1297 K 3347 K 60 0,275 фунта. на кубический дюйм
5. Диоксид хрома 386 > 375 0 C 4000 0 C 24 4,89 г / см 3
6. Гадолиний 292 1585K 3273K 64 7.90 г / см 3
7. Тербий 219 1629K 3396K 65 8,23 г / см 3
8. Диспрозий 88 1680K 2840K 66 8,540 г / см 3

1). Кобальт: Кобальт был изобретен Георгом Брандтом в 1739 году. Он родился 26 июня 1964 года в Риддархиттане и умер в Стокгольме 29 апреля 1768 года.Это один из типов ферромагнитных материалов, обнаруженных в земной коре. Он представлен в периодической таблице символом CO, а его атомный номер - 27.

2). Железо: Железо - это химический элемент одного типа, который содержится в земной коре и обычно обозначается символом Fe. Цвет железа - серебристо-серый, а атомный номер в периодической таблице - 26. Первый электрический утюг был изобретен в 1882 году Генри Сили, который использовался для глажки одежды.Генри Сили родился 20 -го мая 1861 года в Нью-Йорке и умер 20 -го мая 1943 года.

3). Никель: Химический элемент никель также находится в земной коре и обозначается символом Ni. Атомный номер никеля в периодической таблице равен 28, а цвет никеля - серебристо-белый. Этот металл изобрел Аксель Фредрик Кростедт, он родился в Швеции 23 декабря 1722 года и умер 20 мая 1943 года.

4).Неодимовый магнит: Это один из видов сильных и постоянных магнитов, но он редко встречается в земной коре, а цвет неодима - серебристо-белый. Его также называют магнитом NIB или Neo или NdFeB, а формула неодимового магнита - Nd 2 Fe 14 B . Этот металл изобрел Карл Ауэр фон Вельсбах, он родился в Австрии 1 сентября 1858 г. и умер 4 августа 1929 г.

5). Диоксид хрома: Химическая формула диоксида хрома - CrO 2 , он нерастворим в воде и также называется оксидом хрома (iv).Другие названия диоксида хрома - Carolyn и magtrieve . Металлический хром открыт Луи Николя Воклен, он родился в Австрии 16 мая 1763 года и умер 14 ноября 1829 года во Франции.

6). Гадолиний: Гадолиний - это химический элемент одного типа, который обозначается символом Gd. Атомный номер гадолиния 64 в периодической таблице. Металлический гадолиний изобретен Полем-Эмилем Лекоком де Буабодраном (18 апреля 1838 г. - 28 мая 1912 г.) во Франции и Жаном Шарлем Галиссаром де Мариньяком (24 апреля 1817 г. - 15 апреля 1894 г.) в Швейцарии.

7). Тербий: Тербий также является одним из видов химического элемента, который обозначается символом Td. Он изобретен Карлом Густавом Мосандером в 1843 году и редко встречается в земной коре. Этот химический элемент изобретен Карлом Густавом Мосандером в 1843 году. Он родился 10 сентября 1797 года в Кальмаре и умер 15 октября 1858 года в графстве Стокгольм.

8). Диспрозий: Диспрозий - это один из типов ферромагнитных материалов, который был идентифицирован Полем Эмилем Лекоком де Буабодраном в 1886 году.Он родился 18 -го апреля 1838 года и умер 28 -го мая 1912 года во Франции. Атомный номер гадолиния 66 в периодической таблице.

Типы ферромагнитных материалов

Существует два типа ферромагнитных материалов: немагнитный ферромагнитный материал и намагниченный ферромагнитный материал. Классификация ферромагнитных материалов показана на рисунке ниже

Типы ферромагнитных материалов
1). Немагниченный ферромагнитный материал

В каждом немагниченном ферромагнетике атомы образуют домены внутри материала.Различные домены имеют разные направления магнитного момента. Следовательно, материал остается немагниченным. Немагниченный ферромагнетик, показанный на рисунке ниже

, немагнитный ферромагнетик
2). Намагниченный ферромагнитный материал

При приложении внешнего магнитного поля к доменам ненамагниченного ферромагнетика, домены будут вращаться и выравниваться в направлении магнитного поля из-за доменного характера ферромагнетика даже при приложении небольшого магнитного поля. вызывает большую намагниченность.Магнитное поле в таком материале намного больше, чем магнитное поле. Магнитные моменты доменов параллельны магнитному полю в ферромагнетизме, потому что эти домены также выстраиваются в одном направлении.

намагниченный ферромагнетик

Это объяснение ненамагниченного ферромагнетика и намагниченного ферромагнетика с помощью диаграмм.

Свойства ферромагнитных материалов

Свойства ферромагнетиков

  • Ферромагнитные вещества сильно притягиваются магнитным полем
  • Эти вещества проявляют постоянный магнетизм даже в отсутствие магнитного поля
  • Ферромагнитные вещества превращаются в парамагнитные когда вещества нагреваются до высокой температуры.

Причина: это связано с рандомизацией доменов при нагревании

  • Все домены выровнены в параллельном направлении

Преимущества

Преимущества ферромагнитных материалов

  • Сопротивление высокое
  • Дешево
  • Низкие потери на гистерезис
  • Электрическое сопротивление высокое,
  • Коэрцитивная сила низкая
  • Высокая проницаемость.
  • Он может работать при температуре до 300 0 C
  • Стабильность ферромагнитных материалов хорошая

Недостатки

Главный недостаток ферромагнитных материалов

  • Создает недельное магнитное поле

Применения

ферромагнитные материалы

  • Трансформаторы
  • Электромагниты
  • Запись на магнитную ленту
  • Жесткие диски
  • Генераторы
  • Телефоны
  • Громкоговорители
  • Электродвигатели
  • Жесткий диск
Список магнитных накопителей Ферромагнитные материалы и объяснение каждого материала, применения, преимуществ и недостатков.Вот вам вопрос, какой ферромагнитный материал является лучшим и почему?

Ферромагнитный материал - обзор

8.3.6.1 Остаточные напряжения первого рода

Ферромагнетики изменяют свою магнитную доменную структуру под действием механических напряжений (Kneller, 1962; Cullity, 1972). Эти микромагнитные изменения, вызванные движениями стенок Блоха и процессами вращения, являются причиной хорошо известного гистерезиса сдвига под действием остаточных напряжений (см.рис.8.21).

Рисунок 8.21. Гистерезис сдвига при растягивающих и сжимающих остаточных напряжениях.

В магнитострикционных положительных материалах растягивающие напряжения вызывают увеличение дифференциальной восприимчивости X diff , а в области коэрцитивной силы H C - H C -смещение на меньшие значения . Напряжения сжатия вызывают уменьшение X diff в области коэрцитивной силы и смещение H C в сторону больших значений магнитного поля (см.рис.8.21). Однако зависимость H C и X diff от растягивающих и сжимающих напряжений не может использоваться в качестве величины прямого неразрушающего измерения для определения остаточного напряжения, поскольку невозможно полностью измерить плотность магнитного потока B в техника настройки. Чтобы преодолеть это ограничение, необходимо использовать электромагнитные измерительные величины, чувствительные к обратимым и необратимым движениям стенки Блоха (Kneller, 1962; Seeger, 1966).

В ферромагнитных материалах магнитострикционно активные стенки Блоха (100) -90 ° и (111) -90 ° и процессы вращения напрямую взаимодействуют с напряжениями. Все измеряемые величины, которые происходят из этих процессов перемагничивания, чувствительны к напряжению, как динамическая магнитострикция (см. Главу: Ультразвуковые методы определения характеристик материалов), и к различным величинам, полученным из возрастающей проницаемости. Из-за связи 90 ° и 180 ° стенок Блоха, измерения величин, которые используют в основном взаимодействия 180 ° стенок Блоха, также чувствительны к напряжению, но косвенным образом, как магнитный шум Баркгаузена.Все методы ферромагнитного неразрушающего контроля (NDT) более или менее чувствительны к механическим напряжениям и состоянию микроструктуры испытываемого материала.

Для измерения остаточного напряжения, не зависящего от состояния микроструктуры, нам нужны как минимум две измеряемые величины, полученные с помощью электромагнитного метода (Theiner and Altpeter, 1987).

Результаты, показанные на рис. 8.22 и 8.23 ​​демонстрируют это на двух цилиндрических образцах (диаметром 8 мм) с различным состоянием микроструктуры стали с супер 13% Cr.На рис. 8.22 показаны измеряемые величины M MAX и H CM , полученные из магнитного шума Баркгаузена для более магнитно-твердого состояния (мартенсита) (твердость = 527HV30) как функция растягивающих и сжимающих напряжений. M MAX показывает зависимость напряжения в области напряжений от +200 до -200 Н / мм 2 . Измеряемая величина H CM показывает почти постоянное значение в области растяжения и сжатия.

Рисунок 8.22. Измеряемые величины M MAX и H CM как функция нагрузочных напряжений для магнитотвердого состояния микроструктуры (мартенсит).

Рисунок 8.23. Измеряемые величины M MAX и H CM как функция нагрузочных напряжений для состояния магнитомягкой микроструктуры (отожженный мартенсит).

На рис. 8.23 ​​показаны две измеряемые величины для отожженного мартенсита из более мягкого в магнитном отношении материала (250HV30).Обе измеряемые величины показывают большую динамику напряжения, чем для более твердого материала. В более магнитотвердом материале более низкая зависимость от напряжений вызвана более высокой плотностью дислокаций, которые скалывают все магнитострикционно активные стенки Блоха под углом 90 °. Измеряя H CM , можно разделить два состояния микроструктуры этой стали независимо от напряженного состояния. Этот пример показывает необходимость двух измеряемых величин для измерения напряжения независимо от состояния микроструктуры.

Для измерения напряжения, не зависящего от состояния микроструктуры, текстуры и других факторов, необходимы дополнительные электромагнитные методы, такие как дополнительная проницаемость и высшие гармоники (см. Главу: Гибридные методы определения характеристик материалов).

Для количественного измерения остаточного напряжения необходима калибровка магнитных величин измерения с помощью значений остаточного напряжения рентгеновского излучения. Причина в том, что физико-математическое описание невозможно, поскольку механизм взаимодействия между микроструктурой и измеряемыми величинами слишком сложен (Altpeter et al., 2002).

Для измерения многоосного остаточного напряжения миниатюрный электромагнитный зонд был разработан в рамках исследовательского проекта (Altpeter et al., 2009). Этот так называемый датчик вращающегося поля (рис. 8.24) был встроен в инструмент для глубокой вытяжки - плунжер. Магнитные полюсные фигуры были измерены в процессе глубокой вытяжки (см. Рис. 8.25).

Рисунок 8.24. Датчик вращающегося поля (прототип) для многоосного управления технологическим процессом в режиме онлайн.

Рисунок 8.25. Максимальная амплитуда M MAX1 , полученная из значений магнитного полюса, как функция от положения пуансона для различных сил держателя заготовки F-BH.

Форма полюсных фигур, которая характерна для остаточного напряженного состояния глубоко вытянутых листов, позволяет делать выводы о критическом напряжении нагрузки, которое может привести к разрывам.

На рис. 8.25 показана максимальная амплитуда M MAX1 , полученная из фигур магнитных полюсов, как функция от положения пуансона для различных сил F-BH держателя заготовки (Altpeter et al., 2009).

На основе этих результатов были созданы первые основы многоосевого управления технологическим процессом в режиме онлайн.

Типы, гистерезис, преимущества и применение

На протяжении многих десятилетий магнетизм был аномалией, которая привлекла внимание человечества. В любом из случаев в жизни человечества можно наверняка столкнуться с постоянными магнитами, и поэтому сегодня мы перейдем к обсуждению, чтобы узнать концепции магнетизма и что такое ферромагнетизм и ферромагнетик? Первоначально концепция магнетизма возникает из магнитного дипольного момента электрона, что означает, что электрон действует как небольшой магнит, генерирующий магнитное поле.Вихрь электронов в атомах является решающим источником генерации ферромагнетизма, даже если существует поддержка орбитального углового момента электрона. Давайте продвинемся вперед, чтобы понять подробные концепции ферромагнетизма и ферромагнетиков.

Что такое ферромагнитные материалы?

Ферромагнитные материалы - это материалы, которые проявляют сильные магнитные свойства при размещении в аналогичном направлении поля. Сначала мы познакомимся с понятием домена. Как правило, в этих материалах есть небольшая область, которая имеет особое выравнивание спинов из-за квантово-механического напряжения.Проницаемость этих материалов чрезвычайно высока и составляет почти несколько тысяч. Обратные магнитные эффекты электронного спина и орбитального движения не будут устранены в этих материалах. Соответственно, существует значительный вклад каждого атома, который помогает в развитии внутреннего магнитного поля. Благодаря этому внутреннему магнитному полю свойство магнитного поля будет увеличиваться.

намагниченность ферромагнитного материала

В области электротехники кажется вполне достаточным разделить магнитные материалы на ферромагнитные и неферромагнитные.Ферромагнитные материалы обладают свойством проницаемости больше единицы, тогда как неферромагнетики имеют проницаемость, равную единице. Ферромагнитные материалы классифицируются как

  • Мягкие материалы
  • Жесткие материалы
  • Ферриты

Мягкие ферромагнитные материалы

Эти материалы демонстрируют свойства высокой проницаемости, пониженной коэрцитивной силы, их можно легко намагничивать и размагничивать. также демонстрируют низкий гистерезис. Некоторые из них - железо, никель, алюминий, вольфрам и кобальт.Процесс легкого намагничивания и размагничивания позволяет использовать эти материалы в генераторах, телефонных приемниках, электромагнитах, трансформаторах, индукторах, реле и во многих других. Даже они используются для магнитного экранирования. Вышеуказанные свойства этих материалов также могут быть улучшены за счет надлежащего производства, нагрева и медленного цинкования, так что они приобретают повышенный уровень чистоты. Увеличенный магнитный момент, поддерживаемый при комнатной температуре, позволяет использовать мягкие ферромагнитные материалы для магнитных цепей, но тогда они являются хорошими проводниками и ухудшаются из-за вихревого тока, который развивается внутри них.

Твердые ферромагнитные материалы

Эти материалы демонстрируют свойства низкой проницаемости, увеличенной коэрцитивной силы, они настолько сложны для намагничивания и размагничивания. Некоторыми из них являются кобальтовая сталь, никель, несколько сплавов кобальта и алюминия. Они поддерживают широкий диапазон намагничивания и также поддерживают повышенный гистерезис. Их свойства позволяют реализовать их в динамиках, измерительных приборах и во многих других.

Ферриты

Это отдельная классификация ферромагнитных материалов, обладающих свойствами между ферромагнитными и неферромагнитными материалами.Они состоят из крошечных частиц ферромагнитных материалов, обладающих высокой проницаемостью, и все они связаны с поддерживающей смолой. Магнитный момент в ферритах имеет большое коммерческое значение, в то время как магнитное насыщение не так уж важно для ферромагнитных материалов. Они также делятся на мягкие и твердые ферриты.

• Мягкие ферриты

Эти материалы обладают свойствами высокого сопротивления и имеют квадратную форму гистерезиса.Удельное сопротивление находится в диапазоне почти 109 Ом-см. Таким образом, поскольку вихревые токи, возникающие из-за переменных полей, уменьшаются, и свойства, проявляемые этими материалами, позволяют использовать их на высоких частотах, таких как микроволны. Мягкие ферриты производятся путем сочетания порошкообразных оксидов, конденсации и спекания при чрезвычайно высоких температурах.

• Твердые ферриты

Ключевая группа таких ферромагнетиков состоит из MOFe2O3, где M - барий или стронций.Они имеют шестиугольную форму и имеют высокую плотность. Эти материалы используются в двигателях, генераторах и реле. Даже они используются в качестве уплотнений, защелок, дверных доводчиков и в производстве различных игрушек.

Намагничивание ферромагнитных материалов

Эти материалы обладают отличительными магнитными моментами, которые ориентированы в параллельных направлениях, тогда как другие виды магнитных материалов имеют момент только в одном направлении. Северные полюса будут легко притягивать полюса других направлений, тогда как одни и те же полюса отталкивают друг друга (с севера на север и с юга на юг).Они с похожими и противоположными моментами отталкивают другого.

намагниченность ферромагнитного материала

Список ферромагнитных материалов

Ниже приведен список ферромагнитных материалов

Материал

Температура Кюри Магнитный момент

Природа и применение

Fe

1043

2.22

Нанопроволоки, сплавы с памятью формы, производство и распределение энергии

Co

1388 1,72

Углеродные нанотрубки и электроника

Ni

627

0,606

Научный термин для внезапного охлаждения

Gd

292

7,63

Поглотитель нейтронов в ядерных реакторах

Dy

88

10.2

Высокая магнитная восприимчивость и легкая поляризация

CrO 2

386 2,03 Эмульсии магнитной ленты
MnAs 318

3,4

Редко используемые ферромагнитные материалы

MnBi

630

+ 3,6 Mn
–0,15 Bi

EuO

69 6.8

NiO / Fe

858

2,4

Y 3 Fe 5 O 12 560

5,0

в ферромагнитных материалах

Когда происходит удаление внешнего магнитного поля, эти материалы не будут размагничиваться в целом. Чтобы позволить им полностью потерять магнетизм, необходимо приложить обратное магнитное поле в противоположном направлении.Таким образом, эта процедура ферромагнитных материалов, удерживающих намагничивание даже при удалении внешнего поля, называется гистерезисом. И намагниченность материала, оцениваемая по плотности магнитного потока (B) v / s, приложенное внешнее магнитное поле (H) приведет к образованию петли, называемой петлей гистерезиса. На рисунке четко изображена эта процедура.

гистерезис ферромагнитного материала

Свойства

Некоторые из свойств, проявляемых ферромагнитными материалами, описаны ниже:

  • Атомы, представляющие собой ферромагнитные вещества, обладают постоянным дипольным моментом и существуют в доменах.

  • При приложении внешнего магнитного поля атомные диполи в этих веществах выстраиваются в одном направлении.

  • Обладает большим магнитным дипольным моментом и находится в ориентации намагничивающего поля. Эти материалы имеют высокую интенсивность намагничивания (М) и положительные. M находится в линейном положении с H (намагничивающее поле). Таким образом, потому что насыщенность полностью основана на материальной природе. Они также имеют высокую и положительную магнитную восприимчивость (Xm), где Xm определяется как M / H, M соответствует интенсивности намагничивания, а H соответствует напряженности приложенного магнитного поля.

  • Ферромагнитные материалы также работают в условиях высокой и положительной плотности магнитного потока. Внутри этих материалов так сконцентрированы силовые линии магнитного поля. Плотность магнитного потока (B) определяется как µ0 (H + M), где µ0 - магнитная проницаемость свободного пространства, H - напряженность приложенного магнитного поля, а M - интенсивность намагничивания.

  • Эти материалы также обладают высокой относительной проницаемостью, и она отличается линейно от поля намагничивания.Он также имеет склонность привлекать большее количество магнитных силовых линий, а относительная проницаемость равна единице.

  • Эти материалы имеют сильную тенденцию привлекаться в поле. Таким образом, в неоднородном поле они будут оставаться на полюсах, где существует сильное магнитное поле. Разжижение этих материалов позволяет им терять ферромагнитные свойства из-за повышения температуры.

Приложения

Есть два важных технологических применения ферромагнитных материалов.Они

  • Используются в качестве умножителей потока, развивающих ядра электромагнитных машин
  • Сохранение данных (магнитная запись) или энергии (магниты).

Приложения

  • Используются для энергонезависимого хранения данных на жестких дисках, лентах и ​​многих других.
  • Используется для обработки информации благодаря взаимодействию электрического света и энергии с магнитным воздействием.
  • Используется в таком оборудовании, как преобразователи, микрофоны и конденсаторы.
  • Реализуется в приложениях, где требуется большая константа пьезоэлектрической связи.
  • Используется в таких устройствах, как генераторы, телефон, громкоговорители, электродвигатели и магнитные полосы на обратной стороне дебетовых и кредитных карт.

По сравнению с другими типами магнитов, ферромагнетизм является наиболее доминирующим. Эти материалы находят применение в самых разных областях. Их преимущества, свойства и возможности применения позволили им получить более широкую известность.Обсудите подробнее стратегии функционирования ферромагнитных материалов и связанные с ними концепции?

FAQ's

1. Что называется температурой Кюри для ферромагнитных материалов?

Это температура, при которой материалы теряют свои ферромагнитные свойства и могут сохраняться за счет внешнего магнетизма.

2. Что происходит, когда ферромагнитные материалы нагреваются при высоких температурах?

Они полностью потеряют свои магнитные свойства и станут парамагнитными по своей природе, и это происходит из-за несовпадения электронов.

3. Как размагнитить магнит?

Существуют различные методы размагничивания магнита. Они имеют

  • Нагрев выше допустимых температур
  • Разместите магнит в обратных полях
  • Ударьте по магнитам
  • Размещение одних только магнитов на более длительные периоды
4. Что в гистерезисе ферромагнетизма называется удерживающей способностью и коэрцитивной силой?

Сохраняемость соответствует способности объекта восстанавливать свою магнитную природу при прекращении действия магнитной силы.Коэрцитивность соответствует напряженности магнитного поля, которое необходимо для уменьшения магнитной природы до нуля.

Ферромагнетизм

Железо, никель, кобальт и некоторые редкоземельные элементы (гадолиний, диспрозий) проявляют уникальное магнитное поведение, которое называется ферромагнетизмом, потому что железо (железо на латыни) является наиболее распространенным и ярким примером. Самарий и неодим в сплавах с кобальтом использовались для изготовления очень сильных редкоземельных магнитов.

Ферромагнетики демонстрируют явление дальнего упорядочения на атомном уровне, которое заставляет неспаренные электронные спины выстраиваться параллельно друг другу в области, называемой доменом.Внутри домена магнитное поле является интенсивным, но в массивном образце материал обычно не намагничивается, потому что многие домены сами по себе будут ориентированы случайным образом относительно друг друга. Ферромагнетизм проявляется в том, что небольшое внешнее магнитное поле, например, от соленоида, может заставить магнитные домены выровняться друг с другом, и материал, как говорят, намагничивается. В этом случае управляющее магнитное поле будет увеличиваться во много раз, что обычно выражается как относительная проницаемость для материала.Есть много практических применений ферромагнитных материалов, таких как электромагнит.

Ферромагнетики будут в некоторой степени оставаться намагниченными после воздействия внешнего магнитного поля. Эта тенденция «вспоминать свою магнитную историю» называется гистерезисом. Доля намагниченности насыщения, которая сохраняется при удалении управляющего поля, называется остаточной намагниченностью материала и является важным фактором в постоянных магнитах.

Все ферромагнетики имеют максимальную температуру, при которой ферромагнитные свойства исчезают в результате теплового перемешивания.Эта температура называется температурой Кюри.

Ферромагнетики механически реагируют на приложенное магнитное поле, слегка изменяя длину в направлении приложенного поля. Это свойство, называемое магнитострикцией, приводит к знакомому гудению трансформаторов, поскольку они механически реагируют на переменное напряжение 60 Гц.

Ферромагнетизм - Engineering LibreTexts

Магнетизм - это явление, которое веками пленило человечество.Существует пять различных типов магнетизма: диамагнетизм, парамагнетизм, ферромагнетизм, антиферромагнетизм и ферримагнетизм. Средний человек вспоминает, что ферромагнетизм является наиболее распространенным явлением. Это потому, что большинство людей когда-нибудь сталкивались с постоянными магнитами, и они сделаны из ферромагнитного материала. Это действительно похоже на парамагнитный материал, но с одним важным отличием, которое их разделяет.

Парамагнетизм не имеет чистого магнитного поля, потому что спины электронов направлены в разные стороны.Это означает, что когда рядом с парамагнитным материалом помещается сильный магнит с положительным или отрицательным притяжением, частичное выравнивание спинов приведет к слабому притяжению. Где, как в ферромагнетизме, все спины электронов направлены в одном направлении. Это то, что заставляет постоянные магниты притягиваться через противоположные полюса, с юга на север и наоборот, а также отталкиваться, когда одни и те же полюса обращены друг к другу.

Использование ферромагнитных материалов

Наиболее распространенными ферромагнитными материалами являются кобальт, железо, никель, а также магнитный камень, намагниченный естественным образом, и соединения других редкоземельных металлов.Обычное использование ферромагнитных материалов, влияющих на нашу повседневную жизнь, - это магнитное хранилище в форме данных. В противном случае считается энергонезависимым хранилищем, поскольку данные не могут быть потеряны, когда устройство не подключено к питанию. Преимущество этого метода хранения заключается в том, что это одна из самых дешевых форм хранения данных, а также возможность повторного использования. Все это возможно из-за гистерезиса.

Когда ферромагнитные материалы намагничиваются в определенном направлении, они теряют способность терять свою намагниченность (гистерезис).Это означает, что он не сможет вернуться в исходное состояние без какого-либо намагничивания. Но может быть применено другое противоположное магнитное поле, которое приведет к созданию петли гистерезиса, как показано на рисунке 1. Это, в конечном счете, уникальный эффект, который позволяет этим материалам сохранять данные после того, как намагничивающее поле падает до нуля.

Рисунок \ (\ PageIndex {1} \):: Петля гистерезиса для ферромагнитного материала, изображает уменьшение магнитного поля (H), а затем увеличение, когда оно возвращается к исходной начальной точке.

Намагничивание ферромагнитных материалов

Ферромагнитные материалы содержат уникальные магнитные моменты, которые выровнены параллельно друг другу в одном направлении (рис. 2). Все другие типы намагничивания имеют моменты более чем в одном направлении. Ферромагнетизм - единственная намагниченность с одинаковыми моментами направления. Приводя к притяжению или отталкиванию с другими магнитными материалами. Северные полюса притягивают южные полюса, в то время как одни и те же полюса отталкивают друг друга (с севера на север, с юга на юг).У них будут равные противоположные моменты, отталкивающие друг друга. На рисунке 2 ниже показаны магнитные моменты в ферромагнитных материалах. Они имеют одинаковую величину и упорядочены без магнитного поля.

Рисунок \ (\ PageIndex {2} \):: Магнитные моменты в ферромагнитных материалах

Классическое объяснение

Теория Вейсса (Hw) описывает, как молекулярное поле Вейсса пропорционально намагниченности ферромагнитного материала, как показано в уравнении ниже.Где B представляет собой константу пропорциональности.

$$ \ H_ \ omega = \ beta M \ label {1} ​​$$

Уравнение \ ref {2} ниже описывает полное магнитное поле с \ (H \) в качестве внешнего поля.

\ [\ H_ {tot} = H + H_ \ omega = H + \ beta M \ label {2} \]

Из-за сходства с парамагнетизмом приведенное ниже уравнение может быть решено и заменено на \ (H \) в функции Ланжевена.

\ [\ a = \ mu_o m_ \ beta \ dfrac {H_ (tot)} {k T} \ label {3} \]

\ [\ dfrac {M} {M_S} = L (\ dfrac {\ mu_o m_ \ beta (H + \ beta M)} {kT}) \ label {4} \]

\ [\ dfrac {Nm_b} {v} = M_S \ label {5} \]

Нет внутреннего поля выше температуры Кюри \ (T_c \), решение уравнения \ ref {1} дает BM, равное 0.2} {v3k (T-T_c)} = X_F \ label {6} \]

Квантово-механическое объяснение

Квантово-механическое явление - более точный способ описания ферромагнетизма, поскольку разрешены только определенные углы магнитного движения. С классической точки зрения разрешены все углы, поскольку теория Ланжевена делает этот метод крайне маловероятным. Следовательно, приведенный ниже нормированный степенной закон с гаммой 0,5 является точным представлением явления ферромагнетизма.

\ [\ dfrac {M_S (T)} {M_S (T_o)} = \ dfrac {T_c - T} {T_c} \ label {7} \]

Температурная зависимость

Ниже температуры Кюри спины ферромагнитного материала имеют одинаковую величину и хорошо упорядочены.Когда достигается температура Кюри, это означает, что моменты становятся случайно выровненными, а это означает, что предел спиновой связи был превышен, что приводит к разрыву связи, заставляя материал действовать парамагнитно. Глядя на рисунок 3 ниже, он показывает, как моменты выравниваются ниже температуры Кюри (в ферромагнетике), но затем выше температуры Карри он становится парамагнитным. За счет образования случайно расположенных спинов.

Рисунок \ (\ PageIndex {3} \):: кривая представляет зависимость намагниченности от абсолютной температуры ферромагнитных материалов.Ниже температуры Кюри (Т Гури) намагниченность является ферромагнитной с выровненными моментами, а выше - парамагнитной с невыровненными моментами.

вопросов

  1. В чем разница между ферромагнетизмом и парамагнетизмом?
  2. Объясните, почему и как ферромагнетизм ведет себя выше и ниже Кюри?
  3. Каково общее применение материалов ферромагнетизма и почему / как оно работает?

Ответы

  1. Ферромагнетики имеют однородные электронные спины, направленные в одном направлении, в то время как парамагнетики имеют спины во всех направлениях.Это заставляет ферромагнетики иметь сильные силы притяжения или отталкивания, когда они вводятся в постоянный магнит. С другой стороны, ферромагнетики имеют слабое притяжение к сильным постоянным магнитам.
  2. Моменты выравниваются ниже температуры Кюри (в ферромагнетике), но затем выше температуры Карри он становится парамагнитным. Это ожидается, потому что ниже температуры Кюри спины имеют одинаковую величину с порядком. Но затем прохождение температуры Кюри означает, что моменты будут выровнены случайным образом, что приведет к разрыву связи, что сделает материал парамагнитным.
  3. Обычно ферромагнитные материалы используются в системах хранения данных. Это потому, что это дешевле, чем другие методы, и со временем диски можно стирать и использовать снова. Это возможно потому, что после намагничивания ферромагнитные материалы теряют способность к размагничиванию. В результате продолжается парамагнитное намагничивание с внешним источником тока или без него.

Список литературы

  1. С. О.Kasap, Принципы электронных материалов и устройств . Макгроу-Хилл, 2006
  2. Р. Э. Хаммель, Электронные свойства материалов . Springer New York, 2013. стр. 347-371
  3. Ферромагнетизм . N.p., n.d. Интернет. 07 декабря 2015.
  4. Британская энциклопедия онлайн . Британская энциклопедия, без даты. Интернет. 06 декабря 2015.

Авторы и авторство

  • Хосе Андраде, Материаловедение и инженерия - Калифорнийский университет, Дэвис

применений ферромагнитных материалов - исследование QS

Ферромагнитные материалы обычно используются для энергонезависимого хранения информации на лентах, жестких дисках и т. Д.Они используются для двух основных технологических применений: (i) как умножители потока, образующие ядро ​​электромагнитных машин, и (ii) как накопители энергии (магниты) или информации (магнитная запись). Они также используются для обработки информации из-за взаимодействия электрического тока и света с магнитным порядком. Железо, никель и кобальт являются примерами ферромагнитных материалов.

Использование ферромагнитных материалов

(i) Постоянные магниты

Идеальный материал для изготовления постоянных магнитов должен обладать высокой удерживающей способностью (остаточным магнетизмом) и высокой коэрцитивной силой, чтобы намагничивание сохранялось в течение более длительного времени.Примерами таких веществ являются сталь и альнико (сплав Al, Ni и Co).

(ii) Электромагниты

Материал, используемый для изготовления электромагнита, должен подвергаться циклическим изменениям. У них есть неспаренные электроны, поэтому их атомы обладают чистым магнитным моментом. Они получают свои сильные магнитные свойства из-за наличия магнитных доменов. Следовательно. идеальный материал для изготовления электромагнита должен иметь наименьшие гистерезисные потери. Кроме того, материал - должен достигать высоких значений магнитной индукции B при малых значениях намагничивающего поля H.Мягкое железо является предпочтительным для изготовления электромагнитов, так как оно имеет тонкую петлю гистерезиса (рисунок) [небольшая площадь, следовательно, меньшие потери на гистерезис] и низкую удерживающую способность. Он достигает высоких значений B при низких значениях намагничивающего поля H.

(iii) Сердечник трансформатора

Материал, используемый для изготовления сердечника и дросселя трансформатора, очень быстро подвергается циклическим изменениям. Кроме того, материал должен иметь большое значение магнитной индукции B. Следовательно, предпочтительным является мягкое железо с тонкой и высокой петлей гистерезиса.Некоторые сплавы с низкими гистерезисными потерями - это радиоактивные металлы, перн-сплав и муметалл.

(iv) Магнитные ленты и память

Намагничивание магнита зависит не только от намагничивающего поля, но и от цикла намагничивания, которому он подвергся. Таким образом, величина намагничивания образца является записью циклов намагничивания, которым он подвергся. Следовательно, такая система может выступать в качестве устройства для хранения памяти.

Ферромагнитные материалы используются для покрытия магнитных лент в кассетном плеере и для создания накопителя памяти в современном компьютере.

Примеры: ферриты (Fe, Fe 2 O, MnFe 2 O 4 и т. Д.).

Ферромагнитные материалы широко применяются в таких устройствах, как электродвигатели и генераторы, трансформаторы, телефоны, громкоговорители, устройства магнитной записи, такие как кассеты, дискеты для компьютеров и магнитная полоса на обратной стороне кредитных карт.

Материал ферромагнетизма - примеры, свойства и применение

Что такое ферромагнетизм?

Ферромагнетизм или термин «ферромагнетизм» - это механизм, посредством которого определенные материалы образуют постоянные магниты.С помощью сильного электростатического поля эти материалы могут быть постоянно намагничены. Ионы ферромагнитных металлов группируются в небольшие области, называемые твердотельными доменами. Таким образом, каждый домен действует как крошечный магнит. Домены ферромагнитного немагниченного элемента ориентированы случайным образом, так что их магнитные моменты компенсируются. Когда этот материал помещается в магнитное поле, все домены ориентируются в направлении магнитного поля, создавая мощный магнитный эффект. Кроме того, когда магнитное поле снимается и ферромагнитный материал становится постоянным магнитом, этот порядок доменов остается прежним.Существует много различных форм магнетизма, но ферромагнетизм является самой сильной формой и ответственен за широкое распространение магнетизма в магнитах, испытываемых в повседневной жизни.

[Изображение будет загружено в ближайшее время]

Примеры ферромагнитных материалов

  1. Co (кобальт)

  2. Fe (железо)

  3. MnBi

  4. Ni (никель)

    N (никель)

  5. MnSb

  6. CrO2 (диоксид хрома)

  7. MnAs

Свойства ферромагнитных материалов

  • Когда стержень из этого материала быстро помещается в магнитное поле, он полевая трасса.

  • Эти вещества проявляют постоянный магнетизм даже в отсутствие магнитного поля

  • Когда вещества нагреваются при высоких температурах, ферромагнитные вещества превращаются в парамагнетики

  • Проницаемость ферромагнитного материала превышает 1.

  • Механизм ферромагнетизма отсутствует в жидкостях и газах.

  • Интенсивность намагничивания (M), относительная проницаемость (μr), магнитная восприимчивость (χm) и плотность магнитного потока (B) этого материала всегда будут положительными.

m = \ [\ frac {M} {H} \]

µr = 1 + Χm

B = µ0 (H + M)

µ0 → Магнитная диэлектрическая проницаемость свободного пространства.

H → Напряженность приложенного магнитного поля.

Петля гистерезиса

Петля гистерезиса формируется путем изменения силы намагничивания при одновременном измерении магнитного потока материала. Когда ферромагнитный материал намагничен в одном направлении, снятие наложенного намагничивающего поля не приведет к релаксации обратно к нулевой намагниченности.Поле в противоположном направлении должно сбросить его до нуля. Когда к объекту прикладывают переменное магнитное поле, его намагниченность можно проследить по петле, называемой петлей гистерезиса.

Отсутствие повторного отслеживания кривой намагничивания - это свойство, называемое гистерезисом, которое связано с наличием магнитных доменов в материале. При переориентации магнитных доменов требуется некоторая энергия, чтобы повернуть их обратно.

[Изображение будет загружено в ближайшее время]

Это свойство полезно в качестве магнитной «памяти» ферромагнитных материалов.Аспекты магнитной памяти железа делают их полезными для записи аудиозаписей и для магнитного хранения данных на дисках компьютеров.

Температура Кюри

Есть температура, при которой ферромагнитный материал становится парамагнитным. Эта конкретная температура называется температурой Кюри. То есть, если мы поднимемся выше температуры Кюри, это приведет к тому, что ферромагнитные материалы потеряют свои магнитные свойства. Температура Кюри представлена ​​TC. Тепловая энергия нарушает магнитное упорядочение диполей в ферромагнитном материале.

Ethermal = kBT

Закон Кюри задается формулой X = \ [\ frac {C} {T} \]

kB → постоянная Больцмана

T → Температура (Кельвин)

C → Константа Кюри

Примеры,

  • Ni - 627 K

  • Gd - 293 K

  • Co - 1388 K

Что такое антиферромагнетизм?

Антиферромагнитные материалы слабо намагничиваются в направлении поля в присутствии сильного магнитного поля.Это свойство материалов называется антиферромагнетизмом, а антиферромагнитные материалы - материалами, проявляющими это свойство. В антиферромагнитных материалах магнитные моменты ориентированы в противоположных направлениях и равны по величине. Таким образом, когда антиферромагнитный материал не намагничен, результирующая намагниченность равна нулю из-за точной компенсации магнитных моментов соседних атомов при добавлении в линию.

Применение ферромагнитных материалов

Ферромагнитные материалы находят множество применений в электрическом, магнитном накопительном и электромеханическом оборудовании.

  • Постоянные магниты: Ферромагнитные материалы используются для изготовления постоянных магнитов, потому что их намагничивание сохраняется дольше.

  • Сердечник трансформатора: Материал, используемый для изготовления сердечника трансформатора и дросселя, подвержен очень быстрым циклическим изменениям, и этот материал также должен иметь сильную магнитную индукцию. Для этой цели широко используются ферромагнитные материалы.

  • Магнитные ленты и память: намагничивание магнита зависит не только от поля намагничивания, но и от цикла намагничивания, которому он подвергся.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск