Прямой угол сколько это градусов: Сколько градусов прямой угол?

Содержание

Развернутый угол. Прямой, тупой, острый и развернутый угол

С понятием угол учащиеся знакомятся еще в начальной школе. Но как геометрическую фигуру, имеющую определенные свойства, начинают изучать его с 7-го класса в геометрии. Кажется, довольно простая фигура , что о ней можно сказать. Но, приобретая новые знания, школьники всё больше понимают, что можно узнать о ней довольно интересные факты.

Вконтакте

Когда изучаются

Школьный курс геометрии разделён на два раздела: планиметрию и стереометрию. В каждом из них немалое внимание уделяется углам :

  • В планиметрии дается их основное понятие, происходит знакомство с их видами по величине. Более подробно изучаются свойства каждого вида треугольников. Появляются новые определения для учащихся – это геометрические фигуры, образованные при пересечении двух прямых между собой и пересечении нескольких прямых секущей.
  • В стереометрии изучаются пространственные углы – двугранные и трехгранные.

Внимание! В данной статье рассматриваются все виды и свойства углов именно в планиметрии.

Определение и измерение

Приступая к изучению, первоначально определяют, что такое угол в планиметрии.

Если на плоскости взять определённую точку и провести от нее два произвольных луча, то получим геометрическую фигуру – угол, состоящую из следующих элементов:

  • вершина – та точка, из которой и проводились лучи, обозначается заглавной буквой латинского алфавита;
  • стороны – полупрямые, проведенные из вершины.

Все элементы, образующие рассматриваемую нами фигуру, разбивают плоскость на две части :

  • внутренняя — в планиметрии не превышает 180 градусов;
  • внешняя.

Принцип измерения углов в планиметрии объясняют на интуитивной основе. Для начала знакомят учащихся с понятием развернутый угол.

Важно! Угол называется развернутым, если полупрямые, выходящие из его вершины, образуют прямую линию.

Неразвернутый угол это все остальные случаи.

Если его разделить на 180 равных частей, то принято считать меру одной части равной 10. В таком случае говорят, что измерение производится в градусах, а градусная мера такой фигуры составляет 180 градусов.

Основные виды

Виды углов подразделяются по таким критериям, как градусная мера, характер их образования и представленные ниже категории.

По величине

Учитывая величину, углы разделяют на:

  • развернутый;
  • прямой;
  • тупой;
  • острый.

Какой угол называется развернутым, было представлено выше. Определимся с понятием прямого.

Его можно получить при делении развернутого на две равные части. В этом случае легко ответить на вопрос: прямой угол, сколько градусов составляет?

180 градусов развернутого делим на 2 и получаем, что прямой угол равен 90 градусам

. Это замечательная фигура, так как многие факты в геометрии связаны именно с ней.

Имеет она и свои особенности в обозначении. Чтобы на рисунке показать прямой угол, его обозначают не дугой, а квадратиком.

Углы, которые получаются при делении произвольным лучом прямого, называют острыми. По логике вещей следует, что острый угол меньше прямого, но его мера отлична от 0 градусов. То есть, он имеет величину от 0 до 90 градусов.

Тупой угол больше прямого, но меньше развернутого. Его градусная мера варьируется в интервале от 90 до 180 градусов.

Данный элемент можно разбить на разные виды рассматриваемых фигур, исключая развёрнутый.

Вне зависимости от того, как разбивается неразвернутый угол, всегда пользуются базовой аксиомой планиметрии — «основное свойство измерения».

При разделении угла одним лучом

или несколькими, градусная мера данной фигуры равна сумме мер углов, на которые она разбита.

На уровне 7-го класса виды углов по их величине на этом заканчиваются. Но для повышения эрудиции можно добавить, что существуют и другие разновидности, которые обладают градусной мерой больше 180 градусов. Их называют выпуклыми.

Фигуры при пересечении прямых

Следующие типы углов, с которыми знакомятся учащиеся – элементы, образованные при пересечении двух прямых. Фигуры, которые размещаются друг напротив друга, называют вертикальными. Их отличительное свойство – они равны.

Элементы, которые прилегают к одной и той же прямой, называют смежными. Теорема, отображающая их свойство, говорит о том, что смежные углы в сумме дают 180 градусов .

Элементы в треугольнике

Если рассматривать фигуру как элемент в треугольнике, то углы подразделяют на внутренний и внешний. Треугольник ограничен тремя отрезками и состоит из трёх вершин. Углы, расположенные внутри треугольника при каждой вершине,

называют внутренними .

Если взять любой внутренний элемент при любой вершине и продлить любую сторону, то угол, который образовался и является смежным с внутренним, называется внешним. Эта пара элементов имеет следующее свойство: их сумма равна 180 градусам.

Пересечение двух прямых секущей

Пересечение прямых

При пересечении двух прямых секущей также образуются углы , которые принято распределять по парам. Каждая пара элементов имеет свое название. Выглядит это следующим образом:

  • внутренние накрест лежащие:∟4 и ∟6, ∟3 и ∟5;
  • внутренние односторонние: ∟4 и ∟5, ∟3 и ∟6;
  • соответствующие: ∟1 и ∟5, ∟2 и ∟6, ∟4 и ∟8, ∟3 и ∟7.

В том случае, когда секущая пересекает две

В этой статье будет рассматриваться одна из основных геометрических фигур — угол. После общего введения в это понятие мы уделим основное внимание отдельному виду такой фигуры. Развернутый угол — важное понятие геометрии, которое и будет основной темой этой статьи.

Введение в понятие геометрического угла

В геометрии существует ряд объектов, которые составляют основу всей науки. Угол как раз относиться к ним и определяется с помощью понятия луча, поэтому начнем именно с него.

Также перед тем, как приступать к определению самого угла, нужно вспомнить о нескольких не менее важных объектах в геометрии — это точка, прямая на плоскости и собственно сама плоскость. Прямой называют самую простую геометрическую фигуру, у которой нет ни начала, ни конца. Плоскостью — поверхность, которая имеет два измерения. Ну и луч (или же полупрямая) в геометрии — это часть прямой, у которой есть начало, но нет конца.

Используя данные понятия, можем составить утверждение, что углом является геометрическая фигура, которая полностью лежит в некоторой плоскости и состоит из двух несовпадающих лучей с общим началом. Такие лучи называются сторонами угла, а общее начало сторон — это его вершина.

Виды углов и геометрии

Мы знаем о том, что углы могут быть совсем разными. А потому немного ниже будет приведена небольшая классификация, которая поможет лучше разобраться в видах углов и их главных особенностях. Итак, существует несколько видов углов в геометрии:

  1. Прямой угол. Он характеризируется величиной в 90 градусов, а значит, его стороны всегда перпендикулярны между собой.
  2. Острый угол. К таким углам относятся все их представители, имеющие размер меньше 90 градусов.
  3. Тупой угол. Здесь же могут быть все углы с величиной от 90 до 180 градусов.
  4. Развернутый угол. Имеет размер строго 180 градусов и внешне его стороны составляют одну прямую.

Понятие развернутого угла

Теперь давайте рассмотрим развернутый угол более подробно. Это тот случай, когда обе стороны лежат на одной прямой, что можно четко увидеть на рисунке немного ниже. Значит, мы можем с уверенностью сказать, что у развернутого угла одна из его сторон по сути есть продолжением другой.

Стоит запомнить тот факт, что такой угол всегда можно разделить с помощью луча, который выходит из его вершины. В результате мы получим два угла, которые в геометрии называются смежными.

Также развернутый угол имеет несколько особенностей. Для того, чтобы рассказать о первой из них, нужно вспомнить понятие «биссектриса угла». Напомним, что это луч, который делит любой угол строго пополам. Что касается развернутого угла, то его биссектриса разделяет его таким образом, что образуется два прямых угла по 90 градусов. Это очень легко просчитать математически: 180˚ (градус развернутого угла) : 2 = 90˚.

Если же разделять развернутый угол совсем произвольным лучом, то в результате мы всегда получаем два угла, один из которых будет острым, а другой — тупым.

Свойства развернутых углов

Будет удобно рассматривать этот угол, собрав воедино все его главные свойства, что мы и сделали в данном списке:

  1. Стороны развернутого угла антипараллельны и составляют прямую.
  2. Величина развернутого угла всегда составляет 180˚.
  3. Два смежных угла вместе всегда составляют развернутый угол.
  4. Полный угол, который составляет 360˚, состоит из двух развернутых и равен их суме.
  5. Половина развернутого угла — это прямой угол.

Итак, зная все эти характеристики данного вида углов, мы можем использовать их для решения ряда геометрических задач.

Задачи с развернутыми углами

Для того, чтобы понять, усвоили ли вы понятие развернутого угла, попытайтесь ответить на несколько следующих вопросов.

  1. Чему равен развернутый угол, если его стороны составляют вертикальную прямую?
  2. Будут ли два угла смежными, если величина первого 72˚, а другого — 118˚?
  3. Если полный угол состоит из двух развернутых, то сколько в нем прямых углов?
  4. Развернутый угол разделили лучом на два таких угла, что их градусные меры относятся как 1:4. Вычислите полученные углы.

Решения и ответы:

  1. Как бы ни был расположен развернутый угол, он всегда по определению равен 180˚.
  2. Смежные углы имеют одну общую сторону. Поэтому, чтобы вычислить размер угла, который они составляю вместе, нужно просто прибавить значение их градусных мер. Значит, 72 +118 = 190. Но по определению развернутый угол составляет 180˚, а значит, два данных угла не могут быть смежными.
  3. Развернутый угол вмещает два прямых угла. А так как в полном имеется два развернутых, значит, прямых в нем будет 4.
  4. Если мы назовем искомые углы а и b, то пусть х — это коэффициент пропорциональности для них, а это значит, что а=х, и соответственно b=4х. Развернутый угол в градусах равен 180˚. И согласно своим свойствам, что градусная мера угла всегда равна сумме градусных мер тех углов, на которые он разбивается любым произвольным лучом, что проходит между его сторонами, можем сделать вывод, что х + 4х = 180˚, а значит, 5х = 180˚. Отсюда находим: х=а=36˚ и b = 4х = 144˚. Ответ: 36˚ и 144˚.

Если у вас получилось ответить на все эти вопросы без подсказок и не подглядывая в ответы, значит вы готовы переходить к следующему уроку по геометрии.

Угловая мера

Угол в измеряют в градусной мере (градус, минута, секунда), в оборотах — отношение длины дуги s к длине окружности L , в радианах — отношение длины дуги s к радиусу r ; исторически применялась также градовая мера измерения углов, в настоящее время она почти нигде не используется.

1 оборот = 2π радианам = 360° = 400 градам .

В морской терминологии углы обозначаются румбами .

Типы углов

Смежные углы — острый (a) и тупой (b). Развёрнутый угол (c)

Кроме этого, рассматривается угол между гладкими кривыми в точке касания: по определению, его величина равна величине угла между касательными к кривым.

Wikimedia Foundation . 2010 .

Смотреть что такое «Полный угол» в других словарях:

    Неузаконенная внесистемная ед. плоского угла. 1 П. у.= 2ПИ рад 6.283 185 рад (см. Радиан) … Большой энциклопедический политехнический словарь

    Угол вертикальной наводки ствола орудия при стрельбе с учетом углов качки корабля. Определяется приборами центрального артиллерийского поста. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

    Угол горизонтальной наводки ствола орудия при стрельбе с учетом углов качки корабля. Определяется ߑؐѐޑАܐؠцентрального артиллерийского поста. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

    полный механический угол поворота подвижной системы переменного резистора — полный механический угол поворота Полный угол поворота подвижной системы переменного резистора от упора до упора. Примечание Для резисторов, не имеющих упоров, полный механический угол равен максимальному углу между двумя положениями подвижной… … Справочник технического переводчика

    Полный механический угол поворота подвижной системы переменного резистора — 52. Полный механический угол поворота подвижной системы переменного резистора Полный механический угол поворота D. Mechanischer Drehwinkel E. Total mechanical rotation F. Course mécanique totale Полный угол поворота подвижной системы переменного… … Словарь-справочник терминов нормативно-технической документации

    УГОЛ — (1) атаки угол между направлением воздушного потока, набегающего на крыло самолёта, и хордой сечения крыла. От этого угла зависит значение подъёмной силы. Угол, при котором подъёмная сила максимальна, называется критическим углом атаки. У… … Большая политехническая энциклопедия

    УГОЛ, мера наклона между двумя прямыми линиями или плоскостями, а также величины вращательного движения. Полный круг делится на 360° (градусов) иди на 2p радиан. Прямой угол составляет 90° или p/2 радиан. Один градус подразделяется на 60 (минут) … Научно-технический энциклопедический словарь

    Элементы: Drop прыжок с высоты, выполняется с места или из позиции cat leap. Амортизировать падение можно только ногами, или ногами и руками (ну или одной рукой). Spring прыжок через какое либо препятствие, не касаясь его. Например, перелёт через … Википедия

    Идти в полную. Жарг. угол. Признаваться в совершении преступления. Балдаев 1, 169. Два полных, третий не целый. Новг. Ирон. О небольшом количестве людей где л. НОС 2, 76 …

    Жарг. угол. Одобр. Всё в порядке, дела идут хорошо. Б., 159; Быков, 202. /i> Вероятно, из идиш или иврита, где слово является оценкой высшего качества. Елистратов 1994, 537 … Большой словарь русских поговорок

Что такое угол?

Углом называют фигуру, образованную двумя лучами, выходящими из одной точки (рис. 160).
Лучи, образующие угол , называют сторонами угла, а точку, из которой они выходят, — вершиной угла.
На рисунке 160 сторонами угла являются лучи ОА и ОБ, а его вершиной — точка О. Этот угол обозначают так: АОВ.

При записи угла в середине пишут букву, обозначающую его вершину. Угол можно обозначить и одной буквой — названием его вершины.

Например, вместо «угол АОВ» пишут короче: «угол О».

Вместо слова «угол» пишут знак .

Например, AОВ, O.

На рисунке 161 точки С и D лежат внутри угла АОВ, точки X и У лежат вне этого угла, а точки М и Н — на сторонах угла.

Как и все геометрические фигуры, углы сравниваются с помощью наложения.

Если один угол можно наложить на другой так, что они совпадут, то эти углы равны.

Например, на рисунке 162 ABC = MNK.

Из вершины угла СОК (рис. 163) проведен луч ОР. Он разбивает угол СОК на два угла — СОР и РОК. Каждый из этих углов меньше угла СОК.

Пишут: COP

Прямой и развернутый угол

Два дополнительных друг другу луча образуют развернутый угол. Стороны этого угла вместе составляют прямую линию, на которой лежит вершина развернутого угла (рис. 164).

Часовая и минутная стрелки часов образуют в 6 ч развернутый угол (рис. 165).

Согнем два раза пополам лист бумаги, а потом развернем его (рис. 166).

Линии сгиба образуют 4 равных угла. Каждый из этих углов равен половине развернутого угла. Такие углы называют прямыми.

Прямым углом называют половину развернутого угла.

Чертежный треугольник



Для построения прямого угла пользуются чертежным треугольником (рис. 167). Чтобы построить прямой угол, одной из сторон которого является луч ОЛ, надо:

а) расположить чертежный треугольник так, чтобы вершина его прямого угла совпала с точкой О, а одна из сторон пошла по лучу ОА;

б) провести вдоль второй стороны треугольника луч ОВ.

В результате получим прямой угол АОВ.

Вопросы к теме

1.Что такое угол?
2.Какой угол называют развернутым?
3.Какие углы называют равными?
4.Какой угол называют прямым?
5.Как строят прямой угол с помощью чертежного треугольника?

Нам с вами уже известно, что любой угол делит плоскость на две части. Но, в случае, если у угла его обе стороны лежат на одной прямой, то такой угол называется развернутым. То есть, у развернутого угла одна его сторона является продолжением его другой стороны угла.

Теперь давайте посмотрим на рисунок, на котором как раз и изображен развернутый угол О.


Если мы возьмем и проведем из вершины развернутого угла луч, то он разделит данный развернутый угол еще на два угла, которые будут иметь одну общую сторону, а другие два угла будут составлять прямую. То есть, с одного развернутого угла мы получили два смежных.

Если мы возьмем развернутый угол и проведем биссектрису, то эта биссектриса разделит развернутый угол на два прямых угла.

А, в том случае, если мы из вершины развернутого угла проведем произвольный луч, который не является биссектрисой, то такой луч разделит развернутый угол на два угла, один из которых будет острым, а другой тупым.

Свойства развернутого угла

Развернутый угол обладает такими свойствами:

Во-первых, стороны развёрнутого угла являются антипараллельными и образуют прямую;
во-вторых, развернутый угол равен 180°;
в-третьих, два смежных угла образуют развернутый угол;
в-четвертых, развернутый угол составляет половину полного угла;
в-пятых, полный угол будет равен сумме двух развёрнутых углов;
в-шестых, половина развернутого угла составляет прямой угол.

Измерение углов

Чтобы измерить любой угол, для этих целей чаще всего используют транспортир, у которого единица измерения равна одному градусу. При измерении углов следует помнить, что любой угол имеет свою определенную градусную меру и естественно эта мера больше нуля. А развернутый угол, как нам уже известно, равен 180 градусам.

То есть, если мы с вами возьмем любую плоскость круга и разделим ее радиусами на 360 равных частей, то 1/360 часть данного круга будет являться угловым градусом. Как вы уже знаете, что градус обозначается определенным значком, который имеет такой вид: « ° ».

Теперь мы также знаем, что один градус 1° = 1/360 части круга. Если угол равен плоскости круга и составляет 360 градусов, то такой угол является полным.

А теперь мы возьмем, и плоскость круга поделим с помощью двух радиусов, лежащих на одной прямой линии, на две равные части. То в этом случае, плоскость полукруга составит половину полного угла, то есть 360: 2 = 180°. Мы с вами получили угол, который равен полуплоскости круга и имеет 180°. Это и есть развернутый угол.

Практическое задание

1613. Назовите углы, изображенные на рисунке 168. Запишите их обозначения.


1614. Начертите четыре луча: ОА, ОВ, ОС и OD. Запишите названия шести углов, сторонами которых являются эти лучи. На сколько частей эти лучи делят плоскость ?

1615. Укажите, какие точки на рисунке 169 лежат внутри угла КОМ, Какие точки лежат вне этого угла? Какие точки лежат на стороне OK, a какие — на стороне ОМ?

1616. Начертите угол MOD и проведите внутри него луч ОТ. Назовите и обозначьте углы, на которые этот луч делит угол MOD.

1617. Минутная стрелка за 10 мин повернулась на угол АОВ, за следующие 10 мин — на угол ВОС, а еще за 15 мин — на угол COD. Сравните углы АОВ и ВОС, ВОС и COD, АОС и АОВ, АОС и COD (рис. 170).

1618. Изобразите с помощью чертежного треугольника 4 прямых угла в разных положениях.

1619. С помощью чертежного треугольника найдите на рисунке 171 прямые углы. Запишите их обозначения.

1620. Укажите прямые углы в классной комнате.

а) 0,09 200; б) 208 0,4; в) 130 0,1 + 80 0,1.

1629. Сколько процентов от 400 составляет число 200; 100; 4; 40; 80; 400; 600?

1630. Найдите пропущенное число:

а) 2 5 3 б) 2 3 5
13 6 12 1
2 3? 42?

1631. Начертите квадрат, сторона которого равна длине 10 клеток тетради. Пусть этот квадрат изображает поле. Рожь занимает 12% поля, овес — 8%, пшеница — 64%, а остальная часть поля занята гречихой. Покажите на рисунке часть поля, занятую каждой культурой. Сколько процентов поля занимает гречиха?

1632. За учебный год Петя израсходовал 40% купленных в начале года тетрадей, и у него осталось 30 тетрадей. Сколько тетрадей было куплено для Пети в начале учебного года?

1633. Бронза является сплавом олова и меди. Сколько процентов сплава составляет медь в куске бронзы, состоящем из 6 кг олова и 34 кг меди?

1634. Построенный в древности Александрийский маяк, который называли одним из семи чудес света, выше башен Московского Кремля в 1,7 раза, но ниже здания Московского университета на 119 м. Найдите высоту каждого из этих сооружений, если башни Московского Кремля на 49 м ниже Александрийского маяка.

1635. Найдите с помощью микрокалькулятора:

а) 4,5% от 168; в) 28,3% от 569,8;
б) 147,6% от 2500; г) 0,09% от 456 800.

1636. Решите задачу:

1) Площадь огорода 6,4 а. В первый день вскопали 30% огорода, а во второй день — 35% огорода. Сколько аров осталось еще вскопать?

2) У Сережи было 4,8 ч свободного времени. 35% этого времени он потратил на чтение книги, а 40% на просмотр передач по телевизору. Сколько времени у него еще осталось?

1637. Выполните действия:

1) ((23,79: 7,8 — 6,8: 17) 3,04 — 2,04) 0,85;
2) (3,42: 0,57 9,5 — 6,6) : ((4,8 — 1,6) (3,1 + 0,05)).

1638. Начертите угол ВАС и отметьте по одной точке внутри угла, вне угла и на сторонах угла.

1639. Какие из отмеченных на рисунке 172 точек лежат внутри угла АМК.Какая точка лежит внутри угла АМВ> но вне угла АМК.Какие точки лежат на сторонах угла АМК?

1640. Найдите с помощью чертежного треугольника прямые углы на рисунке 173.

1641. Постройте квадрат со стороной 43 мм. Вычислите его периметр и площадь.

1642. Найдите значение выражения:

а) 14,791: а + 160,961: b, если а = 100, b = 10;
б) 361,62с + 1848: d, если с = 100, d =100.

1643. Рабочий должен был изготовить 450 деталей. В первый день он изготовил 60% деталей, а остальные — во второй. Сколько деталей изготовил рабочий во второй день?

1644. В библиотеке было 8000 книг. Через год число их увеличилось на 2000 книг. На сколько процентов увеличилось число книг в библиотеке?

1645. Грузовики в первый день проехали 24% намеченного пути, во второй день — 46% пути, а в третий — остальные 450 км. Сколько километров проехали эти грузовики?

1646. Найдите, сколько составляют:

а) 1% от тонны; в) 5% от 7 т;
б) 1% от литра; г) 6% от 80 км.

1647. Масса детеныша моржа в 9 раз меньше массы взрослого моржа. Какова масса взрослого моржа, если вместе с детенышем их масса равна 0,9 т?

1648. Во время маневров командир оставил 0,3 всех своих солдат охранять переправу, а остальных разделил на 2 отряда для обороны двух высот. В первом отряде было в 6 раз больше солдат, чем во втором. Сколько солдат было в первом отряде, если всего было 200 солдат?

Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений

Угол – основная геометрическая фигура, которую разберем на протяжение всей темы. Определения, способы задания, обозначения и измерения угла. Разберем принципы выделения углов на чертежах. Вся теория проиллюстрирована и имеет большое количество наглядных чертежей.

Yandex.RTB R-A-339285-1 Определение 1

Угол – простая важная фигура в геометрии. Угол напрямую зависит от определения луча, который в свою очередь состоит из базовых понятий точки, прямой и плоскости. Для досконального изучения необходимо углубиться по темам прямая на плоскости – необходимые сведения и плоскость – необходимые сведения .

Понятие угла начинается с понятий о точке, плоскости и прямой, изображенной на этой плоскости.

Определение 2

Дана прямая a на плоскости. На ней обозначим некоторую точку O . Прямая разделена точкой на две части, каждая из которых имеет название луч , а точка O – начало луча .

Иначе говоря, луч или полупрямая – это часть прямой, состоящая из точек заданной прямой, расположенных на одной стороне относительно начальной точки, то есть точки O .

Обозначение луча допустимо в двух вариациях: одной строчной или двумя прописными буквами латинского алфавита. При обозначении двумя буквами луч имеет название, состоящее из двух букв. Рассмотрим подробнее на чертеже.

Перейдем к понятию определения угла.

Определение 3

Угол – это фигура, расположенная в заданной плоскости, образованная двумя несовпадающими лучами, имеющими общее начало. Сторона угла является лучом, вершина – общее начало сторон.

Имеет место случай, когда стороны угла могут выступать в роли прямой линии.

Определение 4

Когда обе стороны угла расположены на одной прямой или его стороны служат как дополнительные полупрямые одной прямой, то такой угол называют развернутым .

На рисунке ниже изображен развернутый угол.

Точка на прямой – это и есть вершина угла. Чаще всего имеет место ее обозначение точкой O .

Угол в математике обозначается знаком « ∠ ». Когда стороны угла обозначают малыми латинскими, то для правильного определения угла записываются подряд буквы соответственно сторонам. Если две стороны имеют обозначение k и h , то угол обозначается как ∠ k h или ∠ h k .

Когда идет обозначение большими буквами, то соответственно стороны угла имеют названия O A и O B . В таком случае угол имеет название из трех букв латинского алфавита, записанные подряд, в центре с вершиной — ∠ A O B и ∠ B O A . Существует обозначение в виде цифр, когда углы не имеют названий или буквенных обозначений. Ниже приведен рисунок, где разными способами обозначаются углы.

Угол делит плоскость на две части. В случае, если угол не развернутый, тогда одна часть плоскости имеет название внутренняя область угла , другая – внешняя область угла . Ниже приведено изображение, объясняющее, какие части плоскости внешние, а какие внутренние.

При разделении развернутым углом на плоскости любая из его частей считается внутренней областью развернутого угла.

Внутренняя область угла – элемент, служащий для второго определения угла.

Определение 5

Углом называют геометрическую фигуру, состоящая из двух несовпадающих лучей, имеющих общее начало и соответствующую внутреннюю область угла.

Данное определение является более строгим, чем предыдущее, так как имеет больше условий. Оба определения не желательно рассматривать отдельно, потому как угол – это геометрическая фигура, преобразованная при помощи двух лучей, выходящих из одной точки. Когда необходимо выполнять действия с углом, то под определением понимают наличие двух лучей с общим началом и внутренней областью.

Определение 6

Два угла называют смежными , если имеется общая сторона, а две другие являются дополнительными полупрямыми или образуют развернутый угол.

На рисунке видно, что смежные углы дополняют друг друга, так как являются продолжением один другого.

Определение 7

Два угла называют вертикальными , если стороны одного являются дополнительными полупрямыми другого или являются продолжениями сторон другого. На рисунке ниже показано изображение вертикальных углов.

При пересечении прямых получается 4 пары смежных и 2 пары вертикальных углов. Ниже показано на рисунке.

Статья показывает определения равных и неравных углов. Разберем какой угол считается большим, какой меньшим и другие свойства угла. Две фигуры считаются равными, если при наложении они полностью совпадают. Такое же свойство применимо для сравнения углов.

Даны два угла. Необходимо прийти к выводу, равные эти углы или нет.

Известно, что имеет место наложение вершин двух углов и стороны первого угла с любой другой стороной второго. То есть при полном совпадении при наложении углов стороны заданных углов совместятся полностью, углы равные .

Может быть так, что при наложении стороны могут не совместиться, то углы неравные, меньший из которых состоит из другого, а больший имеет в своем составе полный другой угол. Ниже изображены неравные углы, не совмещенные при наложении.

Развернутые углы являются равными.

Измерение углов начинается с измерения стороны измеряемого угла и его внутренней области, заполняя которую единичными углами, прикладывают друг к другу. Необходимо посчитать количество уложенных углов, они и предопределяют меру измеряемого угла.

Единица измерения угла может быть выражена любым измеряемым углом. Имеются общепринятые единицы измерения, которые применяют в науке и технике. Они специализируются на других названиях.

Чаще всего используют понятие градус .

Определение 8

Один градус называют углом, который имеет одну сто восьмидесятую часть развернутого угла.

Стандартное обозначение градуса идет при помощи « ° », тогда один градус – 1 ° . Следовательно, развернутый угол состоит из 180 таких углов, состоящих из одного градуса. Все имеющиеся углы плотно уложены друг к другу и стороны предыдущего совмещены с последующим.

Известно, что количество положенных градусов в угле, это и есть та самая мера угла. Развернутый угол имеет 180 уложенных углов в своем составе. Ниже на рисунке приводятся примеры, где уложение угла идет в 30 раз, то есть одна шестая развернутого, и 90 раз, то есть половина.

Для точности определения измерения углов используются минуты и секунды. Их применяют, когда величина угла не является целым обозначением градуса. Такие части градуса позволяют выполнять более точные расчеты.

Определение 9

Минутой называют одну шестидесятую часть градуса.

Определение 10

Секундой называют одну шестидесятую часть минуты.

Градус содержит 3600 секунд. Минуты обозначают « » », а секунды « «» ». Имеет место обозначение:

1 ° = 60 » = 3600 «» , 1 » = (1 60) ° , 1 » = 60 «» , 1 «» = (1 60) » = (1 3600) ° ,

а обозначение угла 17 градусов 3 минут и 59 секунд имеет вид 17 ° 3 » 59 «» .

Определение 11

Приведем пример обозначения градусной меры угла равного 17 ° 3 » 59 «» . Запись имеет еще один вид 17 + 3 60 + 59 3600 = 17 239 3600 .

Для точного измерения углов используют такой измерительный прибор, как транспортир. При обозначении угла ∠ A O B и его градусной мере в 110 градусов применяют более удобную запись ∠ A O B = 110 ° , которая читается «Угол А О В равен 110 градусам».

В геометрии используется мера угла из интервала (0 , 180 ] , а в тригонометрии произвольная градусная мера имеет название углов поворота. Значение углов всегда выражается действительным числом. Прямой угол – это угол, имеющий 90 градусов. Острый угол – угол, который меньше 90 градусов, а тупой – больше.

Острый угол измеряется в интервале (0 , 90) , а тупой – (90 , 180) . Ниже наглядно изображены три вида углов.

Любая градусная мера любого угла имеет одинаковое значение. Больший угол соответственно имеет большую градусную меру, чем меньший. Градусная мера одного угла – это сумма всех имеющихся градусных мер внутренних углов. Ниже приведен рисунок, где показан угол АОВ, состоящий из углов АОС, СОD и DОВ. Подробно это выглядит так: ∠ A O B = ∠ A O C + ∠ D O B = 45 ° + 30 ° + 60 ° = 135 ° .

Исходя из этого, можно сделать вывод, что сумма всех смежных углов равна 180 градусам, потому что они все и составляют развернутый угол.

Отсюда следует, что любые вертикальные углы равны . Если рассмотреть это на примере, мы получим, что угол А О В и С О D – вертикальные (на чертеже), тогда пары углов А О В и В О С, С О D и В О С считают смежными. В таком случает равенство ∠ A O B + ∠ B O C = 180 ° вместе с ∠ C O D + ∠ B O C = 180 ° считаются однозначно верными. Отсюда имеем, что ∠ A O B = ∠ C O D . Ниже приводится пример изображения и обозначения вертикальных улов.

Кроме градусов, минут и секунд используется еще одна единица измерения. Она называется радианом . Чаще всего ее можно встретить в тригонометрии при обозначении углов многоугольников. Что же называют радианом.

Определение 12

Углом в один радиан называют центральный угол, который имеет длину радиуса окружности равную длине дуги.

На рисунке радиан изображается в виде окружности, где имеется центр, обозначенный точкой, с двумя точками на окружности, соединенными и преобразованными в радиусы О А и О В. По определению данный треугольник A O B является равносторонним, значит длина дуги A B равна длинам радиусов О В и О А.

Обозначение угла принимается за «рад». То есть запись в 5 радиан сокращенно обозначается как 5 рад. Иногда можно встретить обозначение, имеющее название пи. Радианы не имеют зависимости от длины заданной окружности, так как фигуры имеют некое ограничение при помощи угла и его дугой с центром, находящимся в вершине заданного угла. Они считаются подобными.

Радианы имеют такой же смысл, как и градусы, только разница в их величине. Чтобы это определить, необходимо вычисленную длину дуги центрального угла поделить на длину ее радиуса.

На практике используют перевод градусов в радианы и радианы в градусы для более удобного решения задач. Указанная статья имеет информацию о связи градусной меры с радианной, где можно подробно изучить переводы из градусной в радианную и обратно.

Для наглядного и удобного изображения дуг, углов используют чертежи. Не всегда можно правильно изобразить и отметить тот или иной угол, дугу или название. Равные углы имеют обозначение в виде одинакового количества дуг, а неравные в виде разного. На чертеже изображено правильное обозначение острых, равных и неравных углов.

Когда необходимо отметить более 3 углов, используются специальные обозначения дуг, например, волнистые или зубчатые. Это не имеет столь важное значение. Ниже приведен рисунок, где показано их обозначение.

Обозначение углов должны быть простыми, чтобы не мешали другим значениям. При решении задачи рекомендовано выделять только необходимые для решения углы, чтобы не загромождать весь чертеж. Это не помешает решению и доказательству, а также придаст эстетичный вид рисунку.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Урок 5. измерение углов — Геометрия — 7 класс

Геометрия

7 класс

Урок №5

Измерение углов

Перечень рассматриваемых вопросов:

  • Измерительные инструменты.
  • Градусная мера угла; биссектриса.
  • Транспортир.
  • Классификация углов.

Тезаурус:

Градус – угол, равный одной сто восьмидесятой части развернутого угла.

Градусная мера угла – положительное число, которое показывает, сколько раз градус и его части укладываются в данном углу.

Минута – 1/60 часть градуса.

Секунда – 1/60 часть минуты.

Луч – часть прямой, состоящий из всех точек, лежащих по одну сторону от заданной точки, которая является началом луча.

Угол – это геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки.

Стороны угла – лучи, из которых состоит угол.

Вершина угла – общее начало сторон угла.

Биссектриса – это луч, исходящий из вершины угла и делящий его на два равных угла.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее вы уже познакомились с геометрической фигурой – уголи его составными элементами.

Сегодня мы продолжим изучать углы, познакомимся с их классификацией и будем измерять углы с помощью транспортира.

Измерение углов аналогично измерению отрезков – оно основано на сравнении, только отрезки сравнивались с отрезком, принятым за единицу измерения, а углы с углом, тоже принятым за единицу измерения.

Обычно за единицу измерения углов принимают градус.

Градус – угол, равный 1/180 части развёрнутого угла.

Положительное число, которое показывает, сколько раз градус и его части укладываются в данном углу, называется градусной мерой угла.

Для измерения углов используют транспортир. Вспомним, как проводить измерение углов с помощью транспортира.

Транспортир накладывают на угол так, чтобы вершина угла совпала с центром транспортира, а одна из сторон угла прошла через нулевое деление на шкале. Тогда другая сторона угла укажет величину угла в градусах на той же шкале.

Например:

∠О = 50°

Но обычно говорят кратко – угол О равен 50 градусам.

Если масштабныйугол не укладываетсяцелое число раз в измеряемом угле, тоединицу измерения делят ещё на части.

Определённые части градуса носят специальные названия.

Части градуса.

Минута – 1/60 часть градуса.

Обозначается «´».

Секунда – 1/60 часть минуты.

Обозначается «´´».

Например:

∠А = 40 ° 15´ 16 ´´

Далее, аналогично понятию равные отрезки, ведём понятие равные углы.

Дваугла считаются равными, если градус и его части укладываются в этих углах одинаковое число раз, т.е. равные углы имеют равные градусные меры.

Если один угол меньше другого, то градус в нём (или его часть) укладываются в этом углу меньшее число раз, чем в другом, т.е. меньший угол имеет меньшую градусную меру.

Когда луч делит угол на два угла, градусная мера всего угла равна сумме градусных мер этих углов.

∠АОС =∠АОL + ∠LОС,

∠АОL = 64°,

∠LОС = 64°,

∠АОС = 64° + 64° = 128°.

Далее рассмотрим классификацию углов.

Мы уже знаем, что есть развёрнутый угол, его градусная мера сто восемьдесят градусов.

Но есть и другие углы.

Например, прямой угол, его градусная мера девяносто градусов;

острый угол, его градусная мера меньше девяноста градусов;

тупой угол, его градусная мера больше девяноста градусов, но меньше ста восьмидесяти.

Выполним практическое задание – построим биссектрису угла с помощью транспортира.

Мы знаем, что биссектриса – это луч, исходящий из вершины угла и делящий его на два равных угла.

∠АОС = 128°,

128° : 2 = 64°,

OL – биссектриса ∠АОС.

Поэтому для начала определим градусную меру ∠АОС, она составляет 128°, тогда биссектриса этого угла, исходя из определения, составит 64 °.

Итак, сегодня получили представление о том, как измерять и изображать угол с помощью транспортира. Перейдем к практическим заданиям.

Способы измерения на местности.

Измерение углов на местности проводят с помощью различных приборов. Один из таких – астролябия, она состоит из диска (лимб), разбитого на градусы и вращающейся вокруг центра диска линейки (алидады). На концах алидады есть окошечки, которые нужны, чтобы устанавливать её в определённом направлении.

Опишем, как происходит измерение углов с помощью этого прибора. При измерении углов астролябию устанавливают в его вершине, например, точке О, при этом лимб должен находится горизонтально плоскости угла, а отвес, в центе диска, совпадать с вершиной угла.

Затем устанавливаем алидаду вдоль одной из сторон угла, например, АО, отмечаем деление, напротив которого находится указатель алидады.

Далее поворачиваем алидаду по часовой стрелке, пока она не совпадёт со второй стороной угла, у нас это сторона ОВ, отмечаем деление, напротив которого оказался указатель алидады. Теперь можно найти градусную меру измеряемого угла, как разность второго и первого измерения.

Тренировочные задания.

1. Луч ВК делит развернутый ∠ОВС на два угла, разность которых равна 56°. Найдите образовавшиеся углы.

Решение: нарисуем рисунок, исходя из условия задачи.

Обозначим ∠СВК за х, тогда ∠ОВК= х + 56°, исходя из условия задачи (разность углов равна 56°). Развёрнутый угол равен 180°. Составим уравнение и решим его.

х + х +56 =180,

2х= 180 – 56,

2х= 124,

х = 124:2,

х = 62° (∠СВК).

Тогда ∠ОВК= х + 56°= 62° +56° = 118°.

Ответ: ∠СВК = 62°; ∠ОВК = 118°.

2. Чему равен ∠ЕОА, если ∠ВОА = 130° 54´, а ∠ВОЕ = 105° 76´?

Решение: Найдём ∠ЕОА = ∠ВОА – ∠ВОЕ, т.к. ОЕ – луч, проведённый из вершины ∠ВОА и делящий этот угол на 2 части. Подставим в выражение градусные меры углов и найдём градусную меру ∠ЕОА. Так как в градусе 60 минут, то 105° 76´ = 106° 16´.

∠ЕОА = 130° 54´ – 106° 16´ = 24° 38´.

Ответ: ∠ЕОА = 24° 38´.

Сколько градусов в тупом угле

Какой угол именуется острым, прямым, тупым?

Какой угол в геометрии именуется острым, прямым, тупым? Сколько градусов в остом угле, тупом угле, прямом угле? Как определить острый угол, прямой угол, тупой угол?

Угол грамотный пересечением 2-ух поперечных прямых именуется прямым. Также прямой угол может появиться при делении окружности на ровные 4-ре части (1/4 окружности).

Прямой угол равён 90 градусам.

Когда стороны угла совпадают, подобный угол именуется нулевым

Нулевой угол равён 0 градусам.

Все углы, значения в градусах которых больше нулевого и меньше прямого именуется острыми.

Острый угол — больше 0 градусов и меньше 90 градусов.

Если стороны угла лежат в разных направлениях и создают прямую, подобный угол именуется развернутым и равён он 180 градусам.

Углы, значения в градусах которых больше прямого и меньше развернутого называются тупыми.

Тупой угол — больше 90 градусов и меньше 180 градусов.

Всех их соединяет одно:

острый, прямой и тупой углы — они все рельефные.

Все очень просто. Проведём аналогию с обыкновенными часами. Если одну из стрелок установить таким образом, чтобы она указывала на двенадцать часов, а другою, чтобы указывала на три — то они создают прямой угол в 90 градусов. Если же начать двигать стрелку указывающую на 3 часа в обратном направлении( в двухчасовой метки на циферблате) — то она будет образовывать, одновременно со второй стрелкой, острые углы(менее 90 градусов). Когда же стрелки будут указывать в одну точку — они создают нулевой угол в ноль градусов.А если вернуть вторую стрелку к исходной( трехчасовой отметке) и начать перемещать её вперед по циферблату — то аж до шестичасовой метки она одновременно с первой будут образовывать тупые углы( более 90 градусов). Когда стрелки будут указывать, одна на 12, а остальная на 6 — это будет, говоря иначе, развёрнутый угол в 180 градусов.

тупой угол — сколько градусов

Добрый день!
Я столкнулась с темой тупых углов. И чуть-чуть запуталась: тупой угол — сколько градусов. Он аналогичный определённый как и прямой угол, или же в этом случае все нескольно иначе? Надеюсь, Вы сумеете помочь мне в этом разобраться. Буду очень признательна

Добрый день!
Ваш вопрос нам понятен: тупой угол — сколько градусов? Могу Вас успокоить — это достаточно лёгкий вопрос и я убеждена, что после нашего разъяснения вы его точно поймёте и более не будете к нему возвращаться.
Выходит, что тупым углом именуется подобный угол, градусная мера которого должна находится в конкретных рамках (градусных): от 90 до 180 градусов.
Другими словами, мы с Вами делаем закономерный вывод, что тупой угол больше прямого, однако при этом же меньше, чем развёрнутый угол.
Сейчас я бы хотела Вам показать подобный угол на рисунке. Вот и сам рисунок:

надеюсь сейчас вам 100 процентов стало ясно, какой угол считается тупым!
Если что-то необходимо будет — в первую очередь обращайтесь!
А сейчас давайте попытаемся решить любую задачу. К примеру, нам необходимо найти тупой угол параллелограмма ABCD, если мы знаем, что его острый угол равён 60 градусам.
Для этого будет делать эти действия.
В первую очередь вспомним, что сумма углов параллелограмма, которое прилежать к одной стороне, равна 180 градусов.
А вот сейчас модем найти наш угол (например альфа): угол альфа = 180 — 60 = 120 градусов.
Другими словами, наш ответ: 120 градусов.
надеюсь, Вам стало хоть мало-мальски понятнее!
Удачи!

Пожалуйста, пройдите регистрацию или войдите, чтобы добавить ответ.

Копирование материалов с сайта может быть только с согласия
администрации портала и при наличие энергичной ссылки на источник.

Сколько градусов имеет прямой угол и тупой угол

Экономь время и не смотри рекламу со Познаниями Плюс

Экономь время и не смотри рекламу со Познаниями Плюс

Проверено экспертом

nastya180198

Подключи Знания Плюс для доступа ко всем ответам. Быстро, без рекламы и перерывов!

Не упусти важного — подключи Знания Плюс, чтобы увидеть ответ именно сейчас

Обрати внимание видео для доступа к ответу

О нет!
Просмотры ответов завершились

Подключи Знания Плюс для доступа ко всем ответам. Быстро, без рекламы и перерывов!

Не упусти важного — подключи Знания Плюс, чтобы увидеть ответ именно сейчас

Использование транспортира для измерения углов


Навигация по записям

Как выглядят острые и тупые углы. Понятие и виды углов

Углом называется геометрическая фигура, которая состоит из двух различных лучей, исходящих из одной точки. В данном случае, эти лучи называются сторонами угла. Точка, являющаяся началом лучей, называется вершиной угла. На рисунке вы можете увидеть угол с вершиной в точке О , и сторонами k и m .

На сторонах угла отмечены точки А и С. Этот угол можно обозначить как угол AOC. В середине обязательно должно стоять название точки, в которой находится вершина угла. Также существуют и другие обозначения, угол О или угол km. В геометрии вместо слова угол часто пишут специальный значок.

Развернутый и неразвернутый угол

Если у угла обе стороны лежат на одной прямой, то такой угол называется развернутым углом. То есть одна сторона угла является продолжением другой стороны угла. На рисунке нижк представлен развернутый угол О.

Следует отметить, что любой угол, разделяет плоскость на две части. Если угол не является развернутым, то одна из частей называется внутренней областью угла, а другая внешней областью этого угла. На рисунке ниже представлен неразвернутый угол и отмечены внешняя и внутренняя области этого угла.

В случае с развернутым углом любую из двух частей, на которые он делит плоскость, можно считать внешней областью угла. Можно говорить о положении точки относительно угла. Точка может лежать вне угла (во внешней области), может находится на одной из его сторон, либо может лежать внутри угла (во внутренней области).

На рисунке ниже, точка А лежит вне угла О, точка B лежит на одной из сторон угла, а точка С лежит внутри угла.

Измерение углов

Для измерения углов существует прибор называемый транспортиром. Единицей измерения угла является градус . Следует отметить, что каждый угол имеет определенную градусную меру, которая больше нуля.

В зависимости от градусной меры углы делятся на несколько групп.

В этой статье будет рассматриваться одна из основных геометрических фигур — угол. После общего введения в это понятие мы уделим основное внимание отдельному виду такой фигуры. Развернутый угол — важное понятие геометрии, которое и будет основной темой этой статьи.

Введение в понятие геометрического угла

В геометрии существует ряд объектов, которые составляют основу всей науки. Угол как раз относиться к ним и определяется с помощью понятия луча, поэтому начнем именно с него.

Также перед тем, как приступать к определению самого угла, нужно вспомнить о нескольких не менее важных объектах в геометрии — это точка, прямая на плоскости и собственно сама плоскость. Прямой называют самую простую геометрическую фигуру, у которой нет ни начала, ни конца. Плоскостью — поверхность, которая имеет два измерения. Ну и луч (или же полупрямая) в геометрии — это часть прямой, у которой есть начало, но нет конца.

Используя данные понятия, можем составить утверждение, что углом является геометрическая фигура, которая полностью лежит в некоторой плоскости и состоит из двух несовпадающих лучей с общим началом. Такие лучи называются сторонами угла, а общее начало сторон — это его вершина.

Виды углов и геометрии

Мы знаем о том, что углы могут быть совсем разными. А потому немного ниже будет приведена небольшая классификация, которая поможет лучше разобраться в видах углов и их главных особенностях. Итак, существует несколько видов углов в геометрии:

  1. Прямой угол. Он характеризируется величиной в 90 градусов, а значит, его стороны всегда перпендикулярны между собой.
  2. Острый угол. К таким углам относятся все их представители, имеющие размер меньше 90 градусов.
  3. Тупой угол. Здесь же могут быть все углы с величиной от 90 до 180 градусов.
  4. Развернутый угол. Имеет размер строго 180 градусов и внешне его стороны составляют одну прямую.

Понятие развернутого угла

Теперь давайте рассмотрим развернутый угол более подробно. Это тот случай, когда обе стороны лежат на одной прямой, что можно четко увидеть на рисунке немного ниже. Значит, мы можем с уверенностью сказать, что у развернутого угла одна из его сторон по сути есть продолжением другой.

Стоит запомнить тот факт, что такой угол всегда можно разделить с помощью луча, который выходит из его вершины. В результате мы получим два угла, которые в геометрии называются смежными.

Также развернутый угол имеет несколько особенностей. Для того, чтобы рассказать о первой из них, нужно вспомнить понятие «биссектриса угла». Напомним, что это луч, который делит любой угол строго пополам. Что касается развернутого угла, то его биссектриса разделяет его таким образом, что образуется два прямых угла по 90 градусов. Это очень легко просчитать математически: 180˚ (градус развернутого угла) : 2 = 90˚.

Если же разделять развернутый угол совсем произвольным лучом, то в результате мы всегда получаем два угла, один из которых будет острым, а другой — тупым.

Свойства развернутых углов

Будет удобно рассматривать этот угол, собрав воедино все его главные свойства, что мы и сделали в данном списке:

  1. Стороны развернутого угла антипараллельны и составляют прямую.
  2. Величина развернутого угла всегда составляет 180˚.
  3. Два смежных угла вместе всегда составляют развернутый угол.
  4. Полный угол, который составляет 360˚, состоит из двух развернутых и равен их суме.
  5. Половина развернутого угла — это прямой угол.

Итак, зная все эти характеристики данного вида углов, мы можем использовать их для решения ряда геометрических задач.

Задачи с развернутыми углами

Для того, чтобы понять, усвоили ли вы понятие развернутого угла, попытайтесь ответить на несколько следующих вопросов.

  1. Чему равен развернутый угол, если его стороны составляют вертикальную прямую?
  2. Будут ли два угла смежными, если величина первого 72˚, а другого — 118˚?
  3. Если полный угол состоит из двух развернутых, то сколько в нем прямых углов?
  4. Развернутый угол разделили лучом на два таких угла, что их градусные меры относятся как 1:4. Вычислите полученные углы.

Решения и ответы:

  1. Как бы ни был расположен развернутый угол, он всегда по определению равен 180˚.
  2. Смежные углы имеют одну общую сторону. Поэтому, чтобы вычислить размер угла, который они составляю вместе, нужно просто прибавить значение их градусных мер. Значит, 72 +118 = 190. Но по определению развернутый угол составляет 180˚, а значит, два данных угла не могут быть смежными.
  3. Развернутый угол вмещает два прямых угла. А так как в полном имеется два развернутых, значит, прямых в нем будет 4.
  4. Если мы назовем искомые углы а и b, то пусть х — это коэффициент пропорциональности для них, а это значит, что а=х, и соответственно b=4х. Развернутый угол в градусах равен 180˚. И согласно своим свойствам, что градусная мера угла всегда равна сумме градусных мер тех углов, на которые он разбивается любым произвольным лучом, что проходит между его сторонами, можем сделать вывод, что х + 4х = 180˚, а значит, 5х = 180˚. Отсюда находим: х=а=36˚ и b = 4х = 144˚. Ответ: 36˚ и 144˚.

Если у вас получилось ответить на все эти вопросы без подсказок и не подглядывая в ответы, значит вы готовы переходить к следующему уроку по геометрии.

Что такое угол?

Углом называют фигуру, образованную двумя лучами, выходящими из одной точки (рис. 160).
Лучи, образующие угол , называют сторонами угла, а точку, из которой они выходят, — вершиной угла.
На рисунке 160 сторонами угла являются лучи ОА и ОБ, а его вершиной — точка О. Этот угол обозначают так: АОВ.

При записи угла в середине пишут букву, обозначающую его вершину. Угол можно обозначить и одной буквой — названием его вершины.

Например, вместо «угол АОВ» пишут короче: «угол О».

Вместо слова «угол» пишут знак .

Например, AОВ, O.

На рисунке 161 точки С и D лежат внутри угла АОВ, точки X и У лежат вне этого угла, а точки М и Н — на сторонах угла.

Как и все геометрические фигуры, углы сравниваются с помощью наложения.

Если один угол можно наложить на другой так, что они совпадут, то эти углы равны.

Например, на рисунке 162 ABC = MNK.

Из вершины угла СОК (рис. 163) проведен луч ОР. Он разбивает угол СОК на два угла — СОР и РОК. Каждый из этих углов меньше угла СОК.

Пишут: COP

Прямой и развернутый угол

Два дополнительных друг другу луча образуют развернутый угол. Стороны этого угла вместе составляют прямую линию, на которой лежит вершина развернутого угла (рис. 164).

Часовая и минутная стрелки часов образуют в 6 ч развернутый угол (рис. 165).

Согнем два раза пополам лист бумаги, а потом развернем его (рис. 166).

Линии сгиба образуют 4 равных угла. Каждый из этих углов равен половине развернутого угла. Такие углы называют прямыми.

Прямым углом называют половину развернутого угла.

Чертежный треугольник



Для построения прямого угла пользуются чертежным треугольником (рис. 167). Чтобы построить прямой угол, одной из сторон которого является луч ОЛ, надо:

а) расположить чертежный треугольник так, чтобы вершина его прямого угла совпала с точкой О, а одна из сторон пошла по лучу ОА;

б) провести вдоль второй стороны треугольника луч ОВ.

В результате получим прямой угол АОВ.

Вопросы к теме

1.Что такое угол?
2.Какой угол называют развернутым?
3.Какие углы называют равными?
4.Какой угол называют прямым?
5.Как строят прямой угол с помощью чертежного треугольника?

Нам с вами уже известно, что любой угол делит плоскость на две части. Но, в случае, если у угла его обе стороны лежат на одной прямой, то такой угол называется развернутым. То есть, у развернутого угла одна его сторона является продолжением его другой стороны угла.

Теперь давайте посмотрим на рисунок, на котором как раз и изображен развернутый угол О.


Если мы возьмем и проведем из вершины развернутого угла луч, то он разделит данный развернутый угол еще на два угла, которые будут иметь одну общую сторону, а другие два угла будут составлять прямую. То есть, с одного развернутого угла мы получили два смежных.

Если мы возьмем развернутый угол и проведем биссектрису, то эта биссектриса разделит развернутый угол на два прямых угла.

А, в том случае, если мы из вершины развернутого угла проведем произвольный луч, который не является биссектрисой, то такой луч разделит развернутый угол на два угла, один из которых будет острым, а другой тупым.

Свойства развернутого угла

Развернутый угол обладает такими свойствами:

Во-первых, стороны развёрнутого угла являются антипараллельными и образуют прямую;
во-вторых, развернутый угол равен 180°;
в-третьих, два смежных угла образуют развернутый угол;
в-четвертых, развернутый угол составляет половину полного угла;
в-пятых, полный угол будет равен сумме двух развёрнутых углов;
в-шестых, половина развернутого угла составляет прямой угол.

Измерение углов

Чтобы измерить любой угол, для этих целей чаще всего используют транспортир, у которого единица измерения равна одному градусу. При измерении углов следует помнить, что любой угол имеет свою определенную градусную меру и естественно эта мера больше нуля. А развернутый угол, как нам уже известно, равен 180 градусам.

То есть, если мы с вами возьмем любую плоскость круга и разделим ее радиусами на 360 равных частей, то 1/360 часть данного круга будет являться угловым градусом. Как вы уже знаете, что градус обозначается определенным значком, который имеет такой вид: « ° ».

Теперь мы также знаем, что один градус 1° = 1/360 части круга. Если угол равен плоскости круга и составляет 360 градусов, то такой угол является полным.

А теперь мы возьмем, и плоскость круга поделим с помощью двух радиусов, лежащих на одной прямой линии, на две равные части. То в этом случае, плоскость полукруга составит половину полного угла, то есть 360: 2 = 180°. Мы с вами получили угол, который равен полуплоскости круга и имеет 180°. Это и есть развернутый угол.

Практическое задание

1613. Назовите углы, изображенные на рисунке 168. Запишите их обозначения.


1614. Начертите четыре луча: ОА, ОВ, ОС и OD. Запишите названия шести углов, сторонами которых являются эти лучи. На сколько частей эти лучи делят плоскость ?

1615. Укажите, какие точки на рисунке 169 лежат внутри угла КОМ, Какие точки лежат вне этого угла? Какие точки лежат на стороне OK, a какие — на стороне ОМ?

1616. Начертите угол MOD и проведите внутри него луч ОТ. Назовите и обозначьте углы, на которые этот луч делит угол MOD.

1617. Минутная стрелка за 10 мин повернулась на угол АОВ, за следующие 10 мин — на угол ВОС, а еще за 15 мин — на угол COD. Сравните углы АОВ и ВОС, ВОС и COD, АОС и АОВ, АОС и COD (рис. 170).

1618. Изобразите с помощью чертежного треугольника 4 прямых угла в разных положениях.

1619. С помощью чертежного треугольника найдите на рисунке 171 прямые углы. Запишите их обозначения.

1620. Укажите прямые углы в классной комнате.

а) 0,09 200; б) 208 0,4; в) 130 0,1 + 80 0,1.

1629. Сколько процентов от 400 составляет число 200; 100; 4; 40; 80; 400; 600?

1630. Найдите пропущенное число:

а) 2 5 3 б) 2 3 5
13 6 12 1
2 3? 42?

1631. Начертите квадрат, сторона которого равна длине 10 клеток тетради. Пусть этот квадрат изображает поле. Рожь занимает 12% поля, овес — 8%, пшеница — 64%, а остальная часть поля занята гречихой. Покажите на рисунке часть поля, занятую каждой культурой. Сколько процентов поля занимает гречиха?

1632. За учебный год Петя израсходовал 40% купленных в начале года тетрадей, и у него осталось 30 тетрадей. Сколько тетрадей было куплено для Пети в начале учебного года?

1633. Бронза является сплавом олова и меди. Сколько процентов сплава составляет медь в куске бронзы, состоящем из 6 кг олова и 34 кг меди?

1634. Построенный в древности Александрийский маяк, который называли одним из семи чудес света, выше башен Московского Кремля в 1,7 раза, но ниже здания Московского университета на 119 м. Найдите высоту каждого из этих сооружений, если башни Московского Кремля на 49 м ниже Александрийского маяка.

1635. Найдите с помощью микрокалькулятора:

а) 4,5% от 168; в) 28,3% от 569,8;
б) 147,6% от 2500; г) 0,09% от 456 800.

1636. Решите задачу:

1) Площадь огорода 6,4 а. В первый день вскопали 30% огорода, а во второй день — 35% огорода. Сколько аров осталось еще вскопать?

2) У Сережи было 4,8 ч свободного времени. 35% этого времени он потратил на чтение книги, а 40% на просмотр передач по телевизору. Сколько времени у него еще осталось?

1637. Выполните действия:

1) ((23,79: 7,8 — 6,8: 17) 3,04 — 2,04) 0,85;
2) (3,42: 0,57 9,5 — 6,6) : ((4,8 — 1,6) (3,1 + 0,05)).

1638. Начертите угол ВАС и отметьте по одной точке внутри угла, вне угла и на сторонах угла.

1639. Какие из отмеченных на рисунке 172 точек лежат внутри угла АМК.Какая точка лежит внутри угла АМВ> но вне угла АМК.Какие точки лежат на сторонах угла АМК?

1640. Найдите с помощью чертежного треугольника прямые углы на рисунке 173.

1641. Постройте квадрат со стороной 43 мм. Вычислите его периметр и площадь.

1642. Найдите значение выражения:

а) 14,791: а + 160,961: b, если а = 100, b = 10;
б) 361,62с + 1848: d, если с = 100, d =100.

1643. Рабочий должен был изготовить 450 деталей. В первый день он изготовил 60% деталей, а остальные — во второй. Сколько деталей изготовил рабочий во второй день?

1644. В библиотеке было 8000 книг. Через год число их увеличилось на 2000 книг. На сколько процентов увеличилось число книг в библиотеке?

1645. Грузовики в первый день проехали 24% намеченного пути, во второй день — 46% пути, а в третий — остальные 450 км. Сколько километров проехали эти грузовики?

1646. Найдите, сколько составляют:

а) 1% от тонны; в) 5% от 7 т;
б) 1% от литра; г) 6% от 80 км.

1647. Масса детеныша моржа в 9 раз меньше массы взрослого моржа. Какова масса взрослого моржа, если вместе с детенышем их масса равна 0,9 т?

1648. Во время маневров командир оставил 0,3 всех своих солдат охранять переправу, а остальных разделил на 2 отряда для обороны двух высот. В первом отряде было в 6 раз больше солдат, чем во втором. Сколько солдат было в первом отряде, если всего было 200 солдат?

Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений

С понятием угол учащиеся знакомятся еще в начальной школе. Но как геометрическую фигуру, имеющую определенные свойства, начинают изучать его с 7-го класса в геометрии. Кажется, довольно простая фигура , что о ней можно сказать. Но, приобретая новые знания, школьники всё больше понимают, что можно узнать о ней довольно интересные факты.

Вконтакте

Когда изучаются

Школьный курс геометрии разделён на два раздела: планиметрию и стереометрию. В каждом из них немалое внимание уделяется углам :

  • В планиметрии дается их основное понятие, происходит знакомство с их видами по величине. Более подробно изучаются свойства каждого вида треугольников. Появляются новые определения для учащихся – это геометрические фигуры, образованные при пересечении двух прямых между собой и пересечении нескольких прямых секущей.
  • В стереометрии изучаются пространственные углы – двугранные и трехгранные.

Внимание! В данной статье рассматриваются все виды и свойства углов именно в планиметрии.

Определение и измерение

Приступая к изучению, первоначально определяют, что такое угол в планиметрии.

Если на плоскости взять определённую точку и провести от нее два произвольных луча, то получим геометрическую фигуру – угол, состоящую из следующих элементов:

  • вершина – та точка, из которой и проводились лучи, обозначается заглавной буквой латинского алфавита;
  • стороны – полупрямые, проведенные из вершины.

Все элементы, образующие рассматриваемую нами фигуру, разбивают плоскость на две части :

  • внутренняя — в планиметрии не превышает 180 градусов;
  • внешняя.

Принцип измерения углов в планиметрии объясняют на интуитивной основе. Для начала знакомят учащихся с понятием развернутый угол.

Важно! Угол называется развернутым, если полупрямые, выходящие из его вершины, образуют прямую линию. Неразвернутый угол это все остальные случаи.

Если его разделить на 180 равных частей, то принято считать меру одной части равной 10. В таком случае говорят, что измерение производится в градусах, а градусная мера такой фигуры составляет 180 градусов.

Основные виды

Виды углов подразделяются по таким критериям, как градусная мера, характер их образования и представленные ниже категории.

По величине

Учитывая величину, углы разделяют на:

  • развернутый;
  • прямой;
  • тупой;
  • острый.

Какой угол называется развернутым, было представлено выше. Определимся с понятием прямого.

Его можно получить при делении развернутого на две равные части. В этом случае легко ответить на вопрос: прямой угол, сколько градусов составляет?

180 градусов развернутого делим на 2 и получаем, что прямой угол равен 90 градусам . Это замечательная фигура, так как многие факты в геометрии связаны именно с ней.

Имеет она и свои особенности в обозначении. Чтобы на рисунке показать прямой угол, его обозначают не дугой, а квадратиком.

Углы, которые получаются при делении произвольным лучом прямого, называют острыми. По логике вещей следует, что острый угол меньше прямого, но его мера отлична от 0 градусов. То есть, он имеет величину от 0 до 90 градусов.

Тупой угол больше прямого, но меньше развернутого. Его градусная мера варьируется в интервале от 90 до 180 градусов.

Данный элемент можно разбить на разные виды рассматриваемых фигур, исключая развёрнутый.

Вне зависимости от того, как разбивается неразвернутый угол, всегда пользуются базовой аксиомой планиметрии — «основное свойство измерения».

При разделении угла одним лучом или несколькими, градусная мера данной фигуры равна сумме мер углов, на которые она разбита.

На уровне 7-го класса виды углов по их величине на этом заканчиваются. Но для повышения эрудиции можно добавить, что существуют и другие разновидности, которые обладают градусной мерой больше 180 градусов.Их называют выпуклыми.

Фигуры при пересечении прямых

Следующие типы углов, с которыми знакомятся учащиеся – элементы, образованные при пересечении двух прямых. Фигуры, которые размещаются друг напротив друга, называют вертикальными. Их отличительное свойство – они равны.

Элементы, которые прилегают к одной и той же прямой, называют смежными. Теорема, отображающая их свойство, говорит о том, что смежные углы в сумме дают 180 градусов .

Элементы в треугольнике

Если рассматривать фигуру как элемент в треугольнике, то углы подразделяют на внутренний и внешний. Треугольник ограничен тремя отрезками и состоит из трёх вершин. Углы, расположенные внутри треугольника при каждой вершине, называют внутренними .

Если взять любой внутренний элемент при любой вершине и продлить любую сторону, то угол, который образовался и является смежным с внутренним, называется внешним. Эта пара элементов имеет следующее свойство: их сумма равна 180 градусам.

Пересечение двух прямых секущей

Пересечение прямых

При пересечении двух прямых секущей также образуются углы , которые принято распределять по парам. Каждая пара элементов имеет свое название. Выглядит это следующим образом:

  • внутренние накрест лежащие:∟4 и ∟6, ∟3 и ∟5;
  • внутренние односторонние: ∟4 и ∟5, ∟3 и ∟6;
  • соответствующие: ∟1 и ∟5, ∟2 и ∟6, ∟4 и ∟8, ∟3 и ∟7.

В том случае, когда секущая пересекает две

В этой статье мы всесторонне разберем одну из основных геометрических фигур – угол. Начнем со вспомогательных понятий и определений, которые нас приведут к определению угла. После этого приведем принятые способы обозначения углов. Далее подробно разберемся с процессом измерения углов. В заключении покажем как можно отметить углы на чертеже. Все теорию мы снабдили необходимыми чертежами и графическими иллюстрациями для лучшего запоминания материала.

Навигация по странице.

Определение угла.

Угол является одной из важнейших фигур в геометрии. Определение угла дается через определение луча. В свою очередь представление о луче невозможно получить без знания таких геометрических фигур как точка, прямая и плоскость. Поэтому, перед знакомством с определением угла, рекомендуем освежить в памяти теорию из разделов и .

Итак, будем отталкиваться от понятий точки, прямой на плоскости и плоскости.

Дадим сначала определение луча.

Пусть нам дана некоторая прямая на плоскости. Обозначим ее буквой a . Пусть O – некоторая точка прямой a . Точка O разделяет прямую a на две части. Каждая из этих частей вместе с точкой О называется лучом , а точка О называется началом луча . Еще можно услышать, что луч называют полупрямой .

Для краткости и удобства ввели следующие обозначения для лучей: луч обозначают либо малой латинской буквой (например, луч p или луч k ), либо двумя большими латинскими буквами, первая из которых соответствует началу луча, а вторая обозначает некоторую точку этого луча (например, луч ОА или луч СD ). Покажем изображение и обозначение лучей на чертеже.

Теперь мы можем дать первое определение угла.

Определение.

Угол – это плоская геометрическая фигура (то есть целиком лежащая в некоторой плоскости), которую составляют два несовпадающих луча с общим началом. Каждый из лучей называют стороной угла , общее начало сторон угла называют вершиной угла .

Возможен случай, когда стороны угла составляют прямую линию. Такой угол имеет свое название.

Определение.

Если обе стороны угла лежат на одной прямой, то такой угол называется развернутым .

Предлагаем Вашему вниманию графическую иллюстрацию развернутого угла.

Для обозначения угла используют значок угла «». Если стороны угла обозначены малыми латинскими буквами (например, одна сторона угла k , а другая h ), то для обозначения этого угла после значка угла записывают подряд буквы, соответствующие сторонам, причем порядок записи значения не имеет (то есть, или ). Если стороны угла обозначены двумя большими латинскими буквами (к примеру, одна сторона угла OA , а вторая сторона угла OB ), то угол обозначают следующим образом: после значка угла записывают три буквы, участвующие в обозначении сторон угла, причем буква, отвечающая вершине угла, располагается посередине (в нашем случае угол будет обозначен как или ). Если вершина угла не является вершиной еще какого-нибудь угла, то такой угол можно обозначать буквой, соответствующей вершине угла (например, ). Иногда можно видеть, что углы на чертежах отмечают цифрами (1 , 2 и т.д.), обозначают эти углы как и так далее. Для наглядности приведем рисунок, на котором изображены и обозначены углы.


Любой угол разделяет плоскость на две части. При этом если угол не развернутый, то одну часть плоскости называют внутренней областью угла , а другую – внешней областью угла . Следующее изображение разъясняет, какая часть плоскости отвечает внутренней области угла, а какая — внешней.


Любую из двух частей, на которые развернутый угол разделяет плоскость, можно считать внутренней областью развернутого угла.

Определение внутренней области угла приводит нас ко второму определению угла.

Определение.

Угол – это геометрическая фигура, которую составляют два несовпадающих луча с общим началом и соответствующая внутренняя область угла.

Следует отметить, что второе определение угла строже первого, так как содержит больше условий. Однако не следует отметать первое определение угла, также не следует рассматривать первое и второе определения угла по отдельности. Поясним этот момент. Когда речь идет об угле как о геометрической фигуре, то под углом понимается фигура, составленная двумя лучами с общим началом. Если же возникает необходимость провести какие-либо действия с этим углом (например, измерение угла), то под углом уже следует понимать два луча с общим началом и внутренней областью (иначе возникла бы двоякая ситуация из-за наличия как внутренней так и внешней области угла).

Дадим еще определения смежных и вертикальных углов.

Определение.

Смежные углы – это два угла, у которых одна сторона общая, а две другие образуют развернутый угол.

Из определения следует, что смежные углы дополняют друг друга до развернутого угла.

Определение.

Вертикальные углы – это два угла, у которых стороны одного угла являются продолжениями сторон другого.

На рисунке изображены вертикальные углы.

Очевидно, что две пересекающиеся прямые образуют четыре пары смежных углов и две пары вертикальных углов.

Сравнение углов.

В этом пункте статьи мы разберемся с определениями равных и неравных углов, а также в случае неравных углов разъясним, какой угол считается большим, а какой меньшим.

Напомним, что две геометрические фигуры называются равными, если их можно совместить наложением.

Пусть нам даны два угла. Приведем рассуждения, которые помогут нам получить ответ на вопрос: «Равны эти два угла или нет»?

Очевидно, что мы всегда можем совместить вершины двух углов, а также одну сторону первого угла с любой из сторон второго угла. Совместим сторону первого угла с той стороной второго угла, чтобы оставшиеся стороны углов оказались по одну сторону от прямой, на которой лежат совмещенные стороны углов. Тогда, если две другие стороны углов совместятся, то углы называются равными .


Если же две другие стороны углов не совместятся, то углы называются неравными , причем меньшим считается тот угол, который составляет часть другого (большим является тот угол, который полностью содержит другой угол).


Очевидно, что два развернутых угла равны. Также очевидно, что развернутый угол больше любого неразвернутого угла.

Измерение углов.

Измерение углов основывается на сравнении измеряемого угла с углом, взятым в качестве единицы измерения. Процесс измерения углов выглядит так: начиная от одной из сторон измеряемого угла, его внутреннюю область последовательно заполняют единичными углами, плотно укладывая их один к другому. При этом запоминают количество уложенных углов, которое и дает меру измеряемого угла.

Фактически, в качестве единицы измерения углов может быть принят любой угол. Однако существует множество общепринятых единиц измерения углов, относящихся к различным областям науки и техники, они получили специальные названия.

Одной из единиц измерения углов является градус .

Определение.

Один градус – это угол, равный одной сто восьмидесятой части развернутого угла.

Градус обозначают символом «», следовательно, один градус обозначается как .

Таким образом, в развернутом угле мы можем уложить 180 углов в один градус. Это будет выглядеть как половинка круглого пирога, разрезанная на 180 равных кусочков. Очень важно: «кусочки пирога» плотно укладываются один к другому (то есть, стороны углов совмещаются), причем сторона первого угла совмещается с одной стороной развернутого угла, а сторона последнего единичного угла совпадет с другой стороной развернутого угла.

При измерении углов выясняют, сколько раз градус (или другая единица измерения углов) укладывается в измеряемом угле до полного покрытия внутренней области измеряемого угла. Как мы уже убедились, в развернутом угле градус укладывается ровно 180 раз. Ниже приведены примеры углов, в которых угол в один градус укладывается ровно 30 раз (такой угол составляет шестую часть развернутого угла) и ровно 90 раз (половина развернутого угла).


Для измерения углов, меньших одного градуса (или другой единицы измерения углов) и в случаях, когда угол не удается измерить целым числом градусов (взятых единиц измерения), приходится использовать части градуса (части взятых единиц измерения). Определенные части градуса получили специальные названия. Наибольшее распространение получили, так называемые, минуты и секунды.

Определение.

Минута – это одна шестидесятая часть градуса.

Определение.

Секунда – это одна шестидесятая часть минуты.

Иными словами, в минуте содержится шестьдесят секунд, а в градусе – шестьдесят минут (3600 секунд). Для обозначения минут используют символ «», а для обозначения секунд – символ «» (не путайте со знаками производной и второй производной). Тогда при введенных определениях и обозначениях имеем , а угол, в котором укладываются 17 градусов 3 минуты и 59 секунд, можно обозначить как .

Определение.

Градусной мерой угла называется положительное число, которое показывает сколько раз градус и его части укладываются в данном угле.

Например, градусная мера развернутого угла равна ста восьмидесяти, а градусная мера угла равна .

Для измерения углов существуют специальные измерительные приборы, наиболее известным из них является транспортир.

Если известно и обозначение угла (к примеру, ) и его градусная мера (пусть 110 ), то используют краткую запись вида и говорят: «Угол АОВ равен ста десяти градусам».

Из определений угла и градусной меры угла следует, что в геометрии мера угла в градусах выражается действительным числом из интервала (0, 180] (в тригонометрии рассматривают углы с произвольной градусной мерой, их называют ). Угол в девяносто градусов имеет специальное название, его называют прямым углом . Угол меньший 90 градусов называется острым углом . Угол больший девяноста градусов называется тупым углом . Итак, мера острого угла в градусах выражается числом из интервала (0, 90) , мера тупого угла – числом из интервала (90, 180) , прямой угол равен девяноста градусам. Приведем иллюстрации острого угла, тупого угла и прямого угла.


Из принципа измерения углов следует, что градусные меры равных углов одинаковы, градусная мера большего угла больше градусной меры меньшего, а градусная мера угла, который составляют несколько углов, равна сумме градусных мер составляющих углов. На рисунке ниже показан угол АОВ , который составляют углы АОС , СОD и DОВ , при этом .

Таким образом, сумма смежных углов равна ста восьмидесяти градусам , так как они составляют развернутый угол.

Из этого утверждения следует, что . Действительно, если углы АОВ и СОD – вертикальные, то углы АОВ и ВОС — смежные и углы СОD и ВОС также смежные, поэтому, справедливы равенства и , откуда следует равенство .

Наряду с градусом удобна единица измерения углов, называемая радианом . Радианная мера широко используется в тригонометрии. Дадим определение радиана.

Определение.

Угол в один радиан – это центральный угол , которому соответствует длина дуги, равная длине радиуса соответствующей окружности.

Дадим графическую иллюстрацию угла в один радиан. На чертеже длина радиуса OA (как и радиуса OB ) равна длине дуги AB , поэтому, по определению угол AOB равен одному радиану.

Для обозначения радианов используют сокращение «рад». Например, запись 5 рад означает 5 радианов. Однако на письме обозначение «рад» часто опускают. К примеру, когда написано, что угол равен пи, то имеется в виду пи рад.

Стоит отдельно отметить, что величина угла, выраженная в радианах, не зависит от длины радиуса окружности. Это связано с тем, что фигуры, ограниченные данным углом и дугой окружности с центром в вершине данного угла, подобны между собой.

Измерение углов в радианах можно выполнять так же, как и измерение углов в градусах: выяснить, сколько раз угол в один радиан (и его части) укладываются в данном угле. А можно вычислить длину дуги соответствующего центрального угла, после чего разделить ее на длину радиуса.

Для нужд практики полезно знать, как соотносятся между собой градусная и радианная меры, так как довольно часть приходится осуществлять . В указанной статье установлена связь между градусной и радианной мерой угла, и приведены примеры перевода градусов в радианы и обратно.

Обозначение углов на чертеже.

На чертежах для удобства и наглядности углы можно отмечать дугами, которые принято проводить во внутренней области угла от одной стороны угла до другой. Равные углы отмечают одинаковым количеством дуг, неравные углы – различным количеством дуг. Прямые углы на чертеже обозначают символом вида «», который изображают во внутренней области прямого угла от одной стороны угла до другой.


Если на чертеже приходится отмечать много различных углов (обычно больше трех), то при обозначении углов кроме обычных дуг допустимо использование дуг какого-либо специального вида. К примеру, можно изобразить зубчатые дуги, или нечто подобное.


Следует отметить, что не стоит увлекаться с обозначением углов на чертежах и не загромождать рисунки. Рекомендуем обозначать только те углы, которые необходимы в процессе решения или доказательства.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.

Чему равен открытый угол. Развернутый, тупой, вертикальный и неразвернутый: виды углов геометрии

Угловая мера

Угол в измеряют в градусной мере (градус, минута, секунда), в оборотах — отношение длины дуги s к длине окружности L , в радианах — отношение длины дуги s к радиусу r ; исторически применялась также градовая мера измерения углов, в настоящее время она почти нигде не используется.

1 оборот = 2π радианам = 360° = 400 градам .

В морской терминологии углы обозначаются румбами .

Типы углов

Смежные углы — острый (a) и тупой (b). Развёрнутый угол (c)

Кроме этого, рассматривается угол между гладкими кривыми в точке касания: по определению, его величина равна величине угла между касательными к кривым.

Wikimedia Foundation . 2010 .

Смотреть что такое «Развернутый угол» в других словарях:

    Угол, равный двум прямым. *РАЗВЕРТКА поверхности фигура, получающаяся в плоскости при таком совмещении точек данной поверхности с этой плоскостью, при котором длины линий остаются неизменными. Развертка кривой см. Эвольвента … Большой Энциклопедический словарь

    угол — ▲ разность направление (в пространстве) угол протяженность поворота от одного направления к другому; разность направлений; часть полного оборота (# наклона. образовывать #). наклон. наклонный. отклонение. уклониться (дорога уклонилась вправо).… …

    Угол — Углы: 1 общего вида; 2 смежные; 3 прилежащие; 4 вертикальные; 5 развернутый; 6 прямой, острый и тупой; 7 между кривыми; 8 между прямой и плоскостью; 9 между скрещивающимися прямыми (не лежащими в одной плоскостью) прямыми. УГОЛ, геометрическая… … Иллюстрированный энциклопедический словарь

    Геометрическая фигура, состоящая из двух различных лучей, выходящих из одной точки. Лучи наз. сторонами У., а их общее начало вершиной У. Пусть [ ВА),[ ВС) стороны угла, В его вершина, плоскость, определяемая сторонами У. Фигура делит плоскость… … Математическая энциклопедия

    Угол, равный двум прямым. * * * РАЗВЕРНУТЫЙ УГОЛ РАЗВЕРНУТЫЙ УГОЛ, угол, равный двум прямым … Энциклопедический словарь

    Раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера

    1) Замкнутая ломаная линия, именно: если различные точки, никакие последовательные три из к рых не лежат на одной прямой, то совокупность отрезков наз. многоугольником (см. рис. 1). М. могут быть пространственными или плоскими (ниже… … Математическая энциклопедия

    поперек — ▲ под углом максимум, косой угол поперечный. поперек под прямым углом. . прямой угол угол максимального отклонения; угол, равный своему смежному; четверть оборота. перпендикуляр. перпендикулярный находящийся под прямым углом. перпендикулярно.… … Идеографический словарь русского языка

    градус — а, м. 1) Единица измерения плоского угла, равная 1/90 прямого угла или соответственно 1/360 окружности. Угол в 90 градусов называется прямым углом. Развернутый угол составляет 180 градусов. 2) Единица измерения температурного интервала, имеющая… … Популярный словарь русского языка

    Теорема Шварца Кристоффеля важная теорема в теории функций комплексного переменного, носит название немецких математиков Карла Шварца и Элвина Кристоффеля. Очень важной с практической точки зрения является проблема о конформном… … Википедия

Что такое угол?

Углом называют фигуру, образованную двумя лучами, выходящими из одной точки (рис. 160).
Лучи, образующие угол , называют сторонами угла, а точку, из которой они выходят, — вершиной угла.
На рисунке 160 сторонами угла являются лучи ОА и ОБ, а его вершиной — точка О. Этот угол обозначают так: АОВ.

При записи угла в середине пишут букву, обозначающую его вершину. Угол можно обозначить и одной буквой — названием его вершины.

Например, вместо «угол АОВ» пишут короче: «угол О».

Вместо слова «угол» пишут знак .

Например, AОВ, O.

На рисунке 161 точки С и D лежат внутри угла АОВ, точки X и У лежат вне этого угла, а точки М и Н — на сторонах угла.

Как и все геометрические фигуры, углы сравниваются с помощью наложения.

Если один угол можно наложить на другой так, что они совпадут, то эти углы равны.

Например, на рисунке 162 ABC = MNK.

Из вершины угла СОК (рис. 163) проведен луч ОР. Он разбивает угол СОК на два угла — СОР и РОК. Каждый из этих углов меньше угла СОК.

Пишут: COP

Прямой и развернутый угол

Два дополнительных друг другу луча образуют развернутый угол. Стороны этого угла вместе составляют прямую линию, на которой лежит вершина развернутого угла (рис. 164).

Часовая и минутная стрелки часов образуют в 6 ч развернутый угол (рис. 165).

Согнем два раза пополам лист бумаги, а потом развернем его (рис. 166).

Линии сгиба образуют 4 равных угла. Каждый из этих углов равен половине развернутого угла. Такие углы называют прямыми.

Прямым углом называют половину развернутого угла.

Чертежный треугольник



Для построения прямого угла пользуются чертежным треугольником (рис. 167). Чтобы построить прямой угол, одной из сторон которого является луч ОЛ, надо:

а) расположить чертежный треугольник так, чтобы вершина его прямого угла совпала с точкой О, а одна из сторон пошла по лучу ОА;

б) провести вдоль второй стороны треугольника луч ОВ.

В результате получим прямой угол АОВ.

Вопросы к теме

1.Что такое угол?
2.Какой угол называют развернутым?
3.Какие углы называют равными?
4.Какой угол называют прямым?
5.Как строят прямой угол с помощью чертежного треугольника?

Нам с вами уже известно, что любой угол делит плоскость на две части. Но, в случае, если у угла его обе стороны лежат на одной прямой, то такой угол называется развернутым. То есть, у развернутого угла одна его сторона является продолжением его другой стороны угла.

Теперь давайте посмотрим на рисунок, на котором как раз и изображен развернутый угол О.


Если мы возьмем и проведем из вершины развернутого угла луч, то он разделит данный развернутый угол еще на два угла, которые будут иметь одну общую сторону, а другие два угла будут составлять прямую. То есть, с одного развернутого угла мы получили два смежных.

Если мы возьмем развернутый угол и проведем биссектрису, то эта биссектриса разделит развернутый угол на два прямых угла.

А, в том случае, если мы из вершины развернутого угла проведем произвольный луч, который не является биссектрисой, то такой луч разделит развернутый угол на два угла, один из которых будет острым, а другой тупым.

Свойства развернутого угла

Развернутый угол обладает такими свойствами:

Во-первых, стороны развёрнутого угла являются антипараллельными и образуют прямую;
во-вторых, развернутый угол равен 180°;
в-третьих, два смежных угла образуют развернутый угол;
в-четвертых, развернутый угол составляет половину полного угла;
в-пятых, полный угол будет равен сумме двух развёрнутых углов;
в-шестых, половина развернутого угла составляет прямой угол.

Измерение углов

Чтобы измерить любой угол, для этих целей чаще всего используют транспортир, у которого единица измерения равна одному градусу. При измерении углов следует помнить, что любой угол имеет свою определенную градусную меру и естественно эта мера больше нуля. А развернутый угол, как нам уже известно, равен 180 градусам.

То есть, если мы с вами возьмем любую плоскость круга и разделим ее радиусами на 360 равных частей, то 1/360 часть данного круга будет являться угловым градусом. Как вы уже знаете, что градус обозначается определенным значком, который имеет такой вид: « ° ».

Теперь мы также знаем, что один градус 1° = 1/360 части круга. Если угол равен плоскости круга и составляет 360 градусов, то такой угол является полным.

А теперь мы возьмем, и плоскость круга поделим с помощью двух радиусов, лежащих на одной прямой линии, на две равные части. То в этом случае, плоскость полукруга составит половину полного угла, то есть 360: 2 = 180°. Мы с вами получили угол, который равен полуплоскости круга и имеет 180°. Это и есть развернутый угол.

Практическое задание

1613. Назовите углы, изображенные на рисунке 168. Запишите их обозначения.


1614. Начертите четыре луча: ОА, ОВ, ОС и OD. Запишите названия шести углов, сторонами которых являются эти лучи. На сколько частей эти лучи делят плоскость ?

1615. Укажите, какие точки на рисунке 169 лежат внутри угла КОМ, Какие точки лежат вне этого угла? Какие точки лежат на стороне OK, a какие — на стороне ОМ?

1616. Начертите угол MOD и проведите внутри него луч ОТ. Назовите и обозначьте углы, на которые этот луч делит угол MOD.

1617. Минутная стрелка за 10 мин повернулась на угол АОВ, за следующие 10 мин — на угол ВОС, а еще за 15 мин — на угол COD. Сравните углы АОВ и ВОС, ВОС и COD, АОС и АОВ, АОС и COD (рис. 170).

1618. Изобразите с помощью чертежного треугольника 4 прямых угла в разных положениях.

1619. С помощью чертежного треугольника найдите на рисунке 171 прямые углы. Запишите их обозначения.

1620. Укажите прямые углы в классной комнате.

а) 0,09 200; б) 208 0,4; в) 130 0,1 + 80 0,1.

1629. Сколько процентов от 400 составляет число 200; 100; 4; 40; 80; 400; 600?

1630. Найдите пропущенное число:

а) 2 5 3 б) 2 3 5
13 6 12 1
2 3? 42?

1631. Начертите квадрат, сторона которого равна длине 10 клеток тетради. Пусть этот квадрат изображает поле. Рожь занимает 12% поля, овес — 8%, пшеница — 64%, а остальная часть поля занята гречихой. Покажите на рисунке часть поля, занятую каждой культурой. Сколько процентов поля занимает гречиха?

1632. За учебный год Петя израсходовал 40% купленных в начале года тетрадей, и у него осталось 30 тетрадей. Сколько тетрадей было куплено для Пети в начале учебного года?

1633. Бронза является сплавом олова и меди. Сколько процентов сплава составляет медь в куске бронзы, состоящем из 6 кг олова и 34 кг меди?

1634. Построенный в древности Александрийский маяк, который называли одним из семи чудес света, выше башен Московского Кремля в 1,7 раза, но ниже здания Московского университета на 119 м. Найдите высоту каждого из этих сооружений, если башни Московского Кремля на 49 м ниже Александрийского маяка.

1635. Найдите с помощью микрокалькулятора:

а) 4,5% от 168; в) 28,3% от 569,8;
б) 147,6% от 2500; г) 0,09% от 456 800.

1636. Решите задачу:

1) Площадь огорода 6,4 а. В первый день вскопали 30% огорода, а во второй день — 35% огорода. Сколько аров осталось еще вскопать?

2) У Сережи было 4,8 ч свободного времени. 35% этого времени он потратил на чтение книги, а 40% на просмотр передач по телевизору. Сколько времени у него еще осталось?

1637. Выполните действия:

1) ((23,79: 7,8 — 6,8: 17) 3,04 — 2,04) 0,85;
2) (3,42: 0,57 9,5 — 6,6) : ((4,8 — 1,6) (3,1 + 0,05)).

1638. Начертите угол ВАС и отметьте по одной точке внутри угла, вне угла и на сторонах угла.

1639. Какие из отмеченных на рисунке 172 точек лежат внутри угла АМК.Какая точка лежит внутри угла АМВ> но вне угла АМК.Какие точки лежат на сторонах угла АМК?

1640. Найдите с помощью чертежного треугольника прямые углы на рисунке 173.

1641. Постройте квадрат со стороной 43 мм. Вычислите его периметр и площадь.

1642. Найдите значение выражения:

а) 14,791: а + 160,961: b, если а = 100, b = 10;
б) 361,62с + 1848: d, если с = 100, d =100.

1643. Рабочий должен был изготовить 450 деталей. В первый день он изготовил 60% деталей, а остальные — во второй. Сколько деталей изготовил рабочий во второй день?

1644. В библиотеке было 8000 книг. Через год число их увеличилось на 2000 книг. На сколько процентов увеличилось число книг в библиотеке?

1645. Грузовики в первый день проехали 24% намеченного пути, во второй день — 46% пути, а в третий — остальные 450 км. Сколько километров проехали эти грузовики?

1646. Найдите, сколько составляют:

а) 1% от тонны; в) 5% от 7 т;
б) 1% от литра; г) 6% от 80 км.

1647. Масса детеныша моржа в 9 раз меньше массы взрослого моржа. Какова масса взрослого моржа, если вместе с детенышем их масса равна 0,9 т?

1648. Во время маневров командир оставил 0,3 всех своих солдат охранять переправу, а остальных разделил на 2 отряда для обороны двух высот. В первом отряде было в 6 раз больше солдат, чем во втором. Сколько солдат было в первом отряде, если всего было 200 солдат?

Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений

Углом называется геометрическая фигура, которая состоит из двух различных лучей, исходящих из одной точки. В данном случае, эти лучи называются сторонами угла. Точка, являющаяся началом лучей, называется вершиной угла. На рисунке вы можете увидеть угол с вершиной в точке О , и сторонами k и m .

На сторонах угла отмечены точки А и С. Этот угол можно обозначить как угол AOC. В середине обязательно должно стоять название точки, в которой находится вершина угла. Также существуют и другие обозначения, угол О или угол km. В геометрии вместо слова угол часто пишут специальный значок.

Развернутый и неразвернутый угол

Если у угла обе стороны лежат на одной прямой, то такой угол называется развернутым углом. То есть одна сторона угла является продолжением другой стороны угла. На рисунке нижк представлен развернутый угол О.

Следует отметить, что любой угол, разделяет плоскость на две части. Если угол не является развернутым, то одна из частей называется внутренней областью угла, а другая внешней областью этого угла. На рисунке ниже представлен неразвернутый угол и отмечены внешняя и внутренняя области этого угла.

В случае с развернутым углом любую из двух частей, на которые он делит плоскость, можно считать внешней областью угла. Можно говорить о положении точки относительно угла. Точка может лежать вне угла (во внешней области), может находится на одной из его сторон, либо может лежать внутри угла (во внутренней области).

На рисунке ниже, точка А лежит вне угла О, точка B лежит на одной из сторон угла, а точка С лежит внутри угла.

Измерение углов

Для измерения углов существует прибор называемый транспортиром. Единицей измерения угла является градус . Следует отметить, что каждый угол имеет определенную градусную меру, которая больше нуля.

В зависимости от градусной меры углы делятся на несколько групп.

Угловая мера

Угол в измеряют в градусной мере (градус, минута, секунда), в оборотах — отношение длины дуги s к длине окружности L , в радианах — отношение длины дуги s к радиусу r ; исторически применялась также градовая мера измерения углов, в настоящее время она почти нигде не используется.

1 оборот = 2π радианам = 360° = 400 градам .

В морской терминологии углы обозначаются румбами .

Типы углов

Смежные углы — острый (a) и тупой (b). Развёрнутый угол (c)

Кроме этого, рассматривается угол между гладкими кривыми в точке касания: по определению, его величина равна величине угла между касательными к кривым.

Wikimedia Foundation . 2010 .

Смотреть что такое «Полный угол» в других словарях:

    Неузаконенная внесистемная ед. плоского угла. 1 П. у.= 2ПИ рад 6.283 185 рад (см. Радиан) … Большой энциклопедический политехнический словарь

    Угол вертикальной наводки ствола орудия при стрельбе с учетом углов качки корабля. Определяется приборами центрального артиллерийского поста. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

    Угол горизонтальной наводки ствола орудия при стрельбе с учетом углов качки корабля. Определяется ߑؐѐޑАܐؠцентрального артиллерийского поста. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

    полный механический угол поворота подвижной системы переменного резистора — полный механический угол поворота Полный угол поворота подвижной системы переменного резистора от упора до упора. Примечание Для резисторов, не имеющих упоров, полный механический угол равен максимальному углу между двумя положениями подвижной… … Справочник технического переводчика

    Полный механический угол поворота подвижной системы переменного резистора — 52. Полный механический угол поворота подвижной системы переменного резистора Полный механический угол поворота D. Mechanischer Drehwinkel E. Total mechanical rotation F. Course mécanique totale Полный угол поворота подвижной системы переменного… … Словарь-справочник терминов нормативно-технической документации

    УГОЛ — (1) атаки угол между направлением воздушного потока, набегающего на крыло самолёта, и хордой сечения крыла. От этого угла зависит значение подъёмной силы. Угол, при котором подъёмная сила максимальна, называется критическим углом атаки. У… … Большая политехническая энциклопедия

    УГОЛ, мера наклона между двумя прямыми линиями или плоскостями, а также величины вращательного движения. Полный круг делится на 360° (градусов) иди на 2p радиан. Прямой угол составляет 90° или p/2 радиан. Один градус подразделяется на 60 (минут) … Научно-технический энциклопедический словарь

    Элементы: Drop прыжок с высоты, выполняется с места или из позиции cat leap. Амортизировать падение можно только ногами, или ногами и руками (ну или одной рукой). Spring прыжок через какое либо препятствие, не касаясь его. Например, перелёт через … Википедия

    Идти в полную. Жарг. угол. Признаваться в совершении преступления. Балдаев 1, 169. Два полных, третий не целый. Новг. Ирон. О небольшом количестве людей где л. НОС 2, 76 …

    Жарг. угол. Одобр. Всё в порядке, дела идут хорошо. Б., 159; Быков, 202. /i> Вероятно, из идиш или иврита, где слово является оценкой высшего качества. Елистратов 1994, 537 … Большой словарь русских поговорок

С понятием угол учащиеся знакомятся еще в начальной школе. Но как геометрическую фигуру, имеющую определенные свойства, начинают изучать его с 7-го класса в геометрии. Кажется, довольно простая фигура , что о ней можно сказать. Но, приобретая новые знания, школьники всё больше понимают, что можно узнать о ней довольно интересные факты.

Вконтакте

Когда изучаются

Школьный курс геометрии разделён на два раздела: планиметрию и стереометрию. В каждом из них немалое внимание уделяется углам :

  • В планиметрии дается их основное понятие, происходит знакомство с их видами по величине. Более подробно изучаются свойства каждого вида треугольников. Появляются новые определения для учащихся – это геометрические фигуры, образованные при пересечении двух прямых между собой и пересечении нескольких прямых секущей.
  • В стереометрии изучаются пространственные углы – двугранные и трехгранные.

Внимание! В данной статье рассматриваются все виды и свойства углов именно в планиметрии.

Определение и измерение

Приступая к изучению, первоначально определяют, что такое угол в планиметрии.

Если на плоскости взять определённую точку и провести от нее два произвольных луча, то получим геометрическую фигуру – угол, состоящую из следующих элементов:

  • вершина – та точка, из которой и проводились лучи, обозначается заглавной буквой латинского алфавита;
  • стороны – полупрямые, проведенные из вершины.

Все элементы, образующие рассматриваемую нами фигуру, разбивают плоскость на две части :

  • внутренняя — в планиметрии не превышает 180 градусов;
  • внешняя.

Принцип измерения углов в планиметрии объясняют на интуитивной основе. Для начала знакомят учащихся с понятием развернутый угол.

Важно! Угол называется развернутым, если полупрямые, выходящие из его вершины, образуют прямую линию. Неразвернутый угол это все остальные случаи.

Если его разделить на 180 равных частей, то принято считать меру одной части равной 10. В таком случае говорят, что измерение производится в градусах, а градусная мера такой фигуры составляет 180 градусов.

Основные виды

Виды углов подразделяются по таким критериям, как градусная мера, характер их образования и представленные ниже категории.

По величине

Учитывая величину, углы разделяют на:

  • развернутый;
  • прямой;
  • тупой;
  • острый.

Какой угол называется развернутым, было представлено выше. Определимся с понятием прямого.

Его можно получить при делении развернутого на две равные части. В этом случае легко ответить на вопрос: прямой угол, сколько градусов составляет?

180 градусов развернутого делим на 2 и получаем, что прямой угол равен 90 градусам . Это замечательная фигура, так как многие факты в геометрии связаны именно с ней.

Имеет она и свои особенности в обозначении. Чтобы на рисунке показать прямой угол, его обозначают не дугой, а квадратиком.

Углы, которые получаются при делении произвольным лучом прямого, называют острыми. По логике вещей следует, что острый угол меньше прямого, но его мера отлична от 0 градусов. То есть, он имеет величину от 0 до 90 градусов.

Тупой угол больше прямого, но меньше развернутого. Его градусная мера варьируется в интервале от 90 до 180 градусов.

Данный элемент можно разбить на разные виды рассматриваемых фигур, исключая развёрнутый.

Вне зависимости от того, как разбивается неразвернутый угол, всегда пользуются базовой аксиомой планиметрии — «основное свойство измерения».

При разделении угла одним лучом или несколькими, градусная мера данной фигуры равна сумме мер углов, на которые она разбита.

На уровне 7-го класса виды углов по их величине на этом заканчиваются. Но для повышения эрудиции можно добавить, что существуют и другие разновидности, которые обладают градусной мерой больше 180 градусов.Их называют выпуклыми.

Фигуры при пересечении прямых

Следующие типы углов, с которыми знакомятся учащиеся – элементы, образованные при пересечении двух прямых. Фигуры, которые размещаются друг напротив друга, называют вертикальными. Их отличительное свойство – они равны.

Элементы, которые прилегают к одной и той же прямой, называют смежными. Теорема, отображающая их свойство, говорит о том, что смежные углы в сумме дают 180 градусов .

Элементы в треугольнике

Если рассматривать фигуру как элемент в треугольнике, то углы подразделяют на внутренний и внешний. Треугольник ограничен тремя отрезками и состоит из трёх вершин. Углы, расположенные внутри треугольника при каждой вершине, называют внутренними .

Если взять любой внутренний элемент при любой вершине и продлить любую сторону, то угол, который образовался и является смежным с внутренним, называется внешним. Эта пара элементов имеет следующее свойство: их сумма равна 180 градусам.

Пересечение двух прямых секущей

Пересечение прямых

При пересечении двух прямых секущей также образуются углы , которые принято распределять по парам. Каждая пара элементов имеет свое название. Выглядит это следующим образом:

  • внутренние накрест лежащие:∟4 и ∟6, ∟3 и ∟5;
  • внутренние односторонние: ∟4 и ∟5, ∟3 и ∟6;
  • соответствующие: ∟1 и ∟5, ∟2 и ∟6, ∟4 и ∟8, ∟3 и ∟7.

В том случае, когда секущая пересекает две

Прямой, тупой, острый и развернутый угол. Виды углов Как выглядит острый угол

    Острый угол- это тот угол, градусная мера которого меньше 90 градусов. Прямой угол- это тот угол, градусная мера которого 90 градусов. Тупой угол- это тот угол, градусная мера которого больше 90 градусов. Определить каждый угол можно с помощью транспортира или линейки.

    Острый угол — от нуля до 90 градусов (не включительно).

    Выглядят они вот так

    Прямой угол равен 90 градусам, его стороны перпендикулярны друг другу.

    Есть ещ тупые углы — от 90 градусов до 180, вот так они выглядят:

    Какой перед вами угол, в общем-то, можно определить quot;на глазquot;, но если нужны точные градусы, нужно пользоваться транспортиром.

    Элементарно просто, берем уголок, или линейку или транспортир, можно и все вместе. С транспортиром все просто, уведите соответствующие отметки, то есть 90%- прямой угол; то что больше 90%-91,99,120,170 называется тупым углом; в свою очередь, то что меньше 90%-89, 75, 40,15 называется острым углом. Ошибиться практически невозможно.

    Угол образованный пересечением двух перпендикулярных прямых называется прямым. Также прямой угол может возникнуть при делении окружности на ровные четыре части (1/4 окружности).

    Прямой угол равен 90 градусам.

    Когда стороны угла совпадают, такой угол называется нулевым

    Нулевой угол равен 0 градусам.

    Все углы, значения в градусах которых больше нулевого и меньше прямого называется острыми.

    Острый угол — больше 0 градусов и меньше 90 градусов.

    Если стороны угла лежат в противоположных направлениях и образуют прямую, такой угол называется развернутым и равен он 180 градусам.

    Углы, значения в градусах которых больше прямого и меньше развернутого называются тупыми.

    Тупой угол — больше 90 градусов и меньше 180 градусов.

    Всех их объединяет одно:

    острый, прямой и тупой углы — все они выпуклые .

    Острым называется угол, величина которого меньше 90 градусов.

    Прямой угол с раствором 90 градусов.

    Тупым называется угол, величина которого больше 90 градусов, но меньше 180 градусов.

    Прямой угол сразу видно на глаз.

    Вс достаточно просто. Проведм аналогию с обычными часами. Если одну из стрелок установить так, чтобы она указывала на двенадцать часов, а другою, чтоб указывала на три — то они образуют прямой угол в девяносто градусов. Если же начать двигать стрелку указывающую на три часа в обратном направлении(в двухчасовой отметки на циферблате) — то она будет образовывать, вместе со второй стрелкой, острые углы(менее 90 градусов). Когда же стрелки будут указывать в одну точку — они образуют нулевой угол в ноль градусов.А если вернуть вторую стрелку к исходной(трехчасовой отметке) и начать передвигать е вперед по циферблату — то вплоть до шестичасовой отметки она вместе с первой будут образовывать тупые углы(более 90 градусов). Когда стрелки будут указывать, одна на 12, а другая на 6 — это будет, так называемый, разврнутый угол в 180 градусов.

    В этом вопросе нужно отталкиваться от прямого угла:

    1.Прямой угол равен 90 градусов

    2.Все углы которые меньше прямого угла, то есть меньше 90 градусов, считаются острыми.

    К примеру, углы 89 градусов, 60 градусов, 30 градусов.

    3.Все углы, которые больше прямого угла, то есть больше 90 градусов, считаются тупыми.

    К примеру, 91 градус, 120 градусов, 179 градусов -тупые углы

    Еще нужно учесть, что угол равный 180 градусов называется развернутым .

    Это геометрия 7-го класса. Возможно даже и раньше в школе проходят, точно не помню. Для измерения величины угла используют транспортир. Так вот, прямой угол равен 90 градусов, острый угол всегда меньше 90 градусов (даже на 1 градус), а тупой угол всегда больше 90 градусов.

    Острый угол — это угол меньше 90.

    Тупой угол — это угол больше 90, но меньше 180.

    Прямой угол — это угол 90.

    Есть ещ разврнутый угол, то есть угол, находящийся в диапазоне между 180 и 360.

    Если угол больше 360, то чтобы узнать, какой угол, следует отнять от значения этого угла 360 и посмотреть, что останется. Если вс равно больше, то повторить эту операцию нужное число раз.

    Угол 0, также как и 180 с одной стороны используются в расчтах как угол, но фактически являются началом отрезка или линии, а не углом.

    Если брать треугольники, то их углы должны находиться в диапазоне между 0 и 180, так как при таких углах треугольника (0 и 180) это будет уже не треугольник, а отрезок, а при бльших углах треугольника не получится.

    Прямой угол — это угол 90 градусов, встречается в таких четырехугольниках, как квадрат и прямоугольник.

    Тупой угол — это угол, градусная мера которого больше 90 градусов, но меньше 180, встречается в ромбе, многоугольгике, произвольных параллелограммах.

    Острый угол — это угол до 90 градусов, его, например, нет в квадрате.

Интервью о любовных треугольниках и геометрии любви.

Как они появляются и как в них живут.

Время влюблённости несёт не только романтику, но иногда и большие проблемы — если нежданное чувство возникло в семье у партнёров, но совсем не друг к другу.

Взрослая игра

— Это явление, наверное, вечная проблема семейных пар?

Почти во всех многостраничных любовных романах прошлых веков, да и нынешнего, можно обнаружить описание душевных метаний из-за жизни в любовных треугольниках. Когда она любит одного, но живёт с другим, а он любит её, но встречается с другой.

Я не понимаю, когда говорят, что такого раньше не было. И нельзя сказать, что сейчас любовных треугольников стало больше. Любовные треугольники — это великолепная и самая интересная взрослая игра. Лучше, чем компьютерные игры, сильнее, чем наркотики.

— Как получаются любовные треугольники?

Прежде всего это форма сложных отношений, признак кризиса между людьми, которые живут вместе. Присутствие третьего, как ни странно, делает эти отношения устойчивей. Ведь треугольник — самая устойчивая фигура в геометрии. А в психотерапии есть принцип табуретки: табуретка никогда не будет стоять на двух ножках, для устойчивости нужна хотя бы третья.

Поэтому во время переживания кризиса в семье каждый из её участников в определённый момент может начать искать того человека, с которым будет чуть лучше, комфортней. И дело совсем не в сексе, а в человеческих отношениях.

— Как выглядит кризис отношений?

Живёт, к примеру, пара, в которой начинает происходить что-то, что делает жизнь одного невыносимой. Причина — хроническое недополучение эмоций, внимания, ласки, признания, уважения и так далее. В один прекрасный момент появляется другой человек, который может восполнить этот дефицит.

Я помню, был любопытный случай. Мужчина жил очень долго в браке. У них были дети. И вдруг, неожиданно для себя, как он говорит, начал встречаться с другой женщиной. На приёме у психотерапевта мужчина признался, что не понимает, почему его влечёт к ней. «Она не такая хорошая, как моя жена, она не такая красивая, не такая успешная. Вообще хуже, чем жена. Но я каждый день думаю о ней».

На вопрос «Ч то же вы от неё получаете» клиент ответил: «Я каждый раз слышу, что я хороший и восхитительный». Когда в семье нет открытости, признания, душевной близости, тогда любой человек начинает искать это на стороне.

— А как же случайности, которые тоже описываются в романах?

В случайности я не сильно верю. Когда люди вступают в брак или даже просто начинают жить вместе, они знают, на что подписываются. Мужчина сам выбирает женщину, с которой собирается жить. Тут он встречает другую на стороне и вроде бы нужно принять какое-то решение, но любовный треугольник позволяет оставить всё, как есть. Мужчина понимает, как «удобно» иметь и любовницу, и жену. А женщина видит, как комфортно, когда есть любовник и муж.

Причём за последние года два я заметил, что на приём стало приходить равное количество любовниц, состоящих в отношениях с женатыми мужчинами, и жён, которым изменяют мужья. При этом мужчин с такой темой на консультациях в разы меньше. Это говорит, что мужчине всегда удобней иметь, с одной стороны, официальные сложные отношения с женой, с другой — лёгкие и приятные с любовницей. Но эта ситуация длится до поры, до времени.

Цена комфорта

— Как долго может прожить любовный треугольник? Ведь неправда всегда становится явной.

На моей памяти самый долгий длился 15 лет — столько лет любовница ждала мужчину. Когда ты идёшь на такие отношения, ты должен всегда осознавать, какую цену придётся заплатить, а цена порой бывает слишком высока. Есть стереотип — каждая любовница хочет стать женой.

Чаще встречается ситуация, когда женщина не может долго ждать мужчину, а жена не может долго терпеть измену мужа. На этой почве возникает много слёз, раздражений, переживаний, обид и чувства вины. Исключение из правил — жена с любовницей подружки, которые знают друг о друге, обсуждают своего мужика и всем комфортно и хорошо.

— Как существовать в такой ситуации?

У каждого в любовном треугольнике есть своя роль. Мужчина, жалуясь любовнице на свою жену, ищет в ней спасателя. Всегда приятно, когда тебя спасают от плохой жены. Жена выступает в роли преследователя. Она всё время говорит, что муж плохой, и преследует любовницу, обвиняя почему-то её в разрушении семьи. Причём потом роли меняются, и обманутая жена становится жертвой, огорчаясь, что её обманывают, а муж оказывается в роли спасателя. Все играют, ходят по краю и ждут. Такая жизнь очень сильно захватывает и становится удобной.

Игра по правилам

Правила жизни в любовном треугольнике просты. Один должен другого преследовать, другой должен виноватиться. Первый должен чувствовать огромное удовольствие от того, что тот страдает от угрызений совести — требовать к себе внимания, разрыва отношений, потом страдать, что тот не ушёл, и так далее.

Мужчина при этом чувствует себя примерно так: как же мне со всеми совладать? И является неким перебежчиком между двух сторон. И это ему нравится, ведь если бы игра была не настолько интересной, в неё бы не играли. Она добавляет переживания и снимает напряжение в отношениях. Играть можно бесконечно, но выигрывает тот, кто сдаётся, в смысле, принимает решение первым.

Я рекомендую задать вопросы всем троим: сколько вы готовы ждать изменений в паре, и что вы готовы сделать сами для того, чтобы что-то изменить? Готовы ли вы выйти из неё, если она вам надоела? Насколько вам выгодно играть?

Иногда стоит сдаться, попробовать отойти, отпустить, и тогда треугольник распадается. Ведь он существует, пока вовлечены в него трое.

Из практики

— Чем чаще заканчиваются любовные треугольники? Разводом или сохранением семьи?

При отношениях в любовном треугольнике, если в первые два года развод не состоялся, с большой вероятностью его и не будет. Женщины, встречаясь с женатым мужчиной, думают: «Когда он разведётся, у нас с ним будет крепкая счастливая семья». К сожалению, в 90% случаев это не так. Потому, что роли в любовном треугольнике распределяются чётко, и для мужчины любовница почти никогда не станет женой.

Контекст отношений между любовниками обычно не переходит в отношения мужа и жены, даже если они зарегистрируются, поскольку это требует больших изменений в отношениях, а порою и совсем других отношений. Высока вероятность, что в таком случае мужчина может снова искать себе любовницу.

Кстати

Тема любви насыщена мифами и стереотипами. Например, вокруг абсолютной полигамности и моногамности, которых на самом деле не существует. Потому что каждый вид, и люди тоже, должны развиваться и рожать здоровое потомство. Антропологи, изучая природу людей, пришли к выводу, что мужчины и женщины в равной степени полигамны и моногамны до поиска лучшего партнёра, с которым могут прожить всю жизнь.

Давайте начнем с определения того, что такое угол. Во-первых, он является Во-вторых, он образован двумя лучами, которые называются сторонами угла. В-третьих, последние выходят из одной точки, которую называют вершиной угла. Исходя из этих признаков, мы можем составить определение: угол — геометрическая фигура, которая состоит из двух лучей (сторон), выходящих из одной точки (вершины).

Их классифицируют по градусной величине, по расположению относительно друг друга и относительно окружности. Начнем с видов углов по их величине.

Существует несколько их разновидностей. Рассмотрим подробнее каждый вид.

Основных типов углов всего четыре — прямой, тупой, острый и развернутый угол.

Прямой

Он выглядит так:

Его градусная мера всегда составляет 90 о, иначе говоря, прямой угол — это угол 90 градусов. Только они есть у таких четырехугольников, как квадрат и прямоугольник.

Тупой

Он имеет такой вид:

Градусная мера всегда больше 90 о, но меньше 180 о. Он может встречаться в таких четырехугольниках, как ромб, произвольный параллелограмм, во многоугольниках.

Острый

Он выглядит так:

Градусная мера острого угла всегда меньше 90 о. Он встречается во всех четырехугольниках, кроме квадрата и произвольного параллелограмма.

Развернутый

Развернутый угол имеет такой вид:

В многоугольниках он не встречается, но не менее важен, чем все остальные. Развернутый угол — это геометрическая фигура, градусная мера которой всегда равняется 180º. На нем можно построить проведя из его вершины один или несколько лучей в любых направлениях.

Есть еще несколько второстепенных видов углов. Их не изучают в школах, но знать хотя бы об их существовании необходимо. Второстепенных видов углов всего пять:

1. Нулевой

Он выглядит так:

Само название угла уже говорит о его величине. Его внутренняя область равняется 0 о, а стороны лежат друг на друге так, как показано на рисунке.

2. Косой

Косым может быть и прямой, и тупой, и острый, и развернутый угол. Главное его условие — он не должен равняться 0 о, 90 о, 180 о, 270 о.

3. Выпуклый

Выпуклыми являются нулевой, прямой, тупой, острый и развернутый углы. Как вы уже поняли, градусная мера выпуклого угла — от 0 о до 180 о.

4. Невыпуклый

Невыпуклыми являются углы с градусной мерой от 181 о до 359 о включительно.

5. Полный

Полным является угол с градусной мерой 360 о.

Это все типы углов по их величине. Теперь рассмотрим их виды по расположению на плоскости относительно друг друга.

1. Дополнительные

Это два острых угла, образовывающие один прямой, т.е. их сумма 90 о.

2. Смежные

Смежные углы образуются, если через развернутый, точнее, через его вершину, провести луч в любом направлении. Их сумма равна 180 о.

3. Вертикальные

Вертикальные углы образуются при пересечении двух прямых. Их градусные меры равны.

Теперь перейдем к видам углов, расположенным относительно окружности. Их всего два: центральный и вписанный.

1. Центральный

Центральным является угол с вершиной в центре окружности. Его градусная мера равна градусной мере меньшей дуги, стянутой сторонами.

2. Вписанный

Вписанным называется угол, вершина которого лежит на окружности, и стороны которого ее пересекают. Его градусная мера равна половине дуги, на которую он опирается.

Это все, что касается углов. Теперь вы знаете, что помимо наиболее известных — острого, тупого, прямого и развернутого — в геометрии существует много других их видов.

Каждый угол, в зависимости от его величины, имеет своё название:

Два угла называются смежными , если у них одна сторона общая, а две другие стороны составляют прямую линию:

Углы MOP и PON смежные, так как луч OP — общая сторона, а две другие стороны — OM и ON составляют прямую.

Общая сторона смежных углов называется наклонной к прямой , на которой лежат две другие стороны, только в том случае, когда смежные углы не равны между собой. Если смежные углы равны, то их общая сторона будет перпендикуляром .

Сумма смежных углов равна 180°.

Два угла называются вертикальными , если стороны одного угла дополняют до прямых линий стороны другого угла:

Углы 1 и 3, а также углы 2 и 4 — вертикальные.

Вертикальные углы равны.

Докажем, что вертикальные углы равны:

Сумма ∠1 и ∠2 составляет развёрнутый угол. И сумма ∠3 и ∠2 составляет развёрнутый угол. Значит, эти две суммы равны:

∠1 + ∠2 = ∠3 + ∠2.

В этом равенстве слева и справа есть по одинаковому слагаемому — ∠2. Равенство не нарушится, если это слагаемое в левой и в правой части опустить. Тогда мы получаем.

В любовном треугольнике все углы

    Острый угол- это тот угол, градусная мера которого меньше 90 градусов. Прямой угол- это тот угол, градусная мера которого 90 градусов. Тупой угол- это тот угол, градусная мера которого больше 90 градусов. Определить каждый угол можно с помощью транспортира или линейки.

    Острый угол — от нуля до 90 градусов (не включительно).

    Выглядят они вот так

    Прямой угол равен 90 градусам, его стороны перпендикулярны друг другу.

    Есть ещ тупые углы — от 90 градусов до 180, вот так они выглядят:

    Какой перед вами угол, в общем-то, можно определить quot;на глазquot;, но если нужны точные градусы, нужно пользоваться транспортиром.

    Элементарно просто, берем уголок, или линейку или транспортир, можно и все вместе. С транспортиром все просто, уведите соответствующие отметки, то есть 90%- прямой угол; то что больше 90%-91,99,120,170 называется тупым углом; в свою очередь, то что меньше 90%-89, 75, 40,15 называется острым углом. Ошибиться практически невозможно.

    Угол образованный пересечением двух перпендикулярных прямых называется прямым. Также прямой угол может возникнуть при делении окружности на ровные четыре части (1/4 окружности).

    Прямой угол равен 90 градусам.

    Когда стороны угла совпадают, такой угол называется нулевым

    Нулевой угол равен 0 градусам.

    Все углы, значения в градусах которых больше нулевого и меньше прямого называется острыми.

    Острый угол — больше 0 градусов и меньше 90 градусов.

    Если стороны угла лежат в противоположных направлениях и образуют прямую, такой угол называется развернутым и равен он 180 градусам.

    Углы, значения в градусах которых больше прямого и меньше развернутого называются тупыми.

    Тупой угол — больше 90 градусов и меньше 180 градусов.

    Всех их объединяет одно:

    острый, прямой и тупой углы — все они выпуклые .

    Острым называется угол, величина которого меньше 90 градусов.

    Прямой угол с раствором 90 градусов.

    Тупым называется угол, величина которого больше 90 градусов, но меньше 180 градусов.

    Прямой угол сразу видно на глаз.

    Вс достаточно просто. Проведм аналогию с обычными часами. Если одну из стрелок установить так, чтобы она указывала на двенадцать часов, а другою, чтоб указывала на три — то они образуют прямой угол в девяносто градусов. Если же начать двигать стрелку указывающую на три часа в обратном направлении(в двухчасовой отметки на циферблате) — то она будет образовывать, вместе со второй стрелкой, острые углы(менее 90 градусов). Когда же стрелки будут указывать в одну точку — они образуют нулевой угол в ноль градусов.А если вернуть вторую стрелку к исходной(трехчасовой отметке) и начать передвигать е вперед по циферблату — то вплоть до шестичасовой отметки она вместе с первой будут образовывать тупые углы(более 90 градусов). Когда стрелки будут указывать, одна на 12, а другая на 6 — это будет, так называемый, разврнутый угол в 180 градусов.

    В этом вопросе нужно отталкиваться от прямого угла:

    1.Прямой угол равен 90 градусов

    2.Все углы которые меньше прямого угла, то есть меньше 90 градусов, считаются острыми.

    К примеру, углы 89 градусов, 60 градусов, 30 градусов.

    3.Все углы, которые больше прямого угла, то есть больше 90 градусов, считаются тупыми.

    К примеру, 91 градус, 120 градусов, 179 градусов -тупые углы

    Еще нужно учесть, что угол равный 180 градусов называется развернутым .

    Это геометрия 7-го класса. Возможно даже и раньше в школе проходят, точно не помню. Для измерения величины угла используют транспортир. Так вот, прямой угол равен 90 градусов, острый угол всегда меньше 90 градусов (даже на 1 градус), а тупой угол всегда больше 90 градусов.

    Острый угол — это угол меньше 90.

    Тупой угол — это угол больше 90, но меньше 180.

    Прямой угол — это угол 90.

    Есть ещ разврнутый угол, то есть угол, находящийся в диапазоне между 180 и 360.

    Если угол больше 360, то чтобы узнать, какой угол, следует отнять от значения этого угла 360 и посмотреть, что останется. Если вс равно больше, то повторить эту операцию нужное число раз.

    Угол 0, также как и 180 с одной стороны используются в расчтах как угол, но фактически являются началом отрезка или линии, а не углом.

    Если брать треугольники, то их углы должны находиться в диапазоне между 0 и 180, так как при таких углах треугольника (0 и 180) это будет уже не треугольник, а отрезок, а при бльших углах треугольника не получится.

    Прямой угол — это угол 90 градусов, встречается в таких четырехугольниках, как квадрат и прямоугольник.

    Тупой угол — это угол, градусная мера которого больше 90 градусов, но меньше 180, встречается в ромбе, многоугольгике, произвольных параллелограммах.

    Острый угол — это угол до 90 градусов, его, например, нет в квадрате.

Каждый угол, в зависимости от его величины, имеет своё название:

Два угла называются смежными , если у них одна сторона общая, а две другие стороны составляют прямую линию:

Углы MOP и PON смежные, так как луч OP — общая сторона, а две другие стороны — OM и ON составляют прямую.

Общая сторона смежных углов называется наклонной к прямой , на которой лежат две другие стороны, только в том случае, когда смежные углы не равны между собой. Если смежные углы равны, то их общая сторона будет перпендикуляром .

Сумма смежных углов равна 180°.

Два угла называются вертикальными , если стороны одного угла дополняют до прямых линий стороны другого угла:

Углы 1 и 3, а также углы 2 и 4 — вертикальные.

Вертикальные углы равны.

Докажем, что вертикальные углы равны:

Сумма ∠1 и ∠2 составляет развёрнутый угол. И сумма ∠3 и ∠2 составляет развёрнутый угол. Значит, эти две суммы равны:

∠1 + ∠2 = ∠3 + ∠2.

В этом равенстве слева и справа есть по одинаковому слагаемому — ∠2. Равенство не нарушится, если это слагаемое в левой и в правой части опустить. Тогда мы получаем.

Давайте начнем с определения того, что такое угол. Во-первых, он является Во-вторых, он образован двумя лучами, которые называются сторонами угла. В-третьих, последние выходят из одной точки, которую называют вершиной угла. Исходя из этих признаков, мы можем составить определение: угол — геометрическая фигура, которая состоит из двух лучей (сторон), выходящих из одной точки (вершины).

Их классифицируют по градусной величине, по расположению относительно друг друга и относительно окружности. Начнем с видов углов по их величине.

Существует несколько их разновидностей. Рассмотрим подробнее каждый вид.

Основных типов углов всего четыре — прямой, тупой, острый и развернутый угол.

Прямой

Он выглядит так:

Его градусная мера всегда составляет 90 о, иначе говоря, прямой угол — это угол 90 градусов. Только они есть у таких четырехугольников, как квадрат и прямоугольник.

Тупой

Он имеет такой вид:

Градусная мера всегда больше 90 о, но меньше 180 о. Он может встречаться в таких четырехугольниках, как ромб, произвольный параллелограмм, во многоугольниках.

Острый

Он выглядит так:

Градусная мера острого угла всегда меньше 90 о. Он встречается во всех четырехугольниках, кроме квадрата и произвольного параллелограмма.

Развернутый

Развернутый угол имеет такой вид:

В многоугольниках он не встречается, но не менее важен, чем все остальные. Развернутый угол — это геометрическая фигура, градусная мера которой всегда равняется 180º. На нем можно построить проведя из его вершины один или несколько лучей в любых направлениях.

Есть еще несколько второстепенных видов углов. Их не изучают в школах, но знать хотя бы об их существовании необходимо. Второстепенных видов углов всего пять:

1. Нулевой

Он выглядит так:

Само название угла уже говорит о его величине. Его внутренняя область равняется 0 о, а стороны лежат друг на друге так, как показано на рисунке.

2. Косой

Косым может быть и прямой, и тупой, и острый, и развернутый угол. Главное его условие — он не должен равняться 0 о, 90 о, 180 о, 270 о.

3. Выпуклый

Выпуклыми являются нулевой, прямой, тупой, острый и развернутый углы. Как вы уже поняли, градусная мера выпуклого угла — от 0 о до 180 о.

4. Невыпуклый

Невыпуклыми являются углы с градусной мерой от 181 о до 359 о включительно.

5. Полный

Полным является угол с градусной мерой 360 о.

Это все типы углов по их величине. Теперь рассмотрим их виды по расположению на плоскости относительно друг друга.

1. Дополнительные

Это два острых угла, образовывающие один прямой, т.е. их сумма 90 о.

2. Смежные

Смежные углы образуются, если через развернутый, точнее, через его вершину, провести луч в любом направлении. Их сумма равна 180 о.

3. Вертикальные

Вертикальные углы образуются при пересечении двух прямых. Их градусные меры равны.

Теперь перейдем к видам углов, расположенным относительно окружности. Их всего два: центральный и вписанный.

1. Центральный

Центральным является угол с вершиной в центре окружности. Его градусная мера равна градусной мере меньшей дуги, стянутой сторонами.

2. Вписанный

Вписанным называется угол, вершина которого лежит на окружности, и стороны которого ее пересекают. Его градусная мера равна половине дуги, на которую он опирается.

Это все, что касается углов. Теперь вы знаете, что помимо наиболее известных — острого, тупого, прямого и развернутого — в геометрии существует много других их видов.

Интервью о любовных треугольниках и геометрии любви.

Как они появляются и как в них живут.

Время влюблённости несёт не только романтику, но иногда и большие проблемы — если нежданное чувство возникло в семье у партнёров, но совсем не друг к другу.

Взрослая игра

— Это явление, наверное, вечная проблема семейных пар?

Почти во всех многостраничных любовных романах прошлых веков, да и нынешнего, можно обнаружить описание душевных метаний из-за жизни в любовных треугольниках. Когда она любит одного, но живёт с другим, а он любит её, но встречается с другой.

Я не понимаю, когда говорят, что такого раньше не было. И нельзя сказать, что сейчас любовных треугольников стало больше. Любовные треугольники — это великолепная и самая интересная взрослая игра. Лучше, чем компьютерные игры, сильнее, чем наркотики.

— Как получаются любовные треугольники?

Прежде всего это форма сложных отношений, признак кризиса между людьми, которые живут вместе. Присутствие третьего, как ни странно, делает эти отношения устойчивей. Ведь треугольник — самая устойчивая фигура в геометрии. А в психотерапии есть принцип табуретки: табуретка никогда не будет стоять на двух ножках, для устойчивости нужна хотя бы третья.

Поэтому во время переживания кризиса в семье каждый из её участников в определённый момент может начать искать того человека, с которым будет чуть лучше, комфортней. И дело совсем не в сексе, а в человеческих отношениях.

— Как выглядит кризис отношений?

Живёт, к примеру, пара, в которой начинает происходить что-то, что делает жизнь одного невыносимой. Причина — хроническое недополучение эмоций, внимания, ласки, признания, уважения и так далее. В один прекрасный момент появляется другой человек, который может восполнить этот дефицит.

Я помню, был любопытный случай. Мужчина жил очень долго в браке. У них были дети. И вдруг, неожиданно для себя, как он говорит, начал встречаться с другой женщиной. На приёме у психотерапевта мужчина признался, что не понимает, почему его влечёт к ней. «Она не такая хорошая, как моя жена, она не такая красивая, не такая успешная. Вообще хуже, чем жена. Но я каждый день думаю о ней».

На вопрос «Ч то же вы от неё получаете» клиент ответил: «Я каждый раз слышу, что я хороший и восхитительный». Когда в семье нет открытости, признания, душевной близости, тогда любой человек начинает искать это на стороне.

— А как же случайности, которые тоже описываются в романах?

В случайности я не сильно верю. Когда люди вступают в брак или даже просто начинают жить вместе, они знают, на что подписываются. Мужчина сам выбирает женщину, с которой собирается жить. Тут он встречает другую на стороне и вроде бы нужно принять какое-то решение, но любовный треугольник позволяет оставить всё, как есть. Мужчина понимает, как «удобно» иметь и любовницу, и жену. А женщина видит, как комфортно, когда есть любовник и муж.

Причём за последние года два я заметил, что на приём стало приходить равное количество любовниц, состоящих в отношениях с женатыми мужчинами, и жён, которым изменяют мужья. При этом мужчин с такой темой на консультациях в разы меньше. Это говорит, что мужчине всегда удобней иметь, с одной стороны, официальные сложные отношения с женой, с другой — лёгкие и приятные с любовницей. Но эта ситуация длится до поры, до времени.

Цена комфорта

— Как долго может прожить любовный треугольник? Ведь неправда всегда становится явной.

На моей памяти самый долгий длился 15 лет — столько лет любовница ждала мужчину. Когда ты идёшь на такие отношения, ты должен всегда осознавать, какую цену придётся заплатить, а цена порой бывает слишком высока. Есть стереотип — каждая любовница хочет стать женой.

Чаще встречается ситуация, когда женщина не может долго ждать мужчину, а жена не может долго терпеть измену мужа. На этой почве возникает много слёз, раздражений, переживаний, обид и чувства вины. Исключение из правил — жена с любовницей подружки, которые знают друг о друге, обсуждают своего мужика и всем комфортно и хорошо.

— Как существовать в такой ситуации?

У каждого в любовном треугольнике есть своя роль. Мужчина, жалуясь любовнице на свою жену, ищет в ней спасателя. Всегда приятно, когда тебя спасают от плохой жены. Жена выступает в роли преследователя. Она всё время говорит, что муж плохой, и преследует любовницу, обвиняя почему-то её в разрушении семьи. Причём потом роли меняются, и обманутая жена становится жертвой, огорчаясь, что её обманывают, а муж оказывается в роли спасателя. Все играют, ходят по краю и ждут. Такая жизнь очень сильно захватывает и становится удобной.

Игра по правилам

Правила жизни в любовном треугольнике просты. Один должен другого преследовать, другой должен виноватиться. Первый должен чувствовать огромное удовольствие от того, что тот страдает от угрызений совести — требовать к себе внимания, разрыва отношений, потом страдать, что тот не ушёл, и так далее.

Мужчина при этом чувствует себя примерно так: как же мне со всеми совладать? И является неким перебежчиком между двух сторон. И это ему нравится, ведь если бы игра была не настолько интересной, в неё бы не играли. Она добавляет переживания и снимает напряжение в отношениях. Играть можно бесконечно, но выигрывает тот, кто сдаётся, в смысле, принимает решение первым.

Я рекомендую задать вопросы всем троим: сколько вы готовы ждать изменений в паре, и что вы готовы сделать сами для того, чтобы что-то изменить? Готовы ли вы выйти из неё, если она вам надоела? Насколько вам выгодно играть?

Иногда стоит сдаться, попробовать отойти, отпустить, и тогда треугольник распадается. Ведь он существует, пока вовлечены в него трое.

Из практики

— Чем чаще заканчиваются любовные треугольники? Разводом или сохранением семьи?

При отношениях в любовном треугольнике, если в первые два года развод не состоялся, с большой вероятностью его и не будет. Женщины, встречаясь с женатым мужчиной, думают: «Когда он разведётся, у нас с ним будет крепкая счастливая семья». К сожалению, в 90% случаев это не так. Потому, что роли в любовном треугольнике распределяются чётко, и для мужчины любовница почти никогда не станет женой.

Контекст отношений между любовниками обычно не переходит в отношения мужа и жены, даже если они зарегистрируются, поскольку это требует больших изменений в отношениях, а порою и совсем других отношений. Высока вероятность, что в таком случае мужчина может снова искать себе любовницу.

Кстати

Тема любви насыщена мифами и стереотипами. Например, вокруг абсолютной полигамности и моногамности, которых на самом деле не существует. Потому что каждый вид, и люди тоже, должны развиваться и рожать здоровое потомство. Антропологи, изучая природу людей, пришли к выводу, что мужчины и женщины в равной степени полигамны и моногамны до поиска лучшего партнёра, с которым могут прожить всю жизнь.

Прямой угол — определение, свойства, примеры

Прямой угол – это угол, равный 90 градусам. Это наиболее часто встречающийся ракурс в нашей повседневной жизни. Его можно увидеть в углах комнаты, краях ящиков, на экране мобильного телефона и так далее. Стороны квадрата и прямоугольника всегда образуют прямой угол друг с другом. В радианах это представлено как π/2. Давайте поговорим об этом подробнее в этой статье.

Определение прямого угла

Прямой угол равен 90°.Когда два луча пересекаются и образуют угол 90° или перпендикулярны друг другу в точке пересечения, говорят, что они образуют прямой угол. Они имеют форму буквы «L». На следующем рисунке лучи AB и BC образуют прямой угол ABC.

Прямоугольные формы

Прямой угол похож на букву L. Его можно наблюдать во многих формах, например, угол, образуемый стрелками часов в 15:00. Мы также можем увидеть их в таких местах, как:

  • Края двери.
  • Четыре грани телевизора.
  • Уголок стула.
  • Мобильный экран.

Попробуйте определить и заметить прямые углы в следующих фигурах.

Калькулятор прямого угла

Некоторыми устройствами, используемыми для измерения прямого угла, являются транспортиры, пробные угольники и наборные угольники. Калькуляторы прямых углов используются для проверки, является ли данный угол прямым углом или нет. Мы выравниваем стороны заданных квадратов с заданным углом и проверяем, совпадает ли угол со сторонами заданных квадратов.Точно так же мы используем пробный квадрат, чтобы проверить, соответствует ли заданный угол форме сторон пробного квадрата. Базовая линия транспортира должна совпасть с основанием заданного неизвестного угла, а затем мы проверяем, проходит ли другой луч угла точно от отметки 90 градусов на транспортире или нет. Если луч проходит через отметку 90 градусов, то это прямой угол, иначе нет.

Наиболее часто используемые калькуляторы прямых углов показаны ниже:

Треугольник с прямым углом

Есть еще одно место, где используется прямой угол, и это прямоугольный треугольник.Если среди трех углов треугольника один угол равен 90°, то такой треугольник называется прямоугольным. Поскольку сумма трех внутренних углов прямоугольного треугольника составляет 180°, и если один угол всегда равен 90°, то сумма двух других углов всегда должна составлять 90°.

Советы и рекомендации по прямому ракурсу:

Вот список нескольких моментов, которые следует помнить при изучении прямого угла:

  • Прямые углы можно легко измерить транспортирами, угольниками и пробными угольниками.
  • Наиболее распространенными примерами прямых углов являются края двери, четыре края телевизора, 9:30 аналоговых часов и угол ноутбука.

► Связанные темы по прямоугольному

Ознакомьтесь со следующими страницами, посвященными прямому углу.

Часто задаваемые вопросы о прямом угле

Что такое прямой угол?

Прямой угол – это угол, значение которого равно 90°. Когда два луча пересекаются и образуют в точке пересечения угол 90°, говорят, что они образуют прямой угол.Это наиболее часто встречающийся ракурс в нашей повседневной жизни. Мы можем видеть его во многих местах, таких как углы окна, края шкафа, экран мобильного телефона и так далее.

Сколько градусов составляет прямой угол?

Прямой угол равен 90 градусов. Он образуется, когда две линии пересекаются друг с другом под углом 90 градусов.

Какой угол прямой?

Когда два луча встречаются под углом 90°, они образуют прямой угол. В радианах это представлено как π/2.

Что такое прямой угол для детей?

Дети могут соотнести прямой угол с буквой L. Это угол между ногой и плечом буквы L. Если букву L можно образовать в любом месте данной фигуры, ее можно назвать прямым углом.

Прямой угол только 90 градусов?

Да, прямой угол всегда равен 90°. Он никогда не может быть иным, чем этот угол, и может быть представлен как π/2 в радианах. Любой угол меньше 90° является острым углом, а угол больше 90° может быть тупым, прямым или полным углом.

Как измерить прямой угол?

Мы можем использовать транспортиры, квадраты или квадраты для измерения прямого угла. Просто поместите их правильно и проверьте размер и положение.

Что такое прямой угол? — [Определение, факты и примеры]

Что такое прямой угол?

В геометрии, когда два луча встречаются в одной точке, они образуют угол. Точка встречи двух лучей называется вершиной.

Углы измеряются в градусах (символ: ˚)

Некоторыми распространенными типами углов являются острые, прямые и тупые углы.

Прямоугольный

Когда две прямые пересекаются друг с другом под углом 90˚ или перпендикулярны друг другу в точке пересечения, они образуют прямой угол. Прямой угол обозначается символом ∟.

На данном изображении показаны различные образования прямого угла.

Мы умеем находить правильные углы в формах.

Квадрат или прямоугольник имеет четыре угла с прямыми углами.

Примеры прямых углов окружают нас повсюду.Мы можем видеть прямые углы в углах комнаты, книги, куба, окна и в некоторых других местах.

Наиболее распространенными прямыми углами являются вертикальная и горизонтальная линии. Однако пересекающиеся друг с другом диагональные линии также образуют прямые углы. Если провести диагонали квадрата, ромба или воздушного змея, угол при их пересечении равен 90 градусов и, следовательно, является прямым углом.

Пример ромба и воздушного змея, диагонали которых пересекаются под прямым углом.

Как нарисовать прямой угол с помощью транспортира?

1 . Начните с рисования горизонтальной линии.

2 . Теперь поместите транспортир на горизонтальную линию.

3 . Отмерьте 90˚ и отметьте его точкой.

4 . Теперь с помощью масштаба проведите прямую линию от этой точки до горизонтальной линии.

  Интересные факты

  •  Все прямые углы одинаковы.

  • Все прямые углы соответствуют четверти полного оборота.

  •  Все треугольники с одним прямым углом называются прямоугольными.

Как найти угол в прямоугольном треугольнике

Если вы считаете, что контент, доступный с помощью Веб-сайта (как это определено в наших Условиях обслуживания), нарушает одно или более ваших авторских прав, пожалуйста, сообщите нам, предоставив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному агенту, указанному ниже.Если университетские наставники примут меры в ответ на ан Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, предоставившей такой контент средства самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении может быть направлено стороне, предоставившей контент, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно искажать информацию о том, что продукт или деятельность нарушают ваши авторские права.Таким образом, если вы не уверены, что содержимое находится на Веб-сайте или на который ссылается Веб-сайт, нарушает ваши авторские права, вам следует сначала обратиться к адвокату.

Чтобы подать уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись владельца авторских прав или лица, уполномоченного действовать от его имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, как вы утверждаете, нарушает ваши авторские права, в \ достаточно подробно, чтобы преподаватели университета могли найти и точно идентифицировать этот контент; например, мы требуем а ссылку на конкретный вопрос (а не только название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; и Заявление от вас: (а) что вы добросовестно полагаете, что использование контента, который, как вы утверждаете, нарушает ваши авторские права не разрешены законом или владельцем авторских прав или его агентом; б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство вы либо владельцем авторских прав, либо лицом, уполномоченным действовать от их имени.

Отправьте жалобу нашему назначенному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

 

Прямой угол: что это такое, градусы, примеры и многое другое

В сегодняшней статье мы узнаем, что такое прямой угол, сколько у него градусов и его свойства. Мы также будем практиковаться на некоторых примерах.

Что такое прямой угол?

Угол — это часть плоскости между двумя лучами, соединенными вершиной.

Прямой угол — это общее пространство между двумя лучами, соединенными вершиной с размерами 180º .

Мы также можем думать об угле как об амплитуде вращения линии над точкой. Поэтому прямой угол имеет амплитуду 180º луча над точкой.

Сколько градусов у прямого угла?

Прямой угол измеряется 180 градусами (180º).Амплитуда угла может быть измерена транспортиром.

Наиболее распространенные транспортиры имеют амплитуду 180º, другими словами, прямой угол.

Как измерить угол

Чтобы освежить память о том, как амплитуда угла измеряется с помощью транспортира, посмотрите следующий видеоролик с интерактивным учебным пособием Smartick. В нем кратко объясняются различные типы углов, в том числе прямой угол.

Когда угол прямой?

Угол прямой, если два луча, составляющие угол, находятся в одном и том же положении по разные стороны от точки.То есть они образуют форму линии .

Прямой угол – это когда луч делает половину оборота вокруг точки. Таким образом, он заканчивается в том же положении, но указывает в противоположную сторону. Другими словами, если вы стоите и смотрите на дверь и поворачиваетесь на 180º, дверь окажется позади вас. Вот почему мы говорим, что человек «сделал 180» , когда он полностью передумал. Например, если в один прекрасный день друг говорит нам, что кошки — его любимые животные, а в другой день они ему совсем не нравятся, мы можем сказать, что он развернулся на 180 градусов.

Свойства прямых углов

  • Измеряет ровно 180º.
  • Формирует линию.
  • Поворот на 180º всегда заканчивается в противоположном направлении.
  • Граница между выпуклыми (острыми, прямыми и тупыми углами) и вогнутыми углами.
  • Это сумма двух прямых углов.
  • Это половина полного угла.
  • Если мы посмотрим на углы внутри окружности, они разделят окружность на две равные половины и будут соответствовать диаметру окружности.
  • Когда сумма острого угла и тупого угла равна прямому углу, эти углы считаются дополнительными .

Кроме того, в других сообщениях блога вы можете узнать больше об углах и различных типах.

Примеры прямых углов

Мы часто находим примеры таких ракурсов в нашей повседневной жизни.

  • Вы можете найти его, прочитав часы на аналоговых часах. В какое время стрелки часов образуют прямой угол?

  • Когда вы вытягиваете руки или танцор вытягивает ноги, вы можете увидеть такие углы.

  • Это всего лишь несколько примеров, можете ли вы придумать больше?

Практика

Посмотрите на эти упражнения Smartick с этим типом угла и подумайте, как их решить. Решения вы найдете в конце этого раздела.

Решения

  1. Да, это так. Если вы посмотрите внимательно, само упражнение дает вам примеры прямых и непрямых углов.
  2. Это не прямой угол. Образующийся угол острый и выпуклый.
  3. Это угол, равный 180º.

Если вы хотите получить доступ к реальным интерактивным упражнениям, зарегистрируйтесь в Smartick, онлайн-методе обучения математике для детей в возрасте от 4 до 14 лет, и начните прямо сегодня!

Подробнее:

Веселье — любимый способ обучения нашего мозга

Дайан Акерман

Smartick — увлекательный способ изучения математики
  • 15 минут веселья в день
  • Адаптируется к уровню вашего ребенка
  • Миллионы учеников с 2009 года

Группа создания контента.
Мультидисциплинарная и мультикультурная команда, состоящая из математиков, учителей, профессоров и других специалистов в области образования!
Они стремятся создать наилучший математический контент.

Инструмент преобразования

градусов в прямые углы

Угол

Угловая минута

Угловая минута [‘] — это единица измерения угла. Он равен 60 угловым секундам или 1/60 градуса. Ее часто называют угловой минутой, чтобы отличить ее от минуты времени.

Угловая секунда

Секунда или угловая секунда [«] — это единица измерения угла. Она равна 1/60 угловой минуты. Ее также называют угловой секундой, чтобы отличить ее от секунды времени.

Градус

Градус [°] — стандартная единица измерения угла, равная 1/360 окружности, или 60 минутам, или 3600 секундам, или примерно 0,017 453 293 радиана.Эта единица введена греческим геометром Гиппархом из Никеи (ок. 180—ок. 125 г. до н.э.), разработавшим первые тригонометрические таблицы.

Восьмой круг

1/8 круга или восьмой круг равен 360/8 = 45°.

Полный круг

Полный круг — традиционная единица измерения плоского угла. Он равен 360 градусам.

гон

гон используется для измерения угла, равного 0,9 градуса.

Градиан

Град — единица измерения угла. Он равен 1/400 окружности или 0,9°. Этот агрегат был представлен во Франции. Это называется классом в первые годы существования метрической системы.А град — это английская версия, по-видимому, введенная инженерами примерно в 1900 году.

Helf Circle

1/2 окружности или полукруга равны 360°/2 = 180°.

Мил

Мил — единица измерения угла. Он используется в армии для артиллерийских установок. Он равен 1/1000 прямого угла, 0,1 градуса, 0,09° или 5,4 угловых минуты. Недавно различные армии НАТО использовали мил, равный 1/1600 прямого угла, или 0,05625°.

Точка

точки используется в угловом измерении равном 11.25 градусов.

Квадрант

Квадрант — единица измерения плоского угла. Он равен 1/4 полного круга или 90 градусов.

Четверть окружности

1/4 окружности или четверть окружности равна 360°/4 = 90°.

Радиан

Радиан — единица измерения угла. Он широко используется в математике и естественных науках. Он равен 1/(2 пи) окружности или 57,295779°. Эта единица была названа в честь Джеймса Томсона, профессора математики Королевского колледжа в Белфасте, Северная Ирландия, в 1873 году.

Оборот

Оборот – это единица измерения угла, равная 360° или 2×, определяемая как полный оборот вокруг окружности.

Прямой угол

Прямой угол — это угол, который делит пополам угол, образованный двумя половинами прямой линии.

Секстант

Секстант — единица плоского угла. Он равен 1/6 полного круга или 60 градусов.

Знак

Знак

используется при измерении угла, равного 30 градусам.

Шестой круг

1/6 круга или шестой круг равен 360°/6 = 60°.

Поворот

Поворот используется при угловом измерении, равном 360 градусам.

Двенадцатый круг

1/12 круга или двенадцатый круг равен 360°/12 = 30°.

Сколько градусов составляют два прямых угла? — Ответы на все

Сколько градусов составляют два прямых угла?

Итак, количество градусов в 2-х прямых углах =2×90∘=180∘

Сколько градусов составляет угол?

Всякий раз, когда вы видите угол, нарисованный вот так с рамкой в ​​углу, это прямой угол.Другими словами, он измеряет 90 градусов.

Сколько градусов в пяти прямых углах?

50 градусов в прямом углу 5 на 9.

Почему мы называем это прямым углом?

Термин «прямой угол» представляет собой кальку латинского слова «angulus rectus». «Прямая» означает «вертикальный», здесь «вертикальный» относится к вертикали, перпендикулярной горизонтальной базовой линии. Прямой угол называется прямым, потому что он возникает только тогда, когда одна его сторона (перпендикулярная) перпендикулярна другой (основанию).

Почему угол называется прямым?

Термин «право под прямым углом» происходит от значения «право как должное» или в соответствии со справедливостью или равенством. Это происходит от того, как изначально определялся прямой угол. При пересечении двух прямых они образуют два угла.

Всегда ли угол равен 90 градусам?

Точнее, если луч положить так, что его конец лежит на прямой, а прилежащие к нему углы равны, то они прямые. Как поворот, прямой угол соответствует четверти оборота (то есть четверти полного круга).Прямой угол равен 90 градусов. Большинство углов составляют 90 градусов!

Является ли угол 45 градусов острым?

Угол 45 градусов является острым углом. Это половина прямого угла или угла 90 градусов.

Угол наклона транспортира 90 градусов?

Транспортир, показывающий угол 90 градусов.

Почему есть прямой угол, но нет левого угла?

Во-первых, почему мы используем слово «право» под прямым углом, а не «лево», потому что слово «право» происходит от латинского слова «прямой», что означает «прямой» или «вертикальный».Во-вторых, когда мы рисуем перпендикулярно линии, созданный угол будет равен 90 градусам, поэтому он называется прямым углом, что означает прямой.

Может ли треугольник иметь прямой угол?

Пояснение: Сумма углов треугольника равна 180. В прямоугольном треугольнике один угол равен 90.

Сколько углов по 90 градусов составляет прямая?

В прямом угле 180 градусов, и, конечно же, помните, что прямая линия может идти в любом направлении. Но если есть какая-то точка на прямой линии, на всем протяжении от одной стороны линии до другой.Это 180 градусов, в прямом углу 90 градусов.

Как называется угол 45 градусов?

острый угол
Угол 45 градусов является острым углом. Это половина прямого угла или угла 90 градусов.

Какой угол больше 90 градусов?

Тупые углы
Тупые углы измеряют более 90 градусов.

Что такое угол 90 градусов при выстреле?

Подкожная инъекция, также известная как инъекция SQ, вводится в жировой слой ткани непосредственно под кожей.Вы можете сделать укол под углом 90 градусов, если между большим и указательным пальцами можно захватить 2 дюйма кожи.

Какой угол больше 90 градусов?

Прямые углы равны 90 градусов. Тупые углы измеряют больше 90 градусов.

Сколько треугольников у прямого угла?

Объяснение: Поскольку сумма всех углов в любом треугольнике равна 180°, прямой угол может быть только один, если все остальные углы больше нуля.

Может ли прямоугольный треугольник иметь 2 прямых угла?

Нет, в треугольнике не может быть двух прямых углов.У треугольника ровно 3 стороны, а сумма внутренних углов равна 180°. Итак, если треугольник имеет два прямых угла, третий угол должен быть равен 0 градусов, что означает, что третья сторона будет пересекаться с другой стороной.

Является ли прямая линия 90 градусов?

В прямом угле 180 градусов, и, конечно же, помните, что прямая линия может идти в любом направлении. Это 180 градусов, в прямом углу 90 градусов.

Почему геометрия не «метрирована»? Почему 360 градусов, а не 1, 10, 100 или даже 1000? | Примечания и вопросы


СПЕКУЛЯТИВНАЯ НАУКА

Почему геометрия не была «измерена»? Почему 360 градусов, а не 1, 10, 100 или даже 1000?

Дэвид Хьюз, Торонто, Канада

  • На самом деле градусы были «метрически измерены», в технике углы часто измеряются в радианах, при этом длина окружности выражается как 2Π радиан.

    Угловое измерение в градусах или радианах дано по отношению к окружности, 360 градусов или 2 пи радиана являются мерой одного полного оборота. Если бы нам нужно было разделить окружность на что-то иное, чем 360 градусов, нам пришлось бы изменить и наши календари — древние греки выяснили, что в году 360 дней, и что, следовательно, мы продвигаемся вокруг солнца на один градус в секунду. день — они были довольно близко, учитывая, что они работали по наблюдению в одиночку!

    Питер Кларк, Кембридж, Великобритания

  • Мы унаследовали 360 градусов от вавилонян, но многие древние общества очень интересовались астрономией, а в некоторых (мегалитическая Британия?) было 366 градусов по окружности.Это логично, так как Земля обращается вокруг своей оси 366 раз в год. Их измерения кажутся взаимосвязанными, а не произвольными, как метрически разделенный круг. Вавилоняне, вероятно, сократили это число до 360, так как оно намного легче делится на множество факторов.

    Вивьен, Лондон, Великобритания

  • И вавилоняне, и китайцы использовали шестидесятеричную систему счисления, что означает, что у них было 59 цифр, а не 9 (ноль был изобретен намного позже). Хотя у них была цифра 10, поэтому их число 11 по-прежнему записывалось как цифра 10 рядом с цифрой 1.Происхождение этого точно неизвестно, хотя на них явно повлияла астрономия и тот факт, что в году (почти) 360 дней. Они также придумали шестьдесят минут в часе, 24 часа в сутки. Это всего лишь еще один пример отставания от школьных стандартов: мы ожидаем, что школьники будут знать только 9 цифр (и ноль)

    Камьяр, Самос, Греция