Ромб свойства признаки определение – Определение и свойства ромба — урок. Геометрия, 8 класс.

Ромб и квадрат

Давайте ещё раз вспомним, что параллелограмм – это четырёхугольник, у которого противоположные стороны попарно параллельны. А прямоугольник – это параллелограмм, у которого все углы прямые.

На этом уроке мы поговорим о таких геометрических фигурах как ромб и квадрат.

Итак, ромб – это параллелограмм, у которого все стороны равны.

Так как ромб является параллелограммом, то он обладает всеми его свойствами, о которых мы с вами говорили на предыдущих уроках.

Теорема. Свойства диагоналей ромба. У ромба диагонали взаимно перпендикулярны и лежат на биссектрисах его углов.

Доказательство.

Рассмотрим

.

, следовательно,  – медиана.

.

 – равнобедренный.

Медиана – биссектриса, высота.

Следовательно, диагональ  и лежит на биссектрисе 

.

Что и требовалось доказать.

Теперь сформулируем и докажем признаки ромба.

Теорема. Признак ромба. Если у параллелограмма диагонали взаимно перпендикулярны, то этот параллелограмм – ромб.

Доказательство.

Рассмотрим  и .

Сторона  – общая, , так как диагонали  т.

 делятся пополам

 по двум катетам.

Следовательно, .

, .

Следовательно, .

 – ромб.

Что и требовалось доказать.

И ещё один признак.

Теорема. Признак ромба. Если у параллелограмма одна из диагоналей лежит на биссектрисе угла, то этот параллелограмм – ромб.

Доказательство.

.

как накр. лежащие при и секущей .

Следовательно, .

 – равнобедренный, то есть

.

,.

Следовательно, .

 – ромб.

Что и требовалось доказать.

Задача. Чему равны углы ромба, если его меньшая диагональ равна стороне?

Решение.

 – равносторонний.

.

,

.

Ответ: , , , .

Решим ещё одну задачу.

Задача. В ромбе

 перпендикуляр , проведённый из вершины  делит сторону  пополам. Найдите градусную меру .

Решение.

 – прямоугольный.

.

, то есть  .

.

, – внутр. одностор. при   и секущей .

.

Так как , то .

.

.

Ответ: .

Теперь поговорим о квадрате.

Квадрат – это прямоугольник, у которого все стороны равны. Также можно сказать, что квадрат – это ромб, у которого все углы прямые.

Эти два определения равносильны. Из каждого следует, что квадрат – это  параллелограмм, который одновременно является и прямоугольником, и ромбом.

Следовательно, квадрат обладает всеми свойствами и прямоугольника, и ромба.

Основные свойства квадрата:

1.Все углы квадрата прямые.

2. Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и лежат на биссектрисах его углов.

Задача. На рисунке  – квадрат, . Найдите

.

Решение.

.

,  – смежные, то есть  .

Так как , то .

.

 – равнобедренный, тогда .

,

,

,

.

,,

то есть ,.

Ответ: ,.

videouroki.net

Что такое ромб. Признаки и свойства ромба

Что такое ромб? Известно, что это равносторонний четырехугольник, который также является параллелограммом. А если у ромба все углы равны, то эту фигуру уже можно назвать квадратом. А все противолежащие стороны ромба являются параллельными.

Что такое ромб

Ромб — это равносторонний параллелограмм. Само слово греческого происхождения, и означает «бубен». Это сегодня бубны круглой формы, раньше же их изготавливали в форме квадрата. Именно поэтому ромб имеет такое название. Также имеет наименование как геральдическая фигура. Обратимся к словарю Ушакова. Что же такое ромб? По сравнению с квадратом, это косоугольник с равными углами. А также квадрат — это частный случай ромба. Иногда даже говорят, что эти фигуры можно сравнить.

геометрическая фигура

Также с ромбом связано изображение масти «бубна» на картах, которые используют в азартных играх. Также эту фигуру применяли для изображения на знаменах, флагах и различных гербах, но она встречается намного реже, чем другие геометрические конструкции. А сегодня ромб также используется для изображения баскетбольного поля. Что такое ромб, нам известно, но давайте рассмотрим свойства и признаки этой фигуры.

Свойства ромба

  • Ромб представляется параллелограммом, все стороны которого лежат противоположно, являются равными и параллельными.
  • Диагонали этой математической конструкции пересекаются лишь под прямым углом и делятся пополам в точке пересечения. То есть эти диагонали делят ромб на четыре абсолютно равных треугольника.
  • Биссектрисами углов являются именно диагонали.
  • Совокупность квадратов диагоналей равняется квадрату стороны, которая умножена на четыре.
  • Вершинами прямоугольника являются середины четырех сторон этой конструкции под названием ромб.
  • Диагонали фигуры перпендикулярны осями своей симметрии.
  • Окружность с лежащим на пересечении центром можно вписать в любую фигуру под названием ромб.
  • Что такое диагональ ромба? Это линия, которая соединяет его углы.

Признаки ромба

Мы узнали, что такое ромб, но помимо свойств у этой фигуры существуют еще и признаки. Любой параллелограмм будет являться ромбом, если будет выполнять хоть одно из приведенных ниже условий:

  • Две смежные стороны ромба являются равными по отношению друг к другу.
  • Диагонали этой математической конструкции могут пересекаться лишь под прямым углом и никак иначе.
  • Одна из диагоналей обязательно делит пополам все ее углы, которые в ней содержаться.
как нарисовать ромб
  • А если предположить, что нам не известно, что четырехугольник является параллелограммом, но известно, что стороны фигуры равны, тогда уверенно можно сказать: четырехугольник — это ромб.
  • Это часть прямой, которая образует угол равный 90 градусам при пересечении противолежащей стороны.
  • Что такое высота ромба? Это часть прямой, которая образует угол 90 градусов, пересекая противолежащую сторону.

Площадь ромба

Нам известно, что такое ромб, каковы его свойства и признаки, но как же найти его площадь? Для того чтобы найти площадь ромба, следует поделить пополам произведения диагоналей этой фигуры. Так как ромб — это тот же параллелограмм, площадь такой математической конструкции равна произведению высоты на длину его сторон. Помимо этого, площадь фигуры можно найти при вычислении по формулам со смежными сторонами или же с радиусом вписанной окружности. Радиус вписанной окружности выражается через диагонали. Для того чтобы вычислить периметр ромба, следует умножить длину одной из четырех сторон на четыре.

площадь ромба

А для того, чтобы изобразить эту фигуру в виде рисунка, нужно соблюдать нижеприведенные наставления. Ведь при построении этой фигуры у многих появляются трудности. Так вот, для того чтобы аккуратно изобразить ромб, следует для начала нарисовать первую диагональ, следом перпендикулярно вторую, в конце соединить края отрезков. Нужно очень внимательно и аккуратно рисовать эту фигуру, для того чтобы вместо ромба вы не нарисовали квадрат.

fb.ru

Прямоугольник, ромб, квадрат

Предварительные сведения

Для начала разберемся с таким понятием, как параллелограмм.

Определение 1

Четырехугольником называется многоугольник, у которого $4$ вершины.

Четырехугольник имеет $4$ стороны, $4$ вершины и $4$ угла. Стороны, не имеющие общих вершин, называют противоположными сторона четырехугольника, в противном случае они называются смежными. Углы, не имеющие общих сторон, также называют смежными.

Введем теперь, непосредственно, определение параллелограмма.

Определение 2

Параллелограмм — это четырехугольник, в котором противоположные стороны параллельны между собой.

Напомним основные свойства параллелограмма.

Свойство 1: Противоположные стороны и углы параллелограмма равны, соответственно, между собой.

Свойство 2: Диагонали, проведенные в параллелограмме, делятся пополам их точкой пересечения.

Рассмотрим далее подробно понятия прямоугольника, ромба и квадрата.

Прямоугольник

Определение 3

Параллелограмм, у которого есть прямой угол, называется прямоугольником (рис. 1).

Прямоугольник

Рисунок 1. Прямоугольник

Очевидно, что в прямоугольнике все четыре угла равняются ${90}^0$

Рассмотрим два свойства прямоугольника.

Свойство 3: Обе диагонали прямоугольника равны между собой.

Доказательство.

Пусть нам дан прямоугольник $ABCD$. Проведем в нем диагонали $AC$ и $BD$ (рис. 2). Докажем, что $AC=BD$.

Прямоугольник

Рисунок 2.

Так как прямоугольник по определению $1$ является параллелограммом, то по свойству $1$ параллелограмма, имеем

Так как $\angle B=\angle A={90}^0$, а $AB$ — общая сторона, то по I признаку равенства треугольников, $\triangle ABD=\triangle ABC$. Следовательно

Свойство доказано.

Свойство 4 (признак прямоугольника): Если обе диагонали параллелограмма равны между собой, то он является прямоугольником.

Доказательство.

Пусть нам дан прямоугольник $ABCD$. Проведем в нем диагонали $AC$ и $BD$. Пусть они пересекаются в точке $R$ (рис. 2).

Из свойства $2$ параллелограмма и равенства его диагоналей, получим

Так как $\angle DRC=\angle ARB$, как вертикальные, то по $I$ признаку равенства треугольников $\triangle DRC=\triangle ARB$. Значит, $\angle RDC=\angle RCD=\angle RAB={\rm \ }\angle RBA$.

Так как $\angle DRA=\angle CRB$, как вертикальные, то по I признаку равенства треугольников $\triangle DRA=\triangle CRB$. Значит, $\angle RDA=\angle RAD=\angle RCB={\rm \ }\angle RBC$.

Следовательно, $\angle A=\angle B=\angle C=\angle D$.

Так как сумма углов четырехугольника равняется ${360}^0$, то

Значит, по определению $3$, $ABCD$ является прямоугольником.

Свойство доказано.

Ромб

Определение 4

Параллелограмм, у которого все его четыре стороны равны между собой, называется ромбом (рис. 3).

Ромб

Рисунок 3. Ромб

Рассмотрим свойство ромба.

Свойство 5: Диагонали ромба являются биссектрисами его углов и перпендикулярны друг другу.

Доказательство.

Пусть нам дан ромб $ABCD$. Проведем в нем диагонали $AC$ и $BD$. Пусть они пересекаются в точке $E$ (рис. 4).

Ромб

Рисунок 4.

Так как ромб является прямоугольником с равными сторонами, то

Следовательно, по третьему признаку равенства треугольников,

Это доказывает, что диагонали являются биссектрисами углов ромба.

Так как $AB=AD$, то треугольник $ABD$ равнобедренный, а так как $AE$ — медиана треугольника $ABD$, то $AC$ перпендикулярно $BD$.

Свойство доказано.

Квадрат

Прямоугольник, у которого все его четыре стороны равны между собой, называется квадратом (рис. 5).

Рисунок 5. Квадрат

Очевидно, что квадрат — частный случай ромба. Следовательно, квадрат обладает всеми свойствами прямоугольника и ромба.

Пример задачи

Пример 1

Найти периметр квадрата, диагональ которого равняется $10$.

Решение.

Обозначим сторону квадрата через $a$. Тогда, по теореме Пифагора

\[a^2+a^2=100\] \[{2a}^2=100\] \[a^2=50\] \[a=5\sqrt{2}\] \[P=4a=20\sqrt{2}\]

Ответ: $20\sqrt{2}$.

spravochnick.ru

Квадрат. Определение и свойства

Квадрат — это четырехугольник, имеющий равные стороны и углы.

Квадрат ABCD

Диагональ квадрата — это отрезок, соединяющий две его противоположные вершины.

Параллелограмм, ромб и прямоугольник так же являются квадратом, если они имеют прямые углы, одинаковые длины сторон и диагоналей.

Свойства квадрата

1. Длины сторон квадрата равны.

AB=BC=CD=DA

Квадрат с равными сторонами

2. Все углы квадрата прямые.

\angle ABC = \angle BCD = \angle CDA = \angle DAB = 90^{\circ}

Квадрат с прямыми углами

3. Противолежащие стороны квадрата параллельны друг другу.

AB \parallel CD, BC \parallel AD

4. Сумма всех углов квадрата равна 360 градусов.

\angle ABC + \angle BCD + \angle CDA + \angle DAB = 360^{\circ}

5. Величина угла между диагональю и стороной равна 45 градусов.

\angle BAC = \angle BCA = \angle CAD = \angle ACD = 45^{\circ}

Квадрат с диагональю и углами 45 градусов

Доказательство

Квадрат является ромбом \Rightarrow AC — биссектриса угла A, и он равняется 45^{\circ}. Тогда AC делит \angle A, и \angle C на 2 угла по 45^{\circ}.

6. Диагонали квадрата — тождественны, перпендикулярны и разделяются точкой пересечения пополам.

AO = BO = CO = DO

\angle AOB = \angle BOC = \angle COD = \angle AOD = 90^{\circ}

AC = BD

Квадрат тождественными, перпендикулярными диагоналями

Доказательство

Так как квадрат это прямоугольник \Rightarrow диагонали равны; так как — ромб \Rightarrow диагонали перпендикулярны. А так как — параллелограмм, \Rightarrow диагонали разделены точкой пересечения пополам.

7. Каждая из диагоналей делит квадрат на два равнобедренных прямоугольных треугольника.

\triangle ABD = \triangle CBD = \triangle ABC = \triangle ACD

8. Обе диагонали делят квадрат на 4 равнобедренных прямоугольных треугольника.

\triangle AOB = \triangle BOC = \triangle COD = \triangle AOD

9. Если сторона квадрата равна a, то, диагональ будет равна a \sqrt{2}.

Квадрат с диагональю равной a\sqrt2

Доказательство

Доказывается по теореме Пифагора. Применим ее к \triangle ADC.

AC^{2} = AD^{2} + DC^{2} = a^{2} + a^{2} = 2^{2}

Отсюда: AC = \sqrt{2}\cdot a

10. Центром квадрата, а так же вписанной в него и описанной окружности является точка пересечения диагоналей

Квадрат с диагоналями, вписанной и описанной окружностью

academyege.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *