Виниловая таблица «Ряд активности кислот, электроотрицательности элементов, электрохимических напряжений » 100х140 см (Код: Хим-153)
Внимание! Описание ниже, это справочный материал, он не указан в данной виниловой таблице!
НЕБОЛЬШОЙ КУРС ЭЛЕКТРОХИМИИ МЕТАЛЛОВ
Мы уже познакомились с электролизом растворов хлоридов щелочных металлов и получением металлов с помощью расплавов. Сейчас попробуем на нескольких несложных опытах изучить некоторые закономерности электрохимии водных растворов, гальванических элементов, а также познакомиться с получением защитных гальванических покрытий.
Электрохимические методы применяются в современной аналитической химии, служат для определения важнейших величин теоретической химии.
Наконец, коррозия металлических предметов, которая наносит большой урон народному хозяйству, в большинстве случаев является электрохимическим процессом.
РЯД НАПРЯЖЕНИЯ МЕТАЛЛОВ
Основополагающим звеном для понимания электрохимических процессов является ряд напряжения металлов. Металлы можно расположить в ряд, который начинается с химически активных и заканчивается наименее активными благородными металлами:
Так выглядит, по новейшим представлениям, ряд напряжений для важнейших металлов и водорода . Если из двух любых металлов ряда изготовить электроды гальванического элемента, то на предшествующем в ряду материале появится отрицательное напряжение.
Величина напряжения (электрохимический потенциал) зависит от положения элемента в ряду напряжении и от свойств электролита.
Сущность ряда напряжения установим из нескольких простых опытов, для которых нам понадобятся источник тока и электрические измерительные приборы.
Металлические покрытия, «деревья» и «ледяные узоры» без тока
Растворим около 10 г кристаллического сульфата меди в 100 мл воды и погрузим в раствор стальную иглу или кусочек железной жести. (Рекомендуем предварительно до блеска зачистить железо тонкой наждачной шкуркой.) Через короткое время железо покроется красноватым слоем выделившейся меди. Более активное железо вытесняет медь из раствора, причем железо растворяется в виде ионов, а медь выделяется в виде металла. Процесс продолжается до тех пор, пока раствор находится в контакте с железом. Как только медь покроет всю поверхность железа, он практически прекратится. В этом случае образуется довольно пористый слой меди, так что защитные покрытия без применения тока получать нельзя.
В свою очередь, медь может вытеснять металлы, стоящие ниже в ряду напряжений, то есть менее активные. На тонкую полоску листовой меди или на расплющенную медную проволоку (предварительно зачистив поверхность до блеска) нанесем несколько капель раствора нитрата серебра. Невооруженным взглядом можно будет заметить образовавшийся черноватый налет, который под микроскопом в отраженном свете имеет вид тонких игл и растительных узоров (так называемых дендритов).
В общем, любой член ряда напряжения может быть вытеснен из раствора, где он находится в виде иона, и переведен в металлическое состояние. Однако при испытании всевозможных комбинаций, нас может постичь разочарование. Казалось бы, если полоску алюминия погрузить в растворы солей меди, железа, свинца и цинка, на ней должны выделяться эти металлы. Но этого, однако, не происходит. Причина неудачи кроется не в ошибке в ряду напряжений, а основана на особом торможении реакции, которое в данном случае обусловлено тонкой оксидной пленкой на поверхности алюминия. В таких растворах алюминий называют пассивным.
ЗАГЛЯНЕМ ЗА КУЛИСЫ
Чтобы сформулировать закономерности протекающих процессов, мы можем ограничиться рассмотрением катионов, а анионы исключить, так как они сами в реакции не участвуют. (Правда, на скорость осаждения влияет вид анионов.) Если для простоты предположить, что и выделяющийся и растворенный металлы дают двухзарядные катионы, то можно записать:
Me1 + Me22+ = Ме12+ + Ме2
причем для первого опыта Ме
Итак, процесс состоит в обмене зарядами (электронами) между атомами и ионами обоих металлов. Если отдельно рассматривать (в качестве промежуточных реакций) растворение железа или осаждение меди, то получим:
Fe = Fe2+ + 2е—
Сu2+ + 2е— = Сu
Теперь рассмотрим случай, когда металл погружен в воду или в раствор соли, с катионом которой обмен невозможен из-за его положения в ряду напряжений. Несмотря на это, металл стремится перейти в раствор в виде иона. При этом атом металла отдает два электрона (если металл двухвалентный), поверхность погруженного в раствор металла заряжается по отношению к раствору отрицательно, а на границе раздела образуется двойной электрический слой. Эта разность потенциалов препятствует дальнейшему растворению металла, так что процесс вскоре приостанавливается.
Если в раствор погрузить два различных металла, то они оба зарядятся, но менее активный — несколько слабее, в силу того, что его атомы менее склонны к отщеплению электронов.
Сущность гальванического элемента
Проиллюстрируем теперь несколькими опытами приведенные выше несколько абстрактные рассуждения (которые к тому же представляют собой грубое упрощение). Сначала наполним химический стакан вместимостью 250 мл до середины 10%-ным раствором серной кислоты и погрузим в нее не слишком маленькие куски цинка и меди. К обоим электродам припаяем или приклепаем медную проволоку, концы которой не должны касаться раствора.
По полярности клемм прибора можно сделать вывод, что медный электрод является положительным полюсом. Это можно доказать и без прибора, рассмотрев электрохимию процесса. Приготовим в маленьком химическом стакане или в пробирке насыщенный раствор поваренной соли, добавим примерно 0,5 мл спиртового раствора индикатора фенолфталеина и погрузим оба замкнутых проволокой электрода в раствор. Около отрицательного полюса будет наблюдаться слабое красноватое окрашивание, которое вызвано образованием на катоде гидроксида натрия.
В других опытах можно помещать в ячейку различные пары металлов и определять возникающее напряжение. Например, магний и серебро дадут особенно большую разность потенциалов благодаря значительному расстоянию между ними ряду напряжений, а цинк и железо, наоборот, очень маленькую, менее десятой доли вольта. Применяя алюминий, мы не получим из-за пассивации практически никакого тока.
Все эти элементы, или, как говорят электрохимики, цепи, имеют тот недостаток, что при съемке тока на них очень быстро падает напряжение. Поэтому электрохимики всегда измеряют истинную величину напряжения в обесточенном состоянии с помощью метода компенсации напряжения, то есть сравнивая его с напряжением другого источника тока.
Рассмотрим процессы в медно-цинковом элементе несколько подробнее. На катоде цинк переходит в раствор по следующему уравнению:
Zn = Zn2+ + 2е—
На медном аноде разряжаются ионы водорода серной кислоты. Они присоединяют электроны, поступающие по проволоке от цинкового катода и в результате образуются пузырьки водорода:
2Н+ + 2е— = Н2
Через короткий промежуток времени медь покроется тончайшим слоем пузырьков водорода. При этом медный электрод превратится в водородный, а разность потенциалов уменьшится. Этот процесс называют поляризацией электрода. Поляризацию медного электрода можно устранить, добавив в ячейку после падения напряжения немного раствора дихромата калия. После этого напряжение опять увеличится, так как дихромат калия окислит водород до воды. Бихромат калия действует в этом случае как деполяризатор.
На практике применяют гальванические цепи, электроды которых не поляризуются, или цепи, поляризацию которых можно устранить, добавив деполяризаторы.
Этот элемент можно изготовить из стеклянной банки, имеющейся в продаже глиняной ячейки (в крайнем случае используем цветочный горшок, закрыв отверстие в дне) и двух подходящих по размеру электродов.
В процессе работы элемента цинк растворяется с образованием сульфата цинка, а на медном электроде выделяются ионы меди. Но при этом медный электрод не поляризуется и элемент дает напряжение около 1 В. Собственно, теоретически напряжение на клеммах составляет 1,10 В, но при съеме тока мы измеряем несколько меньшую величину, вследствие электрического сопротивления ячейки.
Схема простой ячейки, для которой не требуется пористой перегородки, показана на рисунке. Цинковый электрод расположен в стеклянной банке наверху, а медный — вблизи дна. Вся ячейка наполнена насыщенным раствором поваренной соли. На дно банки насыплем горсть кристаллов сульфата меди. Образующийся концентрированный раствор сульфата меди будет смешиваться с раствором поваренной соли очень медленно. Поэтому при работе элемента на медном электроде будет выделяться медь, а в верхней части ячейки будет растворяться цинк в виде сульфата или хлорида.
Сейчас для батарей используют почти исключительно сухие элементы, которые более удобны в употреблении. Их родоначальником является элемент Лекланше. Электродами служат цинковый цилиндр и угольный стержень. Электролит представляет собой пасту, которая в основном состоит из хлорида аммония. Цинк растворяется в пасте, а на угле выделяется водород. Чтобы избежать поляризации, угольный стержень опускают в полотняный мешочек со смесью из угольного порошка и пиролюзита. Угольный порошок увеличивает поверхность электрода, а пиролюзит действует как деполяризатор, медленно окисляя водород.
Правда, деполяризующая способность пиролюзита слабее, чем у упоминавшегося ранее дихромата калия. Поэтому при получении тока в сухих элементах напряжение быстро падает, они «утомляются» вследствие поляризации. Только через некоторое время происходит окисление водорода пиролюзитом. Таким образом, элементы «отдыхают«, если некоторое время не пропускать ток. Проверим это на батарейке для карманного фонарика, к которой подсоединим лампочку. Параллельно лампе, то есть непосредственно на клеммы, подключим вольтметр.
Сначала напряжение составит около 4,5 В. (Чаще всего в таких батарейках последовательно включены три ячейки, каждая с теоретическим напряжением 1,48 В.) Через некоторое время напряжение упадет, накал лампочки ослабеет. По показаниям вольтметра мы сможет судить, как долго батарейке нужно отдыхать.
Особое место занимают регенерирующие элементы, известные под названием аккумуляторы. В них протекают обратимые реакции, и их можно перезаряжать после разрядки элемента, подключив к внешнему источнику постоянного тока.
В настоящее время наиболее распространены свинцовые аккумуляторы; в них электролитом служит разбавленная серная кислота, куда погружены две свинцовые пластины. Положительный электрод покрыт диоксидом свинца PbO2, отрицательный представляет собой металлический свинец. Напряжение на клеммах составляет примерно 2,1 В. При разрядке на обеих пластинах образуется сульфат свинца, который опять превращается при зарядке в металлический свинец и в пероксид свинца.
НАНЕСЕНИЕ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ
Осаждение металлов из водных растворов с помощью электрического тока является процессом, обратным электролитическому растворению, с которым мы познакомились при рассмотрении гальванических элементов. Прежде всего исследуем осаждение меди, которое используют в медном кулонометре для измерения количества электричества.
Металл осаждается током
Отогнув концы двух пластин из тонкой листовой меди, подвесим их на противоположных стенках химического стакана или, лучше, маленького стеклянного аквариума. Клеммами прикрепим к пластинам провода.
Электролит приготовим по следующему рецепту: 125 г кристаллического сульфата меди, 50 г концентрированной серной кислоты и 50 г спирта (денатурата), остальное — вода до 1 литра. Для этого сначала растворим сульфат меди в 500 мл воды, затем осторожно, маленькими порциями добавим серную кислоту (Нагревание! Жидкость может разбрызгиваться!), после этого вольем спирт и доведем водой до объема 1 л.
Готовым раствором наполним кулонометр и включим в цепь переменное сопротивление, амперметр и свинцовый аккумулятор. С помощью сопротивления отрегулируем ток таким образом, чтобы его плотность составила 0,02-0,01 А/см2 поверхности электродов. Если медная пластина имеет площадь 50 см2, то сила тока должна находиться в пределах 0,5-1 А.
Через некоторое время на катоде (отрицательный электрод) начнет выделяться светло-красная металлическая медь, а на аноде (положительный электрод) медь будет переходить в раствор. Чтобы очистить медные пластины, будем пропускать ток в кулонометре около получаса. Затем вытащим катод, осторожно высушим его с помощью фильтровальной бумаги и точно взвесим. Установим в ячейке электрод, замкнем цепь с помощью реостата и будем поддерживать постоянную силу тока, например 1 А. Через час разомкнем цепь и опять взвесим высушенный катод. При токе 1 А за час работы его масса увеличится на 1,18 г.
Следовательно, количество электричества, равное 1 ампер-часу, при прохождении через раствор может выделить 1,18 г меди. Или в общем: выделившееся количество вещества прямо пропорционально количеству прошедшего через раствор электричества.
Чтобы выделить 1 эквивалент иона, необходимо пропустить через раствор количество электричества, равное произведению заряда электрода е на число Авогадро NA:
е*NA= 1,6021 * 10-19 * 6,0225*1023 = 9,65*104 А*с*моль-1 Эта величина обозначается символом F и называется в честь первооткрывателя количественных законов электролиза числом Фарадея (точное значение F — 96 498 А*с*моль-1). Следовательно, для выделения из раствора данного числа эквивалентов nэ через раствор следует пропустить количество электричества, равное F*nэ А*с*моль-1. Иначе говоря,
I*t = F*nэ Здесь I — ток, t — время прохождения тока через раствор. В разделе «Основы титрования» уже было показано, что число эквивалентов вещества nэ равно произведению числа молей на эквивалентное число:
nэ = n*ZСледовательно:
I*t = F*n*Z
В данном случае Z — заряд ионов (для Ag+Z = 1, для Cu2+Z = 2, для Al3+Z = 3 и т. д.). Если выразить число молей в виде отношения массы к мольной массе (n = m / М), то мы получим формулу, которая позволяет рассчитать все процессы, происходящие при электролизе:
I*t = F*m*Z / M
По этой формуле можно вычислить ток:
I = F*m*Z/(t*M) = 9,65*104*1,18*2 / (3600*63,54) А*с*г*моль/(с*моль*г) = 0,996 А
Если ввести соотношение для электрической работы Wэл
Wэл = U*I*t и Wэл/U = I*t
то, зная напряжение U, можно вычислить:
Wэл = F*m*Z*U/M
Можно также рассчитать, сколько времени необходимо для электролитического выделения определенного количества вещества или сколько вещества выделится за определенное время. Во время опыта плотность тока необходимо поддерживать в заданных пределах. Если она будет меньше 0,01 А/см2, то выделится слишком мало металла, так как будут частично образовываться ионы меди(I). При слишком высокой плотности тока сцепление покрытия с электродом будет слабым и при извлечении электрода из раствора оно может осыпаться.
На практике гальванические покрытия на металлах применяют прежде всего для защиты от коррозии и для получения зеркального блеска.
Кроме того, металлы, особенно медь и свинец, очищают с помощью анодного растворения и последующего выделения на катоде (электролитическое рафинирование).
Чтобы покрыть железо медью или никелем, необходимо сначала тщательно очистить поверхность предмета. Для этого отполируем ее отмученным мелом и последовательно обезжирим разбавленным раствором едкого натра, водой и спиртом. Если предмет покрыт ржавчиной, надо протравить его заранее в 10-15%-ном растворе серной кислоты.
Очищенное изделие подвесим в электролитической ванне (маленький аквариум или химический стакан), где оно будет служить в качестве катода.
Раствор для нанесения медного покрытия содержит в 1 л воды 250 г сульфата меди и 80-100 г концентрированной серной кислоты (Осторожно!). В данном случае анодом будет служить медная пластинка. Поверхность анода примерно должна быть равна поверхности покрываемого предмета. Поэтому надо всегда следить, чтобы медный анод висел в ванне на такой же глубине, как и катод.
Процесс будем проводить при напряжении 3-4 В (две аккумуляторные батареи) и плотности тока 0,02-0,4 А/см2. Температура раствора в ванне должна составлять 18-25 °С.
Обратим внимание на то, чтобы плоскость анода и покрываемая поверхность были параллельны друг другу. Предметы сложной формы лучше не использовать. Варьируя длительность электролиза, можно получать медное покрытие разной толщины.
Часто прибегают к предварительному меднению для того, чтобы на этот слой нанести прочное покрытие из другого металла. Особенно часто это применяется при хромировании железа, никелировании цинкового литья и в других случаях. Правда, для этой цели используют очень ядовитые цианидные электролиты.
Для приготовления электролита для никелирования в 450 мл воды растворим 25 г кристаллического сульфата никеля, 10 г борной кислоты или 10 г цитрата натрия. Цитрат натрия можно приготовить самим, нейтрализовав раствор 10 г лимонной кислоты разбавленным раствором едкого натра или раствором соды. Анодом пусть будет пластина никеля возможно большей площади, а в качестве источника напряжения возьмем аккумулятор.
Величину плотности тока с помощью переменного сопротивления будем поддерживать равной 0,005 А/см2. Например, при поверхности предмета 20 см2 надо работать при силе тока 0,1 А. После получаса работы предмет будет уже отникелирован. Вытащим его из ванны и протрем тканью. Впрочем, процесс никелирования лучше не прерывать, так как тогда слой никеля может запассивироваться и последующее никелевое покрытие будет плохо держаться.
Чтобы достичь зеркального блеска без механической полировки, введем в гальваническую ванну так называемую блескообразующую добавку. Такими добавками служат, например, клей, желатина, сахар. Можно ввести в никелевую ванну, например, несколько граммов сахара и изучить его действие.
Чтобы приготовить электролит для хромирования железа (после предварительного меднения), в 100 мл воды растворим 40 г ангидрида хромовой кислоты СrО3 (Осторожно! Яд!) и точно 0,5 г серной кислоты (ни в коем случае не больше!). Процесс протекает при плотности тока около 0,1 А/см2, а в качестве анода используется свинцовая пластина, площадь которой должна быть несколько меньше площади хромируемой поверхности.
Никелевые и хромовые ванны лучше всего слегка подогреть (примерно до 35 °С). Обратим внимание на то, что электролиты для хромирования, особенно при длительном процессе и высокой силе тока, выделяют содержащие хромовую кислоту пары, которые очень вредны для здоровья. Поэтому хромирование следует проводить под тягой или на открытом воздухе, например на балконе.
При хромировании (а в меньшей степени и при никелировали) не весь ток используется на осаждение металла. Одновременно выделяется водород. На основании ряда напряжений следовало бы ожидать, что металлы, стоящие перед водородом, вообще не должны выделяться из водных растворов, а напротив должен был бы выделяться менее активный водород. Однако здесь, как и при анодном растворении металлов, катодное выделение водорода часто тормозится и наблюдается только при высоком напряжении. Это явление называют перенапряжением водорода, и оно особенно велико, например, на свинце. Благодаря этому обстоятельству может функционировать свинцовый аккумулятор. При зарядке аккумулятора вместо РbО2 на катоде должен бы возникать водород, но, благодаря перенапряжению, выделение водорода начинается тогда, когда аккумулятор почти полностью заряжен.
Химические свойства кислот
H2SO4 — серная (сульфаты)
HCl — соляная (Хлориды)
HNO3 — азотная (нитраты)
H3PO4 — фосфорная (Фосфаты)
H2SO3 -сернистая (сульфиты)
H2S -сероводород (сульфиды)
H2CO3 — угольная (карбонаты)
H2SiO3 — кремниевая (силикаты)
1. Кислоты реагируют
- с металлами, стоящими в ряду активностм левее водорода с выделением водорода (кроме азотной и концентрированной серной)
- с основными оксидами с образованием соли и воды
- с основаниями с образованием соли и воды
- с солями, образованными более слабыми кислотами с выпадением осадка или выделением газа
2. Азотная кислота реагирует со всеми металлами, кроме Au, Pt, Al, Fe, при этом водород не выделяется, а образуются различные соединения азота (NH4NO3, N2, N2O, NO, NO2) в зависимости от концентрации кислоты и активности металла.
3. Концентрированная серная кислота реагирует со всеми металлами, кроме Au, Pt, Al, Fe, при этом водород не выделяется, а выделяются различные соединения серы (H2S, S, SO2) в зависимости от активности металла.
4. Вытеснительный ряд кислот (по убыванию):
H2SO4 —> HCl и HNO3 —> H3PO4 —> H2SO3 —> H2S —> H2CO3 —> H2SiO3
5. Кислоты (кроме нерастворимой в воде кремниевой кислоты) изменяют окраску индикаторов: фиолетовый лакмус в кислотах краснеет, оранжевый метилоранж становится розовым.
Давайте порассуждаем вместе
1. С разбавленным раствором серной кислоты реагирует
1) медь
2) оксид меди (II)
3) оксид серы (IV)
4) оксид кремния (IV)
Ответ: №2, т.к. кислоты реагируют с основными оксидами H2SO4 + CuO = CuSO4 + H2O
2. Какая из кислот реагирует и с гидроксидом бария и с хлоридом бария?
1) азотная
2) серная
3) соляная
4) угольная
Ответ: №2, т.к. выпадает нарастворимый в кислотах осадок сульфата бария
Ba(OH)2 + H2SO4 = BaSO4 + 2H2O
BaCl2 + H2SO4 = BaSO4 + 2HCl
3. Какая из перечисленных кислот реагирует с гидроксидом натрия, но не изменяет окраску лакмуса?
1) серная
2) соляная
3) угольная
4) кремниевая
Ответ №4, т.к. кремниевая кислота не растворяется в воде и не изменяет окраску лакмуса
4. Какая из кислот реагирует с серебром даже в разбавленном растворе?
1) азотная
2) серная
3) фосфорная
4) соляная
Ответ: №1, т.к. азотная кислота сильный окислитель и реагирует даже с металлами, стоящими после водорода, выделяя NO
3Ag + 4HNO3 = 3AgNO3 + NO + 2H2O
5. Какое из веществ не реагирует с азотной кислотой, но реагирует с соляной кислотой с образованием белого осадка?
1) MgCO3
2) Zn
3) AgNO3
4) Cu
Ответ: №3, т.к. AgNO3 + HCl = AgCl + HNO3 выпадает белый осадок хлорида серебра, нерастворимый в азотной кислоте.
6. Какое из веществ не реагирует с азотной кислотой, но реагирует с серной кислотой с образованием белого осадка?
1) CaCO3
2) BaCl2
3) Ag
4) Cu(NO3)2
Ответ: №2, т.к. BaCl2 + H2SO4 = BaSO4 + 2HCl выпадает белый осадок сульфата бария
7. Для серной кислоты справедливо высказывание:
1) плотность серной кислоты примерна равна 1 г/мл
2) серная кислота — легкоподвижная жидкость
3) растворение кислоты в воде — экзотермическая реакция
4) серная кислота не действует на цинк и медь
Ответ: №3, т.к. при растворении концентрированной серной кислоты в воде выделяется большое количество тепла.
Электрохимический ряд напряжений металлов (ряд Бекетова)
Электрохимический ряд напряжений металлов опытным путем установил Алессандро Вольта, на тот момент он выглядел следующим образом: Zn, Pb, Sn, Fe, Cu, Ag, Au. Величина электродного потенциала зависела оттого, насколько далеко отстояли друг от друга члены ряда. Но причина этого была неизвестна. В 1853 г. русский учёный Николай Николаевич Бекетов (1827-1911) сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В этой работе он обобщил различные исследования способности одних металлов вытеснять другие из растворов их солей.
Первоначально Бекетов предполагал, что способность одних металлов вытеснять из растворов солей другие металлы связана с их плотностью: более лёгкие металлы способны вытеснять металлы более тяжелые. Но опыты говорили о ином. Непонятно было и то, как связан «вытеснительный ряд» с рядом напряжений Алессандро Вольта. Со временем накапливалось всё больше экспериментальных данных того, что некоторые правила вытеснения нарушаются при определенных условиях. Бекетов обнаружил, что водород под давлением 10 атмосфер вытесняет серебро из раствора нитрата серебра. Английский химик Уильям Одлинг (1829-1921) описал множество случаев подобных аномалий. Например, медь вытесняет олово из концентрированного подкисленного раствора хлорида олова (II) и свинец — из кислого раствора хлорида свинца (II). Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора хлорид кадмия.
Теоретическую основу ряда активности (и ряда напряжений) заложил немецкий физикохимик Вальтер Нернст (1864-1941). Вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — появилась точная количественная величина. Такой величиной стал стандартный электродный потенциал металла, а соответствующий ряд, выстроенный в порядке изменения потенциалов, называется рядом стандартных электродных потенциалов.
Электрохимический ряд напряжений металлов (ряд Бекетова) это последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод, электродный потенциал которого условно принимается равным нулю.
Восстановленная форма | Число отданных електронов | Окисленная форма | Стандартный электродный потенциал, В |
Li | 1e | Li+ | -3,05 |
K | 1e | K+ | -2,925 |
Rb | 1e | Rb+ | -2,925 |
Cs | 1e | Cs+ | -2,923 |
Ba | 2e | Ba2+ | -2,91 |
Sr | 2e | Sr2+ | -2,89 |
Ca | 2e | Ca2+ | -2,87 |
Na | 1e | Na+ | -2,71 |
Mg | 2e | Mg2+ | -2,36 |
Al | 3e | Al3+ | -1,66 |
Mn | 2e | Mn2+ | -1,18 |
Zn | 2e | Zn2+ | -0,76 |
Cr | 3e | Cr3+ | -0,74 |
Fe | 2e | Fe2+ | -0,44 |
Cd | 2e | Cd2+ | -0,40 |
Co | 2e | Co2+ | -0,28 |
Ni | 2e | Ni2+ | -0,25 |
Sn | 2e | Sn2+ | -0,14 |
Pb | 2e | Pb2+ | -0,13 |
Fe | 3e | Fe3+ | -0,04 |
H2 | 2e | 2H+ | 0,00 |
Cu | 2e | Cu2+ | 0,34 |
Cu | 1e | Cu+ | 0,52 |
2Hg | 2e | Hg22+ | 0,79 |
Ag | 1e | Ag+ | 0,80 |
Hg | 2e | Hg2+ | 0,85 |
Pt | 2e | Pt2+ | 1,20 |
Au | 3e | Au3+ | 1,50 |
Место каждого элемента в ряду напряжений условно, т.к. величина электродного потенциала зависит от температуры и состава раствора, в который погружены электроды, в частности от концентрации ионов. Большое значение также имеет состояние поверхности электрода (гладкая, шероховатая). Стандартный электродный потенциал относится к водным растворам при температуре 25 °С, давлении газов 1 атмосфера и концентрации ионов 1 моль/л.
Из электрохимического ряда напряжений металлов вытекает ряд важных следствий:
- Каждый металл способен вытеснять (замещать) из растворов солей все другие металлы, стоящие правее данного металла;
- Все металлы, расположенные левее водорода, способны вытеснять его из кислот;
- Чем дальше расположены друг от друга два металла в ряду напряжений, тем большее напряжение может давать созданный из них гальванический элемент.
Восстановление водородом из оксидов
Металлы, которые водород не восстанавливает из их оксидов | Металлы, которые водород восстанавливает из их оксидов |
K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr | Fe, Cd, Co, Ni, Sn, Pb, W, Sb, As, Bi, Cu
|
BaO + H2 ≠ | FeO + H2 = Fe + H2O |
версия для печати
Сводная таблица свойств
Li | K | Ca | Na | Mg | Al | Mn | Zn | Cr | Fe | Ni | Sn | Pb | H | Cu | Hg | Ag | Pd | Pt | Au | |
→ | ||||||||||||||||||||
В природе встречаются только в виде соединений | Встречаются в чистом виде и в виде соединений | Встречаются в самородном виде | ||||||||||||||||||
Хранят в плотно закрытых сосудах под керосином или вазелином | Хранят в плотно закрытых сосудах | Хранят в любых сосудах | ||||||||||||||||||
Окисляются при н. у.
| При н. у. окисляются только с поверхности | Окисляются только при нагревании
| Не окисляются | |||||||||||||||||
С Н2О взаимодействуют при н. у. с выделением Н2↑ и МеОН | С Н2О взаимодействуют при нагревании с выделением Н2↑ и МеО | С водой не взаимодействуют | ||||||||||||||||||
При взаимодействии с растворами кислот вытесняют водород Н2 (кроме HNO3) | Из растворов кислот не вытесняют водород | Растворяются в «царской водке» | ||||||||||||||||||
С H2SO4конц. в зависимости от условий, восстановительных свойств металлов образуются SO2, S, H2S, сульфат и вода (Fe, Ni пассивируют) | С H2SO4 конц. образуется SO2 | Не взаимодей-ствуют | ||||||||||||||||||
С HNO3 конц. образуется NO2, нитрат, Н2О (Fe, Cr, Al пассивируются при обычной температуре) | Не взаимод. | |||||||||||||||||||
С HNO3 разб. образуется NН3, нитрат, Н2О (так же с Fe, Sn) | С HNO3 разб. образуется NО, нитрат, Н2О | Не взаимодей-ствуют | ||||||||||||||||||
Ве, Аl, Zn, Sn, Pb вытесняют водород из растворов щелочей. Zn + 2NaOH + 2H2O = Na2[Zn(OH)4]+H2↑ | ||||||||||||||||||||
Оксиды растворяются в воде с образованием МеОН | Оксиды в воде не растворяются | |||||||||||||||||||
При нагревании оксиды не разлагаются | При нагревании оксиды разлагаются | |||||||||||||||||||
| Гидроксиды при нагревании не разлагаются | Гидроксиды при нагревании разлагаются на оксид и Н2О | Гидроксиды разлагаются в воде | |||||||||||||||||
Более активный металл вытесняет из раствора соли менее активный | ||||||||||||||||||||
Нитраты при нагревании разлагаются на MeNO2, и O2 | Нитраты при нагревании разлагаются на оксид, NO2 и O2 | Нитраты при нагревании разлагаются на металл, NO2 и O2 | ||||||||||||||||||
Гидролиз не идет у солей, образованных сильными кислотами | Соли, образованные сильными кислотами гидролизуются с образованием кислой среды | |||||||||||||||||||
Соли, образованные слабыми кислотами гидролизуются с образованием щелочной среды | Существующие и растворимые соли, образованные слабыми кислотами, гидролизуются полностью | |||||||||||||||||||
При электролизе водных растворов солей на катоде восстанавливается вода до Н2 | На катоде восстанавливаются одновременно вода до Н2 и катионы металла | На катоде восстанавливаются катионы металла |
версия для печати
Константы активности Таблица для кислот
В ряду кислот, приведенных в табл. 8, сила убывает сверху вниз, в ряду оснований она возрастает в том же порядке. Наиболее сильной кислоте соответствует, как видно из таблицы, наиболее слабое основание. На рис. 1 на абсциссе отложены значения констант ионизации кислот соответственно оснований, а на ординате—константы скорости реакций, катализируемых различными кислотными соответственно основными катализаторами. На основании того, что точки, соответствующие каталитической активности кислот различной силы, располагаются ни прямой, считают, что механизм действия всех исследованных кислотных катализа - [c.92]Из рассмотрения таблицы констант устойчивости комплексов с ЭДТА видно, чт определению цинка мешают ионы большого числа других металлов. К счастью, мы имеем в распоряжении много способов селективного определения, и в частности, определения цинка в присутствии сопутствующих элементов, включая железо, в природных и искусственных материалах [56 (47)]. Особенно важным является демаскирование цианидных комплексов цинка. Для этой цели применяют формальдегид [52 (6), 53 (27)] и хлоральгидрат [53(10)]. В аммиачном растворе формальдегид реагирует как со свободными, так и со связанными с цинком (и кадмием ) цианид-ионами с образованием нитрила гликолевой кислоты при этом ранее замайкированный цинк выделяется в свободном состоянии и может быть оттитрован. Другие комплексонометрически активные комплексообразователи, реагирующие с цианид-ионами, такие, как Ре , РеИ, Н , Си, N1 и Со, выделяются медленно или даже вовсе не выделяются и остаются замаскированными. Их следы, и в первую очередь следы меди, все же могут выделяться и, таким образом, мешать определению. Эти помехи заключаются даже не в совместном титровании — для этого слишком незначительны количества мешающих металлов, но, главным образом, в блокировании эриохрома черного Т, который обычно поменяют в качестве индикатора. Поэтому приходится принимать меры предосторожности, чтобы избежать подобных явлений. Можно заменить эриохром черный Т другим, не блокируемым индикатором, например пирокатехиновым фиолетовым или мурексидом [60 032)], но переход окраски у них менее резок. При использовании формальдегида в качестве демаскирующего средства следует принимать во внимание, что альдегид реагирует с аммиаком с образованием уротропина, что может вызвать понижение pH раствора. [c.261]
Значение констант диссоциации угольной кислоты К и /Сй), произведений растворимости и коэффициентов активности для пресных вод канала определяли по таблицам, приведенным О. А. Алекиным и [c.40]
Используя полное уравнение, можно определить Ка и Къ при низких концентрациях субстрата, в то время как при высоких его концентрациях можно определить К п и К ъ- Знание этих констант диссоциации позволяет проникнуть в природу групп в комплексе и свободном ферменте на основании этих данных можно определить, какие группы подвергаются влиянию комплексообразования, и поэтому получить некоторые сведения о группах, являющихся активными при образовании комплекса с субстратом. Лэйд-лер [62[ составил таблицу данных, показывающих влияние на величину К комплексообразования, протекающего по тем местам молекулы, которые подвергаются ионизации, и, кроме того, связывающих эти эффекты с изменениями скорости и константы Михаэлиса при изменении pH. Там, где такие сведения оказываются непол ными, иногда для вычисления Ка или Къ можно воспользоваться методом, предложенным Диксоном (381. Сведения о группах, участвующих в комплексообразовании, были получены для взаимного превращения ионов фумаровой и малеиновой кислот в присутствии фумаразы [63J, для гидролиза сахарозы в присутствии сахаразы [64[, для гидролиза ацетилхолина при наличии холинэстеразы и ацетилхолинэстеразы [65[ и для окисления 2-амино-4-оксиптеридина в присутствии ксантиноксидазы [38]. [c.135]
Проведенное нами ранее [1] изучение электропроводности ацетатов железа в концентрированных растворах уксусной кислоты (от 80,48 до 98,7 вес. % СНзСООН) позволило рассчитать константы диссоциации этих солей в растворителе, который можно рассматривать как СН3СООН с переменным содержанием воды. Величины констант диссоциации РеАсз и РеАса представлены в таблице. Зависимость р реАс от 1/0 (й — экспериментальная константа диссоциации, полученная путем экстраполяции переменной концентрационной константы диссоциации соли на область бесконечно разбавленных растворов, в которых, по условию нормировки, коэффициенты активности ионов и молекул равны 1 при 25° С О — диэлектрическая проницаемость растворителя) имеет линейный характер (рис. 1). Величины О рассчитаны из литературных данных [2]. [c.244]
Существуют различные типы жидкофазных реакций. В некоторых из них растворитель не играет существенной роли он действует только как заполнитель пространства и только таким образом влияет на скорость реакции. К реакциям такого типа можно отнести термическое разложение пятиокиси азота. Некоторые данные [1] об этом процессе представлены в табл. 1. Для этой реакции, как видно из таблицы, ни константы скорости, ни предэкспоненциальные множители и энергии активации не зависят от растворителя, а также не отличаются от значений, полученных для газовой фазы. Однако в азотной кислоте константа скорости реакции значительно ниже (0,147-10 5 при 25°), а энергия активации выше (28,3 ктл моль), что указывает на активное участие этого растворителя в реакции. [c.217]
Как видно из таблицы, в случае введения в реакционную смесь добавок акцепторов протона (диоксан, ДМФ, ДМСО), способных взаимодействовать с кислотами, наблюдается понижение значений констант относительных активностей МАК и АК. [c.26]
Таблицы функций кислотности Hi предназначены для использования в комплекте с таблицами типа реакций 1), в которых приведены значения для кислот и оснований, а также с таблицами констант скоростей для кислотно-каталитических или основно-каталитических реакций. Величины Hi привлекаются в целях определения рКа оснований и кислот и характеристики каталитической активности кислотных и основных сред в тех случаях, когда кислотность или основность среды выходит за пределы диапазона, охватываемого шкалой рЯ. Принимается, что в пределах применимости шкалы рЯ для всех функций кислотности соблюдается тождество Я1=рЯ. [c.524]
Как видно из таблицы, степень разделения смесей кислот, характеризуемая средней