Сера это простое вещество: Сера как простое вещество и ее свойства | Химия

Содержание

Урок «Сера – простое вещество». 9-й класс

Цели урока: дать общую характеристику серы; рассмотреть аллотропные модификации серы и её химические свойства; изучить природные соединения серы и роль в природе; рассмотреть вопросы практического характера.

Оборудование: сера, спирт, вода, стеклянная посуда, спиртовка, образцы минералов; ватные палочки, чугунок, камень; продукты питания – горох, яйца, овсяные хлопья; компьютер, проектор.

Ход урока.

I. Организационный момент. Проверка темы «Галогены».

Задания по теме ( пункты – а. — I вариант; пункты – б. — II вариант)

1. Какой элемент не является галогеном:

а. Br, At, S.

б. F, I, Si.

2

. Какой элемент принадлежит большому периоду:

а. F, I.

б. Cl, Br.

3. Какой элемент активнее в данной паре:

а. I или Cl

б. Br или I

4. Газообразным веществом является:

а. Cl2, I2

б. Br2, F2

5. Летучее водородное соединение элемента:

а. ЛВС — Cl

б. ЛВС — Br

6. Дописать уравнения:

а.

1) Ca + Cl2 =
2) KCl + Br2 =

б.

1) Ba + F2 =
2) NaBr + I

2 =

Ответы (Задания и ответы выдаются на экран.)

1. а. — S б.- Si

2. а. — I б.- Br

3. а. — Cl б.- Br

4. а .- Cl2б.- F2

5. а. — HCl б.- HBr

6.

а.

1) Ca0 + Cl20 = Ca+2CI-12 р-я соединения
2) KCl + Br2 =  р-и нет, т. к. Cl> Br                                                

б.

1) Ba0 + F20 = Ba+2F2-1 р-я соединения
2) NaBr + I2

= р-и нет т. к. Br>I

II. Работа по теме урока. Вопросы для изучения : выданы на экран.

  1. История элемента, название
  2. Положение атома серы в периодической системе химических элементов
  3. Физические свойства. Флотация
  4. Аллотропные модификации серы
  5. Химические свойства серы
  6. Сера в природе
  7. Значение серы, применение.

1. История элемента. Сейчас невозможно установить, когда человек впервые познакомился с серой и её соединениями. Произошло это очень давно. Она помогала нашим предкам получать огонь, вернее, снопы искр при ударе кресалом по обломку пирита. Использовали её для приготовления красок и косметических средств. Знали её и древние индийцы, именно они дали название — «сира» — означает «желтый». Химический символ произошел от латинского слова «сульфур». Древние римляне называли серу «желчью бога Вулкана» (покровителя огня). Картина Карла Брюллова «Гибель Помпеи».

2. Рассмотрим положение элемента серы в таблице химических элементов.

а. Запишем характеристику элемента в тетрадях – работа учащихся с периодической системой химических элементов, с дальнейшей проверкой выполнения.

б. Составим модель строения атома с электронных позиций – задание выполняется на магнитной доске.

в. Запишем электронную и графические формулы.

г. Сделаем вывод о степенях окисления элемента серы.

3. Изучим физические свойства серы – простого вещества.

У вас на партах пакетики, аккуратно разворачиваем и рассматриваем вещество. Проверяем его отношение к воде – осторожно высыпаем содержимое пакетика на всю поверхность воды, не перемешивая (в инструктивной карточке – задание 1). Делаем выводы из наблюдений: сера – твердое вещество, желтого цвета, в размолотом состоянии « плавает» на поверхности воды, имея при этом плотность больше, чем у воды.

«Флотация» — (франц.) – это свойство, основанное на различной смачиваемости поверхностей, в данном случае воды и порошка серы, является способом обогащения полезных ископаемых.

Посмотрите, как ведет себя сера по отношению к другому растворителю – спирту. В нем она немного растворима. Демонстрацию проводит учитель.

4. На примере серы рассмотрим ещё раз природное явление – аллотропию.

Известно много модификаций серы с циклическим или линейным строением молекул различного состава. Рассмотрим это на рисунках: они спроецированы на экран

Структура молекулы S8 и модель структуры ромбической серы

Кристаллические модификации серы:
Слева – ромбическая. Справа – моноклинная

У серы 3 модификации: ромбическая, моноклинная и пластическая. Для серы причина аллотропии заключается в различном строении кристаллов её модификации. Наиболее устойчива — ромбическая сера, молекула которой состоит из 8 атомов, замкнутых в кольцо – S8 .

Пронаблюдаем за экспериментом. Нагреем порошкообразную серу в пламени спиртовки. Расплавленную жидкую серу, тонкой струйкой, осторожно выльем в стакан с холодной водой. Мы получим пластическую серу.

5. Рассмотрим химические свойства серы – простого вещества.

1. Горение серы. У меня в руках знакомый всем предмет – это коробочка со спичками. Зажжем спичку. Ощущается запах – это запах газа, который образуется при горении серы и называется – сернистый газ. Запишем уравнение этой реакции:

S0 + O20 = S+4O2-2 Составить электронный баланс.

2. Взаимодействие с водородом:

H20 + S0 = H2+1S-2 – газ сероводород, является ядовитым веществом, образуется как результат гниения органических соединений. О нем говорят – тухлые яйца пахнут сероводородом.

3. Реакции серы с металлами – образование сульфидов:

а. Na0 + S0 = Na2+1S-2. Для данного уравнения составить электронный баланс.

б. Hg0 + S0 = Hg+2S-2. Эта реакция имеет практическое значение. Процесс называется – демеркуризация– удаление и обезвреживание разлитой ртути.

Подведем итог: сера в реакциях с кислородом и металлами проявляет разные степени окисления: +4, -2.Являясь и восстановителем и окислителем.

На закрепление

: составить уравнения реакций серы с алюминием и цинком.

5. Сера в природе. Сейчас немного отдохнем, займемся « добычей серы». У вас в руках понятное и знакомое приспособление – ватные палочки. Откуда в нашем организме сера и зачем она нам нужна? Правильно, из продуктов питания. Вот некоторые из них: горох, яйца, овсяные хлопья. Обсудить с учащимися этот вопрос.
Переходим к работе с раздаточным материалом. Познакомьтесь с образцами природных минералов, содержащих серу.

Самостоятельная работа с раздаточным материалом и таблицей 8 учебника на странице 98 ( в инструктивной карточке – задание 2). Для учащихся даны образцы самородной серы и её сульфидные и сульфатные соединения: пирит, свинцовый блеск, медный колчедан, гипс.

6. Применение и роль серы. Одно изобретение человечества с использованием серы вы уже сегодня видели – это спички. А теперь посмотрите на эту конструкцию – чугунок, в котором находятся три компонента, а сверху камень. И это имеет отношение к нашей теме, история гласит, что это натолкнуло наблюдательного и конечно, грамотного человека на изобретение пушки.

Применения серы многообразны, об этом вы узнаете при подготовке домашнего задания. Обсудим это на следующем уроке.

Подведем итог нашего урока. Знакомство с элементом – серой – дало вам много новых, интересных фактов. Мы закрепили уже имеющиеся у вас навыки и умения. Желаю вам успешной работы дома по заданиям.

Домашнее задание: п.21, упр.3.4 стр.99. Найти ответ на вопрос: для чего в ушах сера?

Рефлексия.

Закончите любое из предложенных предложений:

  • Самым интересным на уроке для меня было … .
  • Самым неинтересным на занятии для меня было … .
  • Я научился … .
  • Теперь бы я хотел ещё узнать … .
  • Мне понравилось … .
  • Хотел бы вам сказать … .
  • Самым скучным на занятии было … .
  • Я буду вспоминать о … .

Инструктивная карточка.

1 задание. Аккуратно разверните пакетик с серой. Рассмотрите внешние признаки вещества: агрегатное состояние, цвет; Затем осторожно насыпайте на поверхность воды в стаканчик. Не мешайте! Сделайте выводы об отношении серы к воде (её плотность, растворимость).

2 задание. Рассмотрите образцы природных минералов, содержащих серу. Используя таблицу 8 на стр.98 учебника, запишите в тетрадь название и формулу минерала.

Литература.

  1. Габриелян О.С.Химия 9 класс. «Дрофа» 2005г.
  2. Габриелян О.С. Книга для учителя. Москва, «Вако» 2004г.
  3. Гридчин А. Элементы мироздания. Воронеж, 1985г.
  4. Золотая книга русской культуры. Москва, 2007г.
  5. Полосин В.С. Школьный эксперимент по неорганической химии. «Просвещение», 1970г.
  6. Смолеговский А.М.Энциклопедия химических элементов. «Дрофа» 2000г.

Сера

Сера / Sulphur (S)
Атомный номер 16
Внешний вид простого вещества светло-желтое хрупкое твердое вещество, в чистом виде без запаха
Свойства атома
Атомная масса
(молярная масса)
32,066 а. е. м. (г/моль)
Радиус атома 127 пм
Энергия ионизации
(первый электрон)
999,0 (10,35) кДж/моль (эВ)
Электронная конфигурация [Ne] 3s2 3p4
Химические свойства
Ковалентный радиус 102 пм
Радиус иона 30 (+6e) 184 (-2e) пм
Электроотрицательность
(по Полингу)
2,58
Электродный потенциал 0
Степени окисления 6, 4, 2, -2
Термодинамические свойства простого вещества
Плотность 2,070 г/см³
Молярная теплоёмкость 22,61 Дж/(K·моль)
Теплопроводность 0,27 Вт/(м·K)
Температура плавления 386 K
Теплота плавления 1,23 кДж/моль
Температура кипения 717,824 K
Теплота испарения 10,5 кДж/моль
Молярный объём 15,5 см³/моль
Кристаллическая решётка простого вещества
Структура решётки орторомбическая
Параметры решётки a=10,437 b=12,845 c=24,369 Å
Отношение c/a
Температура Дебая n/a K
S 16
32,066
[Ne]3s23p4
Сера


Се́ра (Sulphur — обозн.«S» в таблице Менделеева) — высокоэлектроотрицательный элемент, проявляет неметаллические свойства. В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде

Природные минералы серы

Схема атома серы

Сера является шестнадцатым по химической распространенности элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде. Важнейшие природные соединения серы FeS2 — железный колчедан или пирит, ZnS — цинковая обманка или сфалерит (вюрцит), PbS — свинцовый блеск или галенит, HgS — киноварь, Sb2S3 — антимонит. Кроме того, сера присутствует в нефти, природном угле, природных газах и сланцах. Сера — шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.

История открытия и происхождение названия

Сера (Sulfur, франц. Sufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с древнейших времен. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны «сернистые испарения», смертельное действие выделений горящей серы. Сера, вероятно, входила в состав «греческого огня», наводившего ужас на противников.

Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, лёгкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что ее считали «принципом горючести» и обязательной составной частью металлических руд. Пресвитер Теофил (XII в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, еще в древнем Египте.

В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трех принципов алхимиков, а позднее «принцип горючести» явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения ее из пиритов; последний был распространен в древней Руси. Впервые в литературе он описан у Агриколы. Таким образом точно происхождение серы не установлено, но как сказано выше этот элемент использовался до Рождества Христова, а значит знаком людям с давних времен.

Происхождение названия

Происхождение латинского sulfur неизвестно. Русское название элемента обычно производят от санскритского «сира» — светло-желтый. Возможно родство «серы» с древнееврейским «серафим» — множественным числом от «сераф» — букв. сгорающий, а сера хорошо горит. В древнерусском и старославянском «сера» — вообще горючее вещество, в том числе и жир.

Происхождение серы

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы — это порода с вкраплениями чистой серы.

Когда образовались эти вкрапления — одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (то есть одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ил образовал руду.

Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространенный из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями нефти или природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.

В последние десятилетия находит все новые подтверждения одна из разновидностей теории эпигенеза — теория метасоматоза (в переводе с греческого «метасоматоз» означает замещение). Согласно ей в недрах постоянно происходит превращение гипса CaSO4-h3O и ангидрита CaSО4 в серу и кальцит СаСО3.

Данная теория создана в 1935 году советскими учеными Л. М. Миропольским и Б. П. Кротовым. В ее пользу говорит, в частности, такой факт.

 

В 1961 году в Ираке было открыто месторождение Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.

 

Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов — среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.

 

Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На земле и сейчас существуют озера (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит ни гипса, ни ангидрита.

 

Разнообразие теорий и гипотез о происхождении самородной серы — результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах. Еще из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот закон распространяется и на геохимию.

Получение

 

Серу получают главным образом выплавкой самородной серы непосредственно в местах её залегания под землей. Серные руды добывают разными способами — в зависимости от условий залегания. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.

 

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на сероплавильный завод, где из концентрата извлекают серу.

 

В 1890 г. Герман Фраш, предложил плавить серу под землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (113°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

 

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Также сера в больших количествах содержится в природном газе в газообразном состоянии (в виде сероводорода, сернистого ангидрида). При добыче она откладывается на стенках труб и оборудования, выводя их из строя. Поэтому её улавливают из газа как можно быстрее после добычи. Полученная химически чистая мелкодисперсная сера является идеальным сырьём для химической и резиновой промышленности.

Крупнейшее месторождение самородной серы вулканического происхождения находится на острове Итуруп с запасами категории A+B+C1 — 4227 тыс. тонн и категории C2 — 895 тыс. тонн, что достаточно для строительства предприятия мощностью 200 тыс. тонн гранулированной серы в год.

Производители

Основными производителями серы в России являются предприятия ОАО Газпром: ООО Газпром добыча Астрахань и ООО Газпром добыча Оренбург, получающие ее как побочный продукт при очистке газа.

Физические свойства

Природный сросток кристаллов самородной серы

Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов серы. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество желтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета. Формулу пластической серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами. В воде сера нерастворима, некоторые её модификации растворяются в органических растворителях, например сероуглероде. Серу применяют для производства серной кислоты, вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента — для получения серобетона.

Химические свойства

Горение серы

При комнатной температуре сера реагирует со фтором и хлором, проявляя восстановительные свойства:
S + 3F2 = SF6
S + Cl2 = SCl2
С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании, окисляясь:

S + 6HNO3(конц.) = H2SO4 + 6NO2 ↑ + 2H2O
S + 2H2SO4(конц.) = 3SO2 ↑ + 2H2O

На воздухе сера горит, образуя сернистый ангидрид — бесцветный газ с резким запахом:
S + O2 = SO2

С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S2O2, молекулярной серы S2, свободных атомов серы S и свободных радикалов моноокиси серы SO.

При взаимодействии с металлами образует сульфиды. 2Na + S = Na2S

При добавлении к этим сульфидам серы образуются полисульфиды: Na2S + S = Na2S2

При нагревании сера реагирует с углеродом, кремнием, фосфором, водородом:
C + 2S = CS2 (сероуглерод)

Сера при нагревании растворяется в щёлочах — реакция диспропорционирования
3S + 6KOH = K2SO3 + 2K2S + 3H2O

Пожароопасные свойства серы

Тонкоизмельченная сера склонна к химическому самовозгоранию в присутствии влаги, при контакте с окислителями, а также в смеси с углем, жирами, маслами. Сера образует взрывчатые смеси с нитратами, хлоратами и перхлоратами. Самовозгорается при контакте с хлорной известью.

Средства тушения: распыленная вода, воздушно-механическая пена.

Обнаружение горения серы является трудной проблемой. Пламя сложно обнаружить человеческим глазом или видеокамерой, спектр голубого пламени лежит в основном в ультрафиолетовом диапазоне. Горение происходит при низкой температуре. Для обнаружения горения тепловым извещателем необходимо размещать его непосредственно близко к сере. Пламя серы не излучает в инфракрасном диапазоне. Таким образом оно не будет обнаружено распространенными инфракрасными извещателями. Ими будут обнаруживаться лишь вторичные возгорания. Пламя серы не выделяет паров воды. Таким образом детекторы ультрафиолетовых извещателей пламени, использующие соединения никеля, не будут работать.

Для эффективного обнаружения пламени рекомендуется использовать ультрафиолетовые извещатели с детекторами на основе молибдена. Они имеют спектральный диапазон чувствительности 1850…2650 ангстрем, который подходит для обнаружения горения серы.

Так как воздух по объему состоит приблизительно из 21 % кислорода и 79 % азота и при горении серы из одного объема кислорода получается один объем SO2, то максимальное теоретически возможное содержание SO2 в газовой смеси составляет 21 %. На практике горение происходит с некоторым избытком воздуха и объемное содержание SO2 в газовой смеси меньше теоретически возможного составляя обычно 14…15 %.

Горение серы протекает только в расплавленном состоянии аналогично горению жидкостей. Верхний слой горящей серы кипит, создавая пары, которые образуют слабосветящееся пламя высотой до 5 см. Температура пламени при горении серы составляет 1820 °C

Пожары на складах серы

В декабре 1995 года на открытом складе серы предприятия, расположенного в городе Сомерсет Вест Западной Капской провинции Южно-Африканской Республики произошел крупный пожар, погибли два человека.

16 января 2006 г. около пяти вечера на череповецком предприятии «Аммофос» загорелся склад с серой. Общая площадь пожара — около 250-ти квадратных метров. Полностью ликвидировать его удалось лишь в начале второго ночи. Жертв и пострадавших нет.

15 марта 2007 рано утром на ООО «Балаковский завод волоконных материалов» произошел пожар на закрытом складе серы. Площадь пожара составила 20 кв.м. На пожаре работало 4 пожарных расчета с личным составом в 13 человек. Примерно через полчаса пожар был ликвидирован. Никто не пострадал.

4 и 9 марта 2008 года произошло возгорание серы в Атырауской области в хранилище серы ТШО на Тенгизском месторождении. В первом случае очаг возгорания удалось потушить быстро, во втором случае сера горела 4 часа. Объём горевших отходов нефтепереработки, к каковым по казахстанским законам отнесена сера, составил более 9 тысяч килограммов.

В апреле 2008 недалеко от поселка Кряж Самарской области загорелся склад, на котором хранилось 70 тонн серы. Пожару была присвоена вторая категория сложности. К месту происшествия выехали 11 пожарных расчетов и спасатели. В тот момент, когда пожарные оказались около склада, горела еще не вся сера, а только ее небольшая часть — около 300 килограммов. Площадь возгорания вместе с участками сухой травы, прилегающими к складу, составила 80 квадратных метров. Пожарным удалось быстро сбить пламя и локализовать пожар: очаги возгорания были засыпаны землей и залиты водой.

В июле 2009 в Днепродзержинске горела сера. Пожар произошел на одном из коксохимических предприятий в Баглейском районе города. Огонь охватил более восьми тонн серы. Никто из сотрудников комбината не пострадал.

Сера. Описание, свойства, происхождение и применение минерала

  • Главная
  • Другое
  • Сера. Описание, свойства, происхождение и применение минерала

НОВОСТИ ГОРНОДОБЫВАЮЩЕЙ ОТРАСЛИ

Сера — минерал из класса самородных элементов. Сера представляет собой пример хорошо выраженного энантиоморфного полиморфизма. В природе образует 2 полиморфные модификации: a-сера ромбическая и b-сера моноклинная. При атмосферном давлении и температуре 95,6°С a-сера переходит в b-серу. Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти.

  1. Структура
  2. Свойства
  3. Морфология
  4. Происхождение
  5. Применение
  6. Классификация
  7. Физические свойства
  8. Оптические свойства
  9. Кристаллографические свойства

 

СТРУКТУРА


Кристаллическая структура и две сингонии серы

Самородная сера обычно представлена a-серой, которая кристаллизуется в ромбической сингонии, ромбо-дипирамидальный вид симметрии. Кристаллическая сера имеет две модификации; одну из них, ромбическую, получают из раствора серы в сероуглероде (CS2) испарением растворителя при комнатной температуре. При этом образуются ромбовидные просвечивающие кристаллы светложелтого цвета, легко растворимые в CS2. Эта модификация устойчива до 96° С, при более высокой температуре стабильна моноклинная форма. При естественном охлаждении расплавленной серы в цилиндрических тиглях вырастают крупные кристаллы ромбической модификации с искаженной формой (октаэдры, у которых частично «срезаны» углы или грани). Такой материал в промышленности называется комовая сера. Моноклинная модификация серы представляет собой длинные прозрачные темножелтые игольчатые кристаллы, также растворимые в CS2. При охлаждении моноклинной серы ниже 96° С образуется более стабильная желтая ромбическая сера.

СВОЙСТВА


Самородная сера

Самородная сера жёлтого цвета, при наличии примесей — жёлто-коричневая, оранжевая, бурая до чёрной; содержит включения битумов, карбонатов, сульфатов, глины. Кристаллы чистой серы прозрачны или полупрозрачны, сплошные массы просвечивают в краях. Блеск смолистый до жирного. Твердость 1-2, спайности нет, излом раковистый. Плотность 2,05 -2,08 г/см3, хрупкая. Легко растворима в канадском бальзаме, в скипидаре и керосине. В HCl и h3SO4 нерастворима. HNO3 и царская водка окисляют серу, превращая её в h3SO4. Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов.
Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). Формулу серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами.
Плавление серы сопровождается заметным увеличением объёма (примерно 15 %). Расплавленная сера представляет собой жёлтую легкоподвижную жидкость, которая выше 160 °C превращается в очень вязкую тёмно-коричневую массу. Наибольшую вязкость расплав серы приобретает при температуре 190 °C; дальнейшее повышение температуры сопровождается уменьшением вязкости и выше 300 °C расплавленная сера снова становится подвижной. Это связано с тем, что при нагревании серы она постепенно полимеризуется, увеличивая длину цепочки с повышением температуры. При нагревании серы свыше 190 °C полимерные звенья начинают рушиться.
Сера может служить простейшим примером электрета. При трении сера приобретает сильный отрицательный заряд.

МОРФОЛОГИЯ


Самородная сера

Образует усечённо-дипирамидальные, реже дипирамидальные, пинакоидальные или толстопризматические кристаллы, а также плотные скрытокристаллические, сливные, зернистые, реже тонковолокнистые агрегаты. Главные формы на кристаллах: дипирамиды (111) и (113), призмы (011) и (101), пинакоид (001). Также сростки и друзы кристаллов, скелетные кристаллы, псевдосталактиты, порошковатые и землистые массы, налёты и примазки. Для кристаллов характерны множественные параллельные срастания.

ПРОИСХОЖДЕНИЕ


Самородная сера

Сера образуется при вулканических извержениях, при выветривании сульфидов, при разложении гипсоносных осадочных толщ, а также в связи с деятельностью бактерий. Главные типы месторождений самородной серы — вулканогенные и экзогенные (хемогенно-осадочные). Экзогенные месторождения преобладают; они связаны с гипсо-ангидритами, которые под воздействием выделений углеводородов и сероводорода восстанавливаются и замещаются серно-кальцитовыми рудами. Такой инфильтрационно-метасоматический генезис имеют все крупнейшие месторождения. Самородная сера часто образуется (кроме крупных cкоплений) в результате окисления h3S. Геохимические процессы её образования существенно активизируются микроорганизмами (сульфатредуцирующими и тионовыми бактериями). Сопутствующие минералы — кальцит, арагонит, гипс, ангидрит, целестин, иногда битумы. Среди вулканогенных месторождений самородной серы главное значение имеют гидротермально-метасоматические (например, в Японии), образованные сероносными кварцитами и опалитами, и вулканогенно-осадочные сероносные илы кратерных озёр. Образуется также при фумарольной деятельности. Образуясь в условиях земной поверхности, самородная сера является всё же не очень устойчивой и, постепенно окисляясь, даёт начало сульфатам, гл. образом гипсу.
Используется в производстве серной кислоты (около 50% добываемого количества). В 1890 г. Герман Фраш предложил плавить серу под землёй и извлекать на поверхность через скважины, и в настоящее время месторождения серы разрабатывают главным образом путём выплавки самородной серы из пластов под землёй непосредственно в местах её залегания. Сера также в больших количествах содержится в природном газе (в виде сероводорода и сернистого ангидрида), при добыче газа она откладывается на стенках труб, выводя их из строя, поэтому её улавливают из газа как можно быстрее после добычи.

ПРИМЕНЕНИЕ


Сера входит в состав спичечной головки

Примерно половина производимой серы используется в производстве серной кислоты. Серу применяют для вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента — для получения серобетона. Сера находит применение для производства пиротехнических составов, ранее использовалась в производстве пороха, применяется для производства спичек.


Сера (англ. Sulphur) — S

Молекулярный вес 32.06 г/моль
Происхождение названия Латинское sulfur (происходящее из эллинизированного написания этимологического sulpur), предположительно, восходит к индоевропейскому корню *swelp — «гореть»
IMA статус действителен, описан впервые до 1959 (до IMA)

КЛАССИФИКАЦИЯ


Strunz (8-ое издание) 1/B.03-10
Nickel-Strunz (10-ое издание) 1.CC.05
Dana (7-ое издание) 1.3.4.1
Dana (8-ое издание) 1.3.5.1
Hey’s CIM Ref. 1.51

ФИЗИЧЕСКИЕ СВОЙСТВА


Цвет минерала жёлтый, серно-жёлтый, коричневато- или зеленовато-жёлтый, оранжевый, белый
Цвет черты бесцветный
Прозрачность прозрачный, полупрозрачный
Блеск смоляной, жирный
Спайность несовершенная по {001}, {110} и {111}
Твердость (шкала Мооса) 1.5 — 2.5
Излом неровный, раковистый
Прочность очень хрупкая
Отдельность отдельность по {111}
Плотность (измеренная) 2.07 г/см3
Радиоактивность (GRapi) 0

ОПТИЧЕСКИЕ СВОЙСТВА


Тип двухосный (+)
Показатели преломления nα = 1.958 nβ = 2.038 nγ = 2.245
Максимальное двулучепреломление δ = 0.287
Оптический рельеф очень высокий
Плеохроизм видимый
Рассеивание относительно слабое r<v
Люминесценция в ультрафиолетовом излучении не флюоресцентный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА


Точечная группа mmm (2/m 2/m 2/m) — ромбо-дипирамидальный
Пространственная группа Fddd
Сингония Ромбическая (орторомбическая)
Параметры ячейки a = 10.468Å, b = 12.870Å, c = 24.49Å
Двойникование Двойники по {101}, {011}, {110} довольно редки

 

 

31793 ПРИСОЕДИНЯЙТЕСЬ К НАМ В СОЦСЕТЯХ:

Конспект урока на тему «Сера – простое вещество»

Тема «Сера – простое вещество»

Цель урока: определить положение серы в периодической системе химических элементов Д.И. Менделеева, рассмотреть строение атома серы, физические и химические свойства, области применения серы.

Оборудование: ПСХЭ, ноутбук, мультимедийный проектор, образцы серы, вода, химический стакан, стеклянная палочка.

Ход урока:

  1. Организационный момент.

  2. Проверка домашнего задания. (Презентация)

Игра по теме «Кислород». Стрелка барабана указывает на номер вопроса, ученики по очереди отвечают на вопросы, зарабатывая баллы (за правиль-ный ответ – 1 балл).

  1. Назовите самый распространённый элемент на нашей планете. (Кислород)

  2. Назовите аллотропные модификации кислорода. (Кислород и озон)

  3. Какая химическая связь в молекуле кислорода? (Ковалентная неполярная)

  4. Назовите основные физические характеристики кислорода. (Кислород – это газ без цвета, запаха, вкуса)

  5. С какими веществами взаимодействует кислород? (Кислород взаимодействует почти со всеми простыми веществами, кроме галогенов, благородных газов, золота и платиновых металлов)

  6. Назовите признаки реакций горения. (Выделение большого количества теплоты, воспламенение)

  7. Где применяется кислород? (В металлургии, как окислитель ракетного топлива, в авиации и медицине для дыхания, при взрывных работах, для газовой резки и сварки металлов)

  8. Напишите уравнение реакции для получения кислорода, осуществляемой в присутствии оксида марганца(IV) 2Н2О2 = 2Н2О + О2

  9. Запишите уравнение реакции кислорода с щелочным металлом. 4Li + O2 = 2Li2O

  10. Запишите уравнение реакции кислорода с алюминием. 4Аl + 3O2 = 2Al2O

  11. Запишите уравнение реакции в которой кислород является восстановителем. 2F2 + 2Н2О = 4НF + О2

  12. Запишите уравнение реакции кислорода с фосфором. Запишите уравнение реакции кислорода. 4Р + 5O2 = 2Р2O5

  1. Сообщение темы и целей урока.

Сегодня на уроке, мы познакомимся со следующим элементом VI группы главной подгруппы ПСХЭ. Эпиграфом к нашему уроку послужат слова “В древней магии присутствую при рождении огня, называют серой издавна меня» (слайд 1). Итак, тема урока «Сера – простое вещество» (слайд 2), цель урока (слайд 3).

  1. Изучение нового материала.

  1. Положение серы в ПСХЭ. (слайд 4) Используя ПСХЭ, дайте характеристику химическому элементу сере (порядковый номер, номер группы, периода, строение атома). Сера на внешнем энергетическом уровне содержит 6 электронов, из которых 2 электрона неспаренные. Однако, по сравнению с атомами кислорода атомы серы имеют больший радиус, меньшее значение электроотрицательности, поэтому проявляют более выраженные восстановительные свойства, образуя соединения со степенями окисления +2,+4,+6. По отношению к менее электроотрицательным элементам (водород, металлы) сера проявляет окислительные свойства и приобретает степень окисления -2.

  2. Физические свойства (слайд 5)

Лабораторный опыт: рассмотрите образец серы, определите агрегатное состояние, цвет, растворимость в воде.

Вывод: сера – это твёрдое вещество, жёлтого цвета, в воде не растворяется.

Кристаллы серы в воде тонут. А порошок плавает на поверхности воды, т.к. мелкие кристаллики серы водой не смачиваются и поддерживаются на плаву мелкими пузырьками воздуха. Это процесс флотации. (Продемонстрировать опыт)

  1. Аллотропные модификации серы (слайд 6)

Для серы, как и для кислорода, характерна аллотропия.

— ромбическая сера (слайд 7)

Наиболее устойчивая модификация, состоящая из молекул S8. Её кристаллы имеют вид октаэдров со срезанными углами. В эту модификацию при комнатной температуре превращаются все другие модификации.

— моноклинная сера (слайд 8)

При кристаллизации расплава сначала получается моноклинная сера (игольчатые кристаллы), которая затем переходит в ромбическую.

— пластическая сера (слайд 9)

При нагревании кусочков серы в пробирке, она плавится, превращаясь в жидкость жёлтого цвета. При температуре 160 градусов жидкая сера начинает темнеть и становится настолько густой и вязкой, что даже не выливается из пробирки, однако при дальнейшем нагревании превращается в легкоподвижную жидкость темно-коричневого цвета. Если её вылить в холодную воду, она застывает в виде резинообразной массы. Это пластическая сера. Однако через несколько дней она превращается в ромбическую серу.

  1. Химические свойства серы (слайд 10)

При обычных условиях сера реагирует со всеми щелочными и щелочноземельными металлами, медью, ртутью, серебром, при нагревании сера реагирует и с другими металлами (цинк, алюминий, железо), образуя сульфиды. Только золото не реагирует с серой ни при каких условиях.

Запишите уравнение реакции серы с ртутью, составьте уравнение электронного баланса. Задание: используя учебник, стр. 131, ответьте на вопросы: какое практическое значение имеет эта реакция? Какая реакция называется демеркуризацией?

Из неметаллов с серой не реагируют только азот, йод и благородные газы. Запишите уравнения реакции серы с водородом, кислородом, составьте уравнение электронного баланса. Сероводород и сернистый газ – это яды. При курении тоже образуются сероводород и сернистый газ, отравляя организм. Не губите своё здоровье сознательно! Не курите!

  1. Нахождение в природе (слайд 11)

В природе сера встречается в трёх формах: самородная, сульфидная и сульфатная.

  1. Биологическое значение серы.

Сера — жизненно важный химический элемент. Она входит в состав белков. Особенно много серы в белках волос, рогов, шерсти. При недостатке серы в организме наблюдается ломкость костей, ногтей, выпадение волос. Серой богаты горох, фасоль, пшеница, яйца. Содержание серы в организме человека массой 70 кг – 140г. Сколько серы содержится в вашем организме.

  1. Применение серы (слайд 12)

5.Закрепление изученного материала (фронтальный опрос)

— охарактеризуйте положение серы в ПСХЭ;

— охарактеризуйте физические свойства серы;

— назовите аллотропные модификации серы;

— в каком соединении сера проявляет степень окисления +4

А) Н2S Б)Н23 В) Н24

— с каким веществом реагирует сера, образуя сульфиды

А) водой Б)водородом В) натрием

Запишите уравнение реакции.

  1. Домашнее задание

Параграф 22, упр.2 стр.134

  1. Подведение итогов урока.

Комментирование оценок.

Урок по химии на тему: «Сера

Урок химии в 9 классе

Тип:

Урок изучения и первичного закрепления знаний.

Тема урока: «Сера – простое вещество».

Стратегическая цель:

Научить учащихся составлять ш.с.о. элемента и прогнозировать химические свойства вещества.

Цели урока:

дидактическая: охарактеризовать серу в свете трёх форм существования химического элемента: в форме атомов, простого вещества, а следовательно, и её аллотропию, а также формы некоторых соединений серы; химические свойства серы рассмотреть в свете окислительно-восстановительных реакций;

развивающая: продолжить развитие умений устанавливать причинно- следственные связи, делать выводы, наблюдать и объяснять результаты демонстрационного эксперимента, прогнозировать свойства вещества;

воспитательная: способствовать формированию информационной, коммуникативной, ценностно-смысловой компетенций учащихся.

Методы обучения: частично-поисковый, проблемно-дискуссионный, использование информационно-коммуникационных технологий.

Оборудование: компьютерная презентация, видео-опыты, инструктивные карты, компьютер, экран, проектор; химические стаканчики на 100 мл с водой, ступка с пестиком, стеклянные палочки, спиртовка, пробирки.

Реактивы: S, Na, H2 O.

Тема урока: «Сера – простое вещество»

Девиз: “Жить – значит узнавать”

Д.И.Менделеев

Мотивационно-ориентировочный этап.

«Черный ящик»

Люди начали меня использовать уже за 2 тысячи лет до н. э.

В Древнем Египте — для приготовления красок, для беления тканей и изготовления косметических средств, а в Древней Греции меня сжигали в целях дезинфекции вещей и воздуха в помещениях. Одна из причин этой известности – моя распространенность в самородном виде в странах древнейших цивилизаций. Меня сжигали при различных церемониях и ритуалах. С моей помощью боролись с насекомыми.

Я нужна везде. Бумага, резина, эбонит, спички, ткани, лекарства, косметика, пластмассы, взрывчатка, краска, удобрения и ядохимикаты – вот далеко не полный перечень вещей и веществ, для которых я необходима.

Название мое идет от санскритского слова «сира», что значит светло-желтый. Я содержусь в бобовых растениях, овсяных хлопьях, яйцах. А алхимики изображали меня в виде огнедышащего дракона.

Ребята, какое вещество находится в «черном ящике»?

Тема урока – «Сера – простое вещество».

Сера — это одно из первых веществ, о которых знало человечество; «начало начал» древнейших философов и алхимиков; элемент, окутанный мистикой и тайнами: в древности люди наделяли серу таинственными сверхъестественными свойствами. Встречаясь в виде серных жил в кратерах вулканов, сера издавна считалась продуктом деятельности подземного бога Вулкана.

Цель урока – изучить серу как простое вещество.

Операционально-исполнительский этап

Как мы будем изучать данное вещество? Спланируйте свои действия, составьте план работы на уроке.

План.

1. Положение в периодической системе.

2. Состав, строение, свойства атома серы.

3. Состав, строение, свойства простого вещества.

4.Физические и химические свойства серы.

5. Нахождение в природе, получение и применение серы.

Беседа с учащимися.

1. Какое положение занимает сера в ПСХЭ Д.И. Менделеева?

Модель ответа: сера находится в III периоде, в VIA группе и относится к семейству халькогенов.

2. Строение атома серы. Показать распределение электронов по энергетическим уровням и составить электронно- графическую формулу атома серы.

Это задание выполняет один из учащихся на доске, а остальные учащиеся в тетрадях.

Модель ответа:

На первом уровне один подуровень и одна s-орбиталь, заполненная полностью. На втором уровне два подуровня и четыре орбитали – 1s и 3p, заполненные полностью. На третьем уровне — три подуровня и девять орбиталей. Появляется d-подуровень, он в спокойном состоянии атома не заполнен. Внешний электронный слой заполнен так же, как и у кислорода.

3.Пользуясь периодической системой, определите ВСО и НСО атома серы в соединениях.

Сегодня на уроке мы будем учиться составлять шкалу степеней окисления элемента.

Шкала степеней окисления серы.

-2 0 +2 +4 +6

H2S S2 SCl2 SO2 SO3

K2S S8 H2SO3 H2SO4

K2SO3 K2SO4

Ребята, на прошлом уроке мы с вами говорили о том, что кислород проявляет только окислительные свой­ства, а сера — и окислительные, и восстановитель­ные. С чем это связано?

У кислорода два электронных уровня, а у серы три. Радиус серы больше радиуса кислорода. Сера может предоставить более электроотрицательному элементу 2 электрона, проявляя при этом степень окисления +2.

Проблемный вопрос: «Может ли атом серы проявлять другие степени окисления?»

У атома серы есть две орбитали, имеющие пары электронов. В возбуждённом состоянии может происходить разъединение пары электронов. При разъединении одной пары электрон перескакивает на d-подуровень, образуется четыре не спаренных электрона, которые сера может предоставлять более электроотрицательным атомам, проявляя при этом степень окисления +4 . При разъединении ещё одной пары электронов образуется 6 неспаренных электронов, которые так же сера может предоставлять более электроотрицательным атомам, проявляя при этом степень окисления +6.

Вывод: Сера может быть и окислителем и восстановителем со степенями окисления: –2, 0, +2, +4, +6.

Пользуясь шкалой степеней окисления серы, вы будете далее самостоятельно прогнозировать химические свойства серы.

Предположите, с какими веществами будет реагировать сера, проявляя себя как окислитель.

Ученик: с водородом и металлами.

Действительно, сера активный неметалл и при обычных условиях реагирует со всеми щелочными и щелочноземельными металлами, медью, ртутью, серебром. При нагревании и с другими металлами. Взаимодействие с ртутью — демеркуризация.

Не реагирует с золотом.

Демонстрационный опыт.

Взаимодействие серы с натрием.

Окислительные свойства сера проявляет и с водородом, с которым реагирует при нагревании. В результате реакции получается ядовитый газ сероводород с запахом тухлых яиц.

Восстановительные свойства сера проявляет с более электроотрицательными неметаллами – кислородом, фтором. Фтор глубже, чем кислород окисляет серу(+6), она в потоке фтора начинает плавиться (без предварительного нагревания), а затем сгорает. Для реакции с кислородом серу предварительно следует расплавить. Сгорает она , образуя оксид серы (IV) S О2 , который каталитическим путем может быть окислен до оксида серы (VI) S О3. Из неметаллов с серой не реагируют азот, иод, благородные газы.

Демонстрационный видео-опыт – горение серы в кислороде.

Вторая группа свойств

S0 + 2е S-2

S0 — окислитель (восстанавливается)

S0 + 2Na  Na 2 S-2

S0 + Н2  Н2 S-2

S0— 4е ® S+4 — 2е ® S+6

-6е

S0 — восстановитель (окисляется)

S02 ®S+4 О2

2S О2 + О2 ® 2S+6 О3

S0 + 3F2 ® S+6 F6

Все реакции экзотермические

S +Al самостоятельно

Проблемный вопрос: какие свойства – окислительные или восстановительные будет проявлять сера, взаимодействуя с углеродом? Запишите уравнение реакции на доске, применив ряд ЭО неметаллов.

S +С ®СS2

Сера в данной реакции – окислитель.

Закрепление изученного материала.

Задание1.

Применяя шкалу степеней окисления серы осуществить цепочку превращений, записанную в непривычном для вас виде:

S0® S-2® S+4® S+6® S+6® S+6

С помощью учителя осуществляется работа учащихся у доски по цепочке.

Ответ:

S+ Н2 ® Н2S

Н2S + О2 ® Н2 О + S О2

2S О2 + О2® 2S О3

S О3 2 О ® Н24

Н24 +2КОН ® К24 + 2Н2 О

Задание2.

Применяя шкалу степеней окисления серы, приведите примеры соединений серы, в которых она образует ковалентную неполярную, ковалентную полярную и ионную связь.

Ответ: S8 , Н2S, К2S

Задание3.

Найти в ряду «лишнее» соединение серы и дать аргументированный ответ.

S О3 , K2 S, Al3S5, SCl2, CS2

Ответ: К2S – соединение с ионной связью, все остальные с ковалентной полярной.

Сера – простое вещество.

Сера – это типичный неметалл. Рассмотрите образцы серы, опишите физические свойства. Проверьте растворимость серы в воде. Кристаллы серы в воде тонут, а порошок плавает на поверхности воды, так как мелкие кристаллики серы не смачиваются и поддерживаются на плаву мелкими пузырьками воздуха. Это процесс флотации. Сера хорошо растворяется в ацетоне, толуоле, сероуглероде.

Для серы, как и для кислорода характерна аллотропия. Известно много аллотропных модификаций серы. Сегодня на уроке мы познакомимся с тремя– ромбической, моноклинной и пластической.

Ромбическая сера состоит из молекул S8, ее кристаллы имеют вид октаэдров со срезанными углами, они окрашены в лимонно-желтый цвет. Рассмотрим способ получения пластической серы из ромбической.

Ребята, ваша задача – внимательно провести наблюдения за явлениями, которые происходят при нагревании серы, зафиксировать внешние изменения вещества и выполнить задание на карточке.

Задание: изучить рисунки и на основании наблюдений выяснить причины аллотропных видоизменений серы.

Вспомним из прошлого материала, что такое аллотропия? (Аллотропия — это способность одного и того же химического элемента образовывать различные простые вещества).

На прошлом уроке мы познакомились с аллотропными модификациями химического элемента кислорода — кислородом и озоном. В чём причина различия их физических и химических свойств? (Причина в разном количестве атомов в молекуле: кислород — 2, озон – 3). Мы выяснили, что причина аллотропии кислорода — разное число атомов в молекуле; а в чём причина возникновения аллотропных модификаций у серы? (Причина кроется в различных способах соединения атомов между собой).

Сера образует молекулы с чётным числом атомов: S2, S4, S6, S8. При обычных условиях устойчива молекула S8. Из таких молекул построены две аллотропные кристаллические модификации серы: ромбическая и моноклинная. Ромбическая — лимонно-жёлтая кристаллическая сера . При температуре 95 0С ромбическая переходит в моноклинную. При температуре 119 0С она плавится, около 160 0С кольца молекул S8 разрываются, образуя бесконечные спирали. При кристаллизации из расплава получается моноклинная сера – игольчатые кристаллы, она устойчива между 95,6 °С и температурой плавления. Моноклинная переходит в тёмно-коричневую смолообразную пластическую серу. Все формы через определённое время переходят в ромбическую.

Какого типа кристаллическая решетка у серы?

Ученик: Молекулярная.

Как практически можно определить тип кристаллической решетки?

Сера в природе. Работа с учебником. По учебнику изучить нахождение серы в природе и сделать вывод.

Получение и применение серы – мини – проект , выполненный учащимися.

Рефлексивно-оценочный этап.

Тест с самопроверкой.

1. Электронная формула внешнего энергетического уровня атома серы:

А. ns2np6 Б. ns2np4 В. ns2np5 Г. ns2np3

2. Ряд формул веществ, в которых степень окисления серы уменьшается:

А. SO3  FeS  S О2 Б. MgS ¾ S ¾ S О2

В. S О2 ¾ S ¾ Н2 S Г. S ¾ Н2 S ¾ Al 2S3

3. Какой модификации серы не существует:

А. ромбической Б. тетраэдрической В. моноклинной Г. пластической?

4. Сера не растворяется в

А. ацетоне Б. воде В. сероуглероде Г. толуоле.

5. При комнатной температуре без первоначального нагревания сера реагирует с металлом:

А. железом Б. цинком В. алюминием Г. ртутью.

6. В каком виде сера практически не встречается в природе:

А. сульфитная Б. сульфидная В. сульфатная В. самородная?

Ответы:

1.Б

2.В

3.Б

4.В

5.Г

6.А

Домашнее задание – п.21, упр.3, задача 1. Для выполнения упр. 3 сделайте примечание – соли нестойких кислот при нагревании разлагаются.

Индивидуальное домашнее задание.

S-2 S-2 ®S0® S+4 ®S+6 ®S+6 ®S-2

В завершение поделитесь своими впечатлениями об уроке. Для этого выскажите свое мнение-

Сегодня я узнал ________________________________________________________

Я удивился ____________________________________________________________

Я хотел бы ____________________________________________________________

Характерные химические свойства кислорода и серы.

Химические свойства кислорода

Химический элемент кислород может существовать в виде двух аллотропных модификаций, т.е. образует два простых вещества. Оба этих вещества имеют молекулярное строение. Одно из них имеет формулу O2 и имеет название кислород, т.е. такое же, как и название химического элемента, которым оно образовано.

Другое простое вещество, образованное кислородом, называется озон. Озон в отличие от кислорода состоит из трехатомных молекул, т.е. имеет формулу O3.

Поскольку основной и наиболее распространенной формой кислорода является молекулярный кислород O2, прежде всего мы рассмотрим именно его химические свойства.

Химический элемент кислород находится на втором месте по значению электроотрицательности среди всех элементов и уступает лишь фтору. В связи с этим логично предположить высокую активность кислорода и наличие у него практически только окислительных свойств. Действительно, список простых и сложных веществ, с которыми может реагировать кислород огромен. Однако, следует отметить, что поскольку в молекуле кислорода имеет место прочная двойная связь, для осуществления большинства реакций с кислородом требуется прибегать к нагреванию. Чаще всего сильный нагрев требуется в самом начале реакции (поджиг) после чего многие реакции идут далее уже самостоятельно без подвода тепла извне.

Среди простых веществ не окисляются кислородом лишь благородные металлы (Ag, Pt, Au), галогены и инертные газы.

Сера сгорает в кислороде с образованием диоксида серы:

Фосфор в зависимости от избытка или недостатка кислорода может образовать как оксида фосфора (V), так и оксид фосфора (III):

Взаимодействие кислорода с азотом протекает в крайне жестких условиях, в виду того что энергии связи в молекулах кислорода и особенно азота очень велики. Также свой вклад в сложность протекания реакции делает высокая электроотрицательность обоих элементов. Реакция начинается лишь при температуре более 2000 oC и является обратимой:

Не все простые вещества, реагируя с кислородом образуют оксиды. Так, например, натрий, сгорая в кислороде образует пероксид:

а калий – надпероксид:

Чаще всего, при сгорании в кислороде сложных веществ образуется смесь оксидов элементов, которыми было образовано исходное вещество. Так, например:

Однако, при сгорании в кислороде азотсодержащих органических веществ вместо оксида азота образуется молекулярный азот N2. Например:

При сгорании в кислороде хлорпроизводных вместо оксидов хлора образуется хлороводород:

Химические свойства озона:

Озон является более сильным окислителем, чем кислород. Обусловлено это тем, что одна из кислород-кислородных связей в молекуле озона легко рвется и в результате образуется чрезвычайно активный атомарный кислород. Озон в отличие от кислорода не требует для проявления своих высоких окислительных свойств нагревания. Он проявляет свою активность при обычной и даже низкой температурах:

PbS + 4O3 = PbSO4 + 4O2

Как было сказано выше, серебро с кислородом не реагирует, однако, реагирует с озоном:

2Ag + O3 = Ag2O + O2

Качественной реакцией на наличие озона является то, что при пропускании исследуемого газа через раствор иодида калия наблюдается образование йода:

2KI + O3 + H2O = I2↓ + O2 + 2KOH

Химические свойства серы

Сера как химический элемент может существовать в нескольких аллотропных модификациях. Различают ромбическую, моноклинную и пластическую серу. Моноклинная сера может быть получена при медленном охлаждении расплава ромбической серы , а пластическая напротив получается при резком охлаждении расплава серы, предварительно доведенного до кипения. Пластическая сера обладает редким для неорганических веществ свойством эластичности – она способна обратимо растягиваться под действием внешнего усилия, возвращаясь в исходную форму при прекращении этого воздействия. Наиболее устойчива в обычных условиях ромбическая сера и все иные аллотропные модификации со временем переходят в нее.

Молекулы ромбической серы состоят из восьми атомов, т.е. ее формулу можно записать как S8. Однако, поскольку химические свойства всех модификаций достаточно схожи, чтобы не затруднять запись уравнений реакций любую серу обозначают просто символом S.

Сера может взаимодействовать и с простыми и со сложными веществами. В химических реакциях проявлет как окислительные, так и восстановительные свойства.

Окислительные свойства серы проявляются при ее взаимодействии с металлами, а также неметаллами, образованными атомами менее электроотрицательного элемента (водород, углерод, фосфор):

Как восстановитель сера выступает при взаимодействии с неметаллами, образованными более электроотрицательными элементами (кислород, галогены), а также сложными веществами с ярко выраженной окислительной функцией, например, серной и азотной концентрированной кислотами:

Также сера взаимодействует при кипячении с концентрированными водными растворами щелочей. Взаимодействие протекает по типу диспропорционирования, т.е. сера одновременно и понижает, и повышает свою степень окисления:

Физические и химические свойства серы. Оксиды серы

Билет № 16

1. Сера: положение этого химического элемента в периодической системе, строение его атома. Физические и химические свойства серы. Оксиды серы, их химические свойства

Положение в периодической системе: сера находится в 3 периоде, VI группе, главной (А) подгруппе.

Атомный номер серы 16, следовательно, заряд ядра атома серы равен +16, число электронов 16. Три электронных уровня (равно периоду), на внешнем уровне 6 электронов (равно номеру группы для главных подгрупп).

Схема расположения электронов по уровням:
16S ) ) )
       2 8 6

 

Ядро атома серы 32S содержит 16 протонов (равно заряду ядра) и 16 нейтронов (атомная масса минус число протонов: 32 − 16 = 16).

Сера как простое вещество образует аллотропные модификации: кристаллическая сера и пластическая.

Кристаллическая сера — твердое вещество желтого цвета, хрупкое, легкоплавкое (температура плавления 112° С), нерастворима в воде. Сера и многие руды, содержащие серу, не смачиваются водой. Поэтому порошок серы может плавать на поверхности, хотя сера тяжелее воды (плотность 2 г/см3).

На этом основан метод обогащения руд под названием флотация: измельченная руда погружается в емкость с водой, через которую продувается воздух. Частички  полезной руды подхватываются пузырьками воздуха и выносятся наверх, а пустая порода (например, песок) оседает на дно.

Пластическая сера темного цвета и способна растягиваться, как резина.

Это отличие в свойствах связано со строением молекул: кристаллическая сера состоит из кольцевых молекул, содержащих 8 атомов серы, а в пластической сере атомы соединены в длинные цепи. Пластическую серу можно получить, если нагреть серу до кипения и вылить в холодную воду.

В уравнениях для простоты записывают серу без указания числа атомов в молекуле: S.

 

Химические свойства:

  1. В реакциях с восстановителями: металлами, водородом, — сера проявляет себя как окислитель (степень окисления −2,валентность II). При нагревании порошков серы и железа образуется сульфид железа:
    Fe + S = FeS
    Со ртутью, натрием порошок серы реагирует при комнатной температуре:
    Hg + S = HgS
  2. При пропускании водорода через расплавленную серу образуется сероводород:
    H2 + S = H2S
  3. В реакциях с сильными окислителями сера окисляется. Так, сера горит, образуется оксид серы (IV) — серни́стый газ:
    S + O2 = SO2

Оксид серы (IV) — кислотный оксид. Реагирует с водой с образованием серни́стой кислоты:

SO2 + H2O = H2SO3

Эта реакция происходит в атмосфере при сжигании каменного угля, который обычно содержит примеси серы. В результате выпадают кислотные дожди, поэтому очень важно подвергать очистке дымовые газы котельных.

В присутствии катализаторов оксид серы (IV) окисляется до оксида серы (VI):

2SO2 + O2 2SO3 (реакция обратима)

Оксид серы (VI) реагирует с водой с образованием серной кислоты:

SO3 + H2O = H2SO4

SO3 — бесцветная жидкость, кристаллизуется при 17° С, переходит в газообразное состояние при 45° С

2. Опыт. Проведение реакций, подтверждающих свойства гидроксида кальция.

  1. Гидроксид кальция (гашеная известь) — малорастворимое вещество. Взбалтываем немного извести в 2 мл воды (около 2 см по высоте пробирки), даем постоять несколько минут. Большая часть извести не растворится, осядет на дно.
  2. Сливаем раствор, фильтруем (если нет фильтра, ждем пока отстоится). Прозрачный раствор гидроксида кальция называется известковой водой. Делим на 2 пробирки. В одну капаем индикатор фенолфталеин (ф-ф), он окрашивается в малиновый цвет, что доказывает осно́вные свойства извести:
    Ca(OH)2 Ca2+ + 2OH
  3. Во вторую пробирку пропускаем углекислый газ, известковая вода мутнеет в результате образования нерастворимого карбоната кальция (это качественная реакция для обнаружения углекислого газа):
    Ca(OH)2 + CO2 = CaCO3↓ + H2O

Если придется делать эти реакции на практике, углекислый газ можно получить в пробирке с газоотводной трубкой, добавив соляную или азотную кислоту в мел или соду.

Можно несколько раз пропустить выдыхаемый воздух через трубочку от коктейля или сока, принесенную с собой. Не стоит шокировать комиссию — дуть в трубку из лабораторного оборудования — в кабинете химии ничего нельзя пробовать на вкус!

автор: Владимир Соколов

Сера — Информация об элементе, свойства и использование

Расшифровка:

Химия в ее элементе: сера

(Promo)

Вы слушаете Химию в ее элементе, представленную вам Chemistry World , журналом Королевского химического общества.

(Конец промо)

Крис Смит

Привет, на этой неделе вонючие отложения, скунсы и запах ада.Все они начинаются с буквы S, как и элемент этой недели. Вот Стив Майлон.

Стив Майлон

«Как пахло?» Это был единственный вопрос, который мне нужно было задать своему коллеге-геологу об отложениях, которые она пыталась понять. Запах осадка многое говорит о химическом составе, лежащем в основе. Густые черные бескислородные отложения могут сопровождаться гнилостным запахом, характерным только для восстановленной серы.

Может быть, поэтому сера имеет такую ​​плохую репутацию.Мой сын полгода не ел яйца, когда почувствовал запах своего первого тухлого яйца. В Библии кажется, что всякий раз, когда что-то плохое случается или вот-вот должно произойти, горящая сера изображена на картинке:

Например,

В Бытие мы слышим: «Господь пролил дождем горящую серу на Содом и Гоморру»

И в Откровении мы читаем, что грешники найдут свое место в огненном озере из горящей серы ».

Странно то, что в обоих случаях мы не должны ожидать появления чего-либо пахнущего.Когда сера горит на воздухе, она обычно образует диоксид серы или триоксид серы, последний из которых не имеет запаха [исправлено из аудиофайла подкаста, в котором говорится, что диоксид серы не имеет запаха]. Эти соединения могут далее окисляться и выпадать в виде серной или сернистой кислоты. Это механизм кислотных дождей, которые опустошили леса на северо-востоке Соединенных Штатов, поскольку богатые серой угли сжигаются для выработки электроэнергии в штатах Среднего Запада и уносятся на восток преобладающими ветрами, когда серная кислота выпадает, вызывая всевозможные экологические проблемы.

Кроме того, горящий уголь и туман создают смог во многих промышленных городах, вызывая респираторные заболевания у местных жителей. Здесь также виноваты диоксид серы и серная кислота. Но опять же, с этой формой серы не связано никакого запаха.

Так что, если говорят, что ад или дьявол «пахнет серой», может быть, это не так уж и плохо.

Но уменьшите серу, отдав ей пару электронов, и ее запах будет безошибочным. Требование восстановления серы до сульфида явно потеряно при переводе.

Ад, пахнущий сероводородом или любым количеством сероорганических соединений, совсем не будет хорошим местом. Органические сульфидные соединения, известные как тиолы или меркаптаны, настолько плохо пахнут, что их обычно добавляют в природный газ без запаха в очень небольших количествах, чтобы служить «сигнализатором запаха» в случае утечки в трубопроводе природного газа. Скунсы используют неприятный запах бутил-селеномеркаптана как средство защиты от врагов. И лично для меня наихудшая химия происходит, когда восстановленная сера придает неприятный (вонючий) привкус бутылкам с вином или пивом.-привязанный, чтобы испортить приятную ночь в городе или послеобеденное время в местном пабе.

Итак, откуда берется «запах ада» в бескислородных отложениях. Интересно, что некоторые бактерии эволюционировали, чтобы использовать окисленную серу, сульфат, в качестве акцептора электронов во время дыхания. Подобно тому, как люди превращают элементарный кислород в воду, эти бактерии восстанавливают сульфат до сероводорода — они явно не обращают внимания на запах.

Запах — не единственный интересный химический состав, который сопровождает восстановленную серу.Глубокий черный цвет, связанный с бескислородными отложениями, является результатом низкой растворимости большинства сульфидов металлов. Восстановление сульфата до сульфида обычно сопровождает осаждение пирита (сульфида железа), киновари (сульфида ртути), галенита (сульфида свинца) и многих других минералов. 12) серы.DMS окисляется до SO2 и, наконец, до частиц серной кислоты, которые могут действовать как ядра конденсации облаков, образуя облака, которые имеют общий охлаждающий эффект для планеты.

Представьте себе более высокие температуры, сопровождаемые большей биологической активностью, приводящей к большему выбросу DMS в атмосферу. Образовавшееся облако может охладить нагреющуюся планету. Это похоже на то, как планктон раскрывает зонтик, частично состоящий из серы. Из символа проклятия в спасителя … что за поворот !!.

Крис Смит

Стив Майлон нюхает вонючую историю Sulphur. К счастью, элемент на следующей неделе намного менее пахучий.

Джон Эмсли

История его открытия началась, когда Рэлей обнаружил, что азот, извлеченный из воздуха, имеет более высокую плотность, чем полученный при разложении аммиака. Разница была небольшой, но реальной. Рамзи написал Рэли, предлагая поискать более тяжелый газ в азоте, полученном из воздуха, в то время как Рэли должен искать более легкий газ из аммиака.Рамзи удалил весь азот из своего образца, многократно пропуская его над нагретым магнием. Ему оставили один процент, который не вступил в реакцию, и он обнаружил, что он плотнее азота. В его атомном спектре появились новые красные и зеленые линии, подтверждающие, что это новый элемент.

Крис Смит

И этот новый элемент был аргоном, прозванным ленивым элементом, потому что первоначально ученые думали, что он ни с чем не будет реагировать. Теперь мы знаем, что это неправда, и Джон Эмсли будет здесь, чтобы раскрыть секреты аргона в программе «Химия в ее элементе» на следующей неделе. Надеюсь, вы присоединитесь к нам.Я Крис Смит, спасибо за внимание и до свидания.

(промо)

(конец промо)

фактов о сере | Живая наука

Ик, что это за запах? Если запах тухлых яиц, это может быть вина серы. Этот ярко-желтый элемент, известный в Библии как «сера», встречается в изобилии в природе и в древние времена использовался для различных целей.

По данным Национальной лаборатории линейных ускорителей Джефферсона, сера, неметалл, занимает 10-е место по численности во Вселенной.Сегодня его чаще всего используют в производстве серной кислоты, которая, в свою очередь, используется в удобрениях, батареях и чистящих средствах. Он также используется для очистки нефти и обработки руд.

Чистая сера не имеет запаха. Согласно Chemicool, запах, связанный с этим элементом, исходит от многих его соединений. Например, соединения серы, называемые меркаптанами, придают скунсу защитный запах. Тухлые яйца и вонючие бомбы приобретают свой характерный аромат из-за сероводорода.

Только факты

По данным лаборатории Джефферсона, свойства серы следующие:

  • Атомный номер (количество протонов в ядре): 16
  • Атомный символ (в Периодической таблице элементов): S
  • Атомный вес (средняя масса атома): 32.065
  • Плотность: 2,067 грамма на кубический сантиметр
  • Фаза при комнатной температуре: твердое вещество
  • Точка плавления: 239,38 градусов по Фаренгейту (115,21 градуса Цельсия)
  • Точка кипения: 832,28 градусов F (444,6 градусов C)
  • (Количество изотопов) атомы одного и того же элемента с разным числом нейтронов): 23
  • Наиболее распространенные изотопы: S-32 (естественное содержание 94,99%), S-33 (естественное содержание 0,75 процента), S-34 (естественное содержание 4,25 процента), С-36 (0.01 процент естественного изобилия)

(Изображение предоставлено Грегом Робсоном / Creative Commons, Андрей Маринкас Shutterstock)

Элемент библейских пропорций

«На нечестивых он пролит дождь из огненных углей и горящей серы; их будет палящий ветер много.» — Псалом 11: 6

Немногие элементы достаточно высоки, чтобы их можно было упомянуть в Библии, не говоря уже о 15 отдельных выносках. Но сера часто встречается в природе в соединениях, обычно в виде вонючего желтого минерала, связанного с горячими источниками и вулканами, что, возможно, объясняет, почему авторы Библии связывают ее с адским огнем и гневом.

Сам элемент не был изолирован до 1809 года, по данным Королевского химического общества, когда французские химики Луи-Жозеф Гей-Люссак и Луи-Жак Тенар создали чистый образец. (Гей-Люссак был известен своими исследованиями газов, в ходе которых он летал на воздушных шарах, наполненных водородом, на высоте более 7000 метров над уровнем моря, по данным Фонда химического наследия.)

При сгорании сера дает синий цвет. по данным Агентства по охране окружающей среды, пламя и газообразный диоксид серы — распространенные загрязнители.Диоксид серы в атмосфере поступает в основном из электростанций, работающих на ископаемом топливе, и является одной из основных причин кислотных дождей. Газ также раздражает легкие. EPA регулирует выбросы диоксида серы вместе с пятью другими так называемыми «критериями загрязняющих веществ», включая свинец и монооксид углерода.

Кто знал?

  • По данным Chemicool, сера составляет почти 3 процента массы Земли. Этого достаточно серы, чтобы сделать еще две луны.
  • Сера (в виде диоксида серы) использовалась для консервирования вина на протяжении тысячелетий и остается ингредиентом вина сегодня, согласно Practical Winery & Vineyard Journal.
  • Непонятно, откуда произошло название «сера». Оно могло происходить от арабского слова «суфра» или «желтый». Или это могло быть от санскритского «шульбари», что означает «враг меди». Согласно Chemicool, вторая возможность интригует, поскольку сера действительно сильно реагирует с медью. Знали ли древние люди об этом свойстве серы и называли его соответствующим образом?
  • Двуокись серы использовалась для дезинфекции домов с древних времен, практика, которая продолжалась и в 19 веке.В одной статье 1889 года главного инспектора здравоохранения Нью-Йорка описывается, как чиновники сжигали серу и алкоголь в домах, пораженных оспой, скарлатиной, дифтерией и корью.
  • А, расслабься! Горячие источники, полные растворенных соединений серы, могут иметь сомнительный запах, но их давно ценили за их предполагаемые лечебные свойства. Город Хот-Сульфур-Спрингс, штат Колорадо, например, возник в 1860 году после того, как белые поселенцы обнаружили серные источники, в которых индейцы Юте впитывали воду на протяжении веков.
  • Погодите, а что там с написанием? «Сера» — это обычное написание в Соединенном Королевстве, в то время как «сера» предпочтительнее в Америке. Но с научной точки зрения «сера» — это правильно, согласно Международному союзу чистой и прикладной химии, организации, чья работа состоит в том, чтобы определять эти вещи. Таким образом, даже британские журналы, такие как Nature Chemistry, используют написание «f».
  • Sulphur может много помочь с кораблекрушениями. Исследование шведского военного корабля, затонувшего в 1628 году, в 2008 году показало, что более 2 тонн серы пропитывают древесину спасенного судна.
  • Извините! Основная причина неприятного запаха кишечного газа заключается в том, что толстый кишечник полон бактерий, выделяющих соединения серы в виде отходов.

Текущие исследования

Сегодня сера является побочным продуктом переработки ископаемого топлива в полезные источники энергии, такие как бензин. Эта доработка хороша для предотвращения уноса соединений серы в небо при сгорании топлива, вызывая кислотные дожди. Но это приводит к скоплению холмов элементарной серы на нефтеперерабатывающих заводах.

Около 90 процентов этой элементарной серы идет на производство серной кислоты, сказал Джефф Пьюн, биохимик из Университета Аризоны. Но «поскольку мы проходим миллионы баррелей нефти в день, несколько процентов [серы] на баррель просто быстро накапливаются», — сказал Пьюн. При почти 100 млн. Тонн отработанной серы в год 10 процентов, не используемых в производстве серной кислоты, составляют немаловажные 10 млн. Тонн в год.

Что делать с этим желтым беспорядком? Пюн и его коллеги думают, что у них есть ответ.Они нашли способ превращать отработанную серу в пластик, который, в свою очередь, можно использовать в тепловизионных устройствах и литий-серных батареях.

«Это был колоссальный вызов, и мы были первыми сумасшедшими, которые серьезно отнеслись к этому», — сказал Пьюн Live Science.

С серой трудно работать, потому что она плохо растворяется в других химических веществах. Это было первое разочарование, с которым пришлось столкнуться Пьюну и его команде исследователей из Кореи, Германии и США.

«Он не хотел растворяться», — сказал Пюн.«Он просто повсюду, по всей моей лаборатории».

В конце концов исследователи решили просто расплавить вещество. Оказывается, сера автоматически превращается в полимер — длинную цепочку связанных молекул, которая является основой пластмасс, когда нагревается выше 320 F (160 C). По словам Пьюна, такая реакция известна уже более века. Но полимер распадается почти так же легко, как и образуется, что делает его бесполезным для практического применения.

Но эта полимерная фаза дала исследователям возможность «добавить что-то, потенциально, с чем она будет реагировать», чтобы стабилизировать пластик, сказал Пьюн.К счастью для команды, одно из первых опробованных ими химикатов оказалось победителем: 1,3-диизопропилбензол, более известный как «ДИБ».

«ДИБ работает так хорошо, потому что у него есть реактивные группы, которые могут реагировать с серой во время полимеризации», — сказал Пьюн. «Он был полностью растворим в жидкой сере».

В результате, как сообщили исследователи в апрельском журнале Nature Chemistry, получился красный пластик, который даже не пахнет тухлыми яйцами — полимеризующаяся сера не летучая, сказал Пьюн, и поэтому не пахнет летучими веществами. соединения серы, которые можно найти в горячих источниках.

Более того, процесс настолько прост, что Пьюн и его коллеги называют его «химией пещерного человека». По словам Пьюна, простота и низкая стоимость делают его привлекательным вариантом для промышленности. К команде обратились несколько компаний, заинтересованных в коммерческом использовании процесса полимеризации серы.

Что может быть хорошей новостью для окружающей среды. По словам Пьюна, обычные нефтяные и газовые месторождения содержат от 1 до 5 процентов серы. Однако все больше и больше при разведке нефти и газа используются нетрадиционные резервуары, заполненные более отвратительными веществами: нефть из битуминозных песков в Альберте, Канада, на 20 процентов состоит из серы.На некоторых новых месторождениях на Ближнем Востоке добывается нефть с содержанием серы до 40 процентов, добавил Пюн.

«Мы только собираемся производить больше серы», — сказал он, добавив, что они называют серу «транспортным мусором», потому что это побочный продукт переработки нефти. Если повезет, процесс его команды может превратить этот мусор во что-нибудь полезное.

Пестицид на основе серы

Элементарная сера — широко используемый пестицид на многих американских и европейских фермах. Он одобрен для использования как на обычных, так и на органических культурах, чтобы помочь контролировать грибок и других вредителей.По данным Berkeley News, только в Калифорнии в 2013 году в сельском хозяйстве было использовано более 21 миллиона килограммов (46,2 миллиона фунтов) элементарной серы.

Хотя Агентство по охране окружающей среды (EPA) назвало элементарную серу в целом безопасной, исследования показали, что этот тип пестицидов вызывает раздражение дыхательных путей у сельскохозяйственных рабочих.

Теперь новое исследование, проведенное учеными из Калифорнийского университета в Беркли, пошло еще дальше и изучило респираторное здоровье жителей, живущих рядом с обработанными полями, в частности, сотен детей, живущих в сельскохозяйственном сообществе долины Салинас, штат Калифорния. .Их результаты были опубликованы в августе 2017 года в журнале Environmental Health Perspectives.

Исследователи обнаружили, что у детей, живущих в пределах полумили от недавних применений элементарной серы, снижена функция легких, повышен уровень симптомов, связанных с астмой, и больше лекарств от астмы, по сравнению с детьми, не подвергавшимися воздействию.

В частности, они обнаружили, что 10-кратное увеличение внесенной серы в пределах 1 километра (0,62 мили) от места жительства ребенка в течение года до респираторной оценки было связано с 3.По данным Berkeley News, в 5 раз повышен риск использования лекарств от астмы и вдвое выше риск респираторных симптомов, таких как хрипы и одышка.

Авторы исследования настоятельно призывают к дальнейшим исследованиям для подтверждения этих результатов в надежде, что это приведет к изменениям в правилах и методах применения, чтобы ограничить респираторный вред близлежащим жителям. По словам исследователей, одна из идей — перейти на «смачиваемые» порошки.

Дополнительный отчет от Трейси Педерсен, сотрудника Live Science.Подпишитесь на Live Science @livescience, Facebook и Google+.

Дополнительные ресурсы

Сера (S) — химические свойства, воздействие на здоровье и окружающую среду

Сера — это поливалентный неметалл, содержащийся в большом количестве, без вкуса и запаха. В своей самородной форме сера представляет собой желтое кристаллическое твердое вещество. В природе он встречается как чистый элемент или как сульфидные и сульфатные минералы. Хотя сера печально известна своим запахом, который часто сравнивают с запахом тухлых яиц, этот запах на самом деле характерен для сероводорода (H 2 S).
Кристаллография серы сложна. В зависимости от конкретных условий аллотропы серы образуют несколько различных кристаллических структур.

Приложения

Основным производным серы является серная кислота (h3SO4), один из важнейших элементов, используемых в качестве промышленного сырья.
Сера также используется в батареях, детергентах, фунгицидах, производстве удобрений, оружии, спичках и фейерверках. Другие области применения — изготовление коррозионно-стойкого бетона, обладающего высокой прочностью и устойчивостью к воздействию растворителей и множества других продуктов химической и фармацевтической промышленности.

Сера в окружающей среде

Жизнь на Земле могла быть возможна из-за серы. Условия в ранних морях были такими, что простые химические реакции могли генерировать ряд аминокислот, которые являются строительными блоками жизни.

Сера естественным образом встречается возле вулканов. Самородная сера встречается естественным образом в виде массивных отложений в Техасе и Луизиане в США. Известны многие сульфидные минералы: пирит и маркаист — сульфид железа; стибнит — сульфид сурьмы; галенит — сульфид свинца; киноварь — это сульфид ртути, а сфалерит — сульфид цинка.Другими, более важными сульфидными рудами являются халькопирит, борнит, пенландит, миллерит и молибденит.
Основным источником серы для промышленности является сероводород природного газа, основным производителем серы является Канада.

Сера нужна всему живому. Это особенно важно для людей, потому что это часть аминокислоты метионина, которая является абсолютной диетической потребностью для нас. Аминокислота цистеин также содержит серу. В среднем человек потребляет около 900 мг серы в день, в основном в виде белка.

Элементарная сера не токсична, но многие простые производные серы, такие как диоксид серы (SO 2 ) и сероводород, токсичны.

Сера обычно встречается в природе в виде сульфидов. Во время нескольких процессов в окружающую среду добавляются серные связи, которые наносят ущерб животным и людям. Эти повреждающие серные связи также образуются в природе во время различных реакций, в основном, когда уже были добавлены вещества, которые не присутствуют в природе. Они нежелательны из-за неприятного запаха и часто очень токсичны.

В глобальном масштабе серные вещества могут оказывать следующее воздействие на здоровье человека:

— Неврологические эффекты и изменения поведения
— Нарушение кровообращения
— Повреждение сердца
— Воздействие на глаза и зрение
— Репродуктивная недостаточность
— Повреждение иммунной системы
— Желудок и желудочно-кишечные расстройства
— Повреждение печени и почек
— Нарушение слуха
— Нарушение гормонального обмена
— Дерматологические эффекты
— Удушение и эмболия легких

воздух во многих различных формах.Он может вызывать раздражение глаз и горла у животных, когда поглощение происходит путем вдыхания серы в газовой фазе. Сера широко применяется в промышленности и выбрасывается в воздух из-за ограниченных возможностей разрушения применяемых серных связей.

Повреждающее воздействие серы на животных — это, в основном, повреждение головного мозга из-за нарушения работы гипоталамуса и повреждение нервной системы.

Лабораторные испытания с подопытными животными показали, что сера может вызвать серьезное повреждение сосудов в венах головного мозга, сердца и почек.Эти тесты также показали, что определенные формы серы могут вызывать повреждение плода и врожденные эффекты. Матери могут даже передать своим детям отравление серой через материнское молоко.

Наконец, сера может повредить внутренние ферментные системы животных.

Источники таблицы Менделеева.

Вернуться к периодической таблице элементов .

Для получения дополнительной информации о месте серы в окружающей среде перейдите к циклу серы .

Сера — Центр научного обучения

Сера — это химический элемент. Его официальный символ — S, а его атомный номер — 16, что означает, что каждый атом серы имеет в своем ядре 16 протонов. Элементарная сера имеет бледно-желтый цвет. При комнатной температуре это мягкий порошок, который крошится при прикосновении. Элементарная сера не имеет запаха сама по себе, но когда она образует соединение — например, с водородом — она ​​может вонять!

Отложения серы естественным образом находятся в вулканических областях, таких как Роторуа и Уайт-Айленд, а также в больших количествах глубоко под землей в Соединенных Штатах, Польше и Сицилии.По массе сера является пятым по распространенности элементом на Земле.

Черный порошок, сера и несколько вариантов написания

Сера — один из немногих элементов, который встречается в чистом виде, поэтому люди знали и использовали «чистую» элементарную серу очень давно. Записи показывают, что китайцы использовали серу в традиционной медицине более 2600 лет назад. К 7 веку нашей эры они научились смешивать серу с древесным углем и нитратом калия для получения черного пороха (пороха). Древние индийские, греческие и египетские культуры также использовали серу в лекарствах, для дезинфекции и отбеливания тканей.

Сера также упоминается в религиозных писаниях, возраст которых составляет 2600 лет. В английском переводе Библии сера называется «серой» для описания разрушения (на которое способна вулканическая активность) и неприятного запаха, связанного с соединениями серы.

Перенесемся на 2300 лет в 1777 год. После обширных экспериментов Антуан Лавуазье обнаружил, что не может расщепить серу на более простые вещества, поэтому он объявил ее элементом.

В последнее время споры велись не о химии, а о правописании.Первоначальный латинский термин был «sulpur». Со временем он стал «серой», а в 3 веке превратился в «серу». Английский язык сохранил написание «ph», в то время как другие языки использовали, например, «f» — zolfo в итальянском и schwefel в немецком. Международный союз теоретической и прикладной химии официально принял слово «сера» в 1990 году.

Сера, необходимая для жизни (и неприятный запах)

Сера присутствует во всех тканях живых растений и животных. Он составляет около 0,3% человеческого тела.Это компонент некоторых белков. Он также помогает нашему организму противостоять бактериям, способствует выработке инсулина и помогает поддерживать здоровье суставов, кожи, волос, ногтей и соединительных тканей.

Сбалансированная диета должна удовлетворять потребности организма в сере. Богатые белком продукты — яйца, мясо, птица, рыба, молочные и соевые продукты — являются хорошими источниками диетической серы. Брассика (брокколи и капуста), лук, чеснок и спаржа также являются источником диетической серы.

Когда организм переваривает богатую серой пищу, в качестве побочного продукта образуется сероводород.Это газ, от которого пердит пахнет тухлыми яйцами — и придает Роторуа его знаменитый запах.

Сера необходима для роста растений. Помимо того, что сера важна для некоторых растительных белков, она способствует развитию хлорофилла и фиксации азота в бобовых. Большая часть серы в почве поступает из органических веществ и выветрившихся пород. Мы используем удобрения, чтобы обогащать почву важными элементами.

С другой стороны, сера может остановить жизнь. Люди давно используют серу для борьбы с насекомыми, плесенью и бактериями.Высокие концентрации сероводорода (намного превышающие то, что вырабатывается в нашем кишечнике) могут вызвать паралич дыхания, что приведет к смерти. Это просто показывает, что все дело в дозе.

Прочие применения

Сера наиболее широко используется для производства серной кислоты для производства фосфатов для удобрений. Он также используется для упрочнения резины, чтобы сделать такие изделия, как шины, обувь и шланги, более долговечными.

Еще одно обычное применение серы — это спички. Многие спички состоят из хлората калия, серы, порошкового стекла и желатина (который удерживает все материалы на дереве).Проведение спичечной головки по поражающей поверхности вызывает трение и нагрев, а затем — пламя. Хлорат калия выделяет кислород, а сера соединяется с кислородом и поддерживает огонь. Деревянная спичка также служит источником топлива. Характерный запах горящей спички исходит от серы.

Природный газ, используемый для отопления и приготовления пищи, не имеет запаха, цвета и вкуса. Соединения серы добавляются в природный газ, поэтому мы можем обнаружить даже малейшую утечку. Скунсы также используют серу для защиты.Они используют спрей на основе серы, достаточно сильный, чтобы отпугнуть медведей. Он настолько сильный, что с подветренной стороны люди могут почувствовать запах брызг на расстоянии нескольких километров!

Связанное содержание

Узнайте больше о минералах.

В отношении здоровья человека сера является макроминералом. О витаминах и минералах, необходимых для здорового питания, читайте в статье Микронутриенты.

Полезные ссылки

Узнайте больше о сере на этих веб-сайтах:

Загрузите эту бесплатную электронную книгу Making Superphosphate .Он был написан для поддержки учебной программы по химии в средней школе и описывает химические процессы, участвующие в производстве суперфосфатных удобрений на заводе по производству удобрений Ravensdown в Данидине.

Элементы, соединения и смеси

Элементы, Составы и смеси


Элементы

Известно любое вещество, содержащее только один вид атома. как элемент . Потому что атомы не могут быть созданы или разрушаются в химической реакции, такие элементы, как фосфор (P 4 ) или сера (S 8 ) не может быть разбита на более простые веществами этими реакциями.

Пример: вода разлагается на смесь водорода и кислород, когда через жидкость пропускают электрический ток. С другой стороны, водород и кислород не могут быть разложены на более простые вещества. Следовательно, они являются элементарными, или простейшие, химические вещества — элементы.

Каждый элемент представлен уникальным символом. Обозначение для каждого элемента можно найти в периодической таблице элементов.

Элементы можно разделить на три категории, которые имеют характерные свойства: металлы, неметаллы и полуметаллы.Большинство элементов — это металлы, которые находятся слева и ближе к нижняя часть таблицы Менделеева. Горстка неметаллов сгруппированы в верхнем правом углу периодической таблицы. В полуметаллы можно найти по разделительной линии между металлы и неметаллы.


Атомы

Элементы состоят из атомов, самые маленькие частица, обладающая любым из свойств элемента. Джон Дальтон в 1803 г. предложил современную теорию атома, основанную на следующие предположения.

1. Дело составлено атомов, которые неделимы и неразрушимы.

2. Все атомы элемента являются идентичный.

3. Атомы различных элементов имеют разный вес и разные химические свойства.

4. Атомы различных элементов. объединяйте в простые целые числа, чтобы образовать соединения.

5. Атомы не могут быть созданы или уничтожен. Когда соединение разлагается, атомы восстановлен без изменений.


Соединения

Элементы объединяются в химические соединения, которые часто разделены на две категории.

Металлы часто реагируют с неметаллами с образованием ионных соединений . Эти соединения состоят из положительных и отрицательных ионов, образованных путем добавления или вычитания электронов из нейтральных атомов и молекулы.

Неметаллы объединяются друг с другом, образуя ковалентную форму . соединения , которые существуют в виде нейтральных молекул.

Сокращенное обозначение соединения описывает количество атомов каждого элемента, который обозначен нижним индексом, написанным после символа элемента. По соглашению, нижний индекс не используется. записывается, когда молекула содержит только один атом элемента. Таким образом, вода — это H 2 O, а диоксид углерода — это CO 2 .


Характеристики Ионные и ковалентные соединения

Ионный Соединения

Ковалентные соединения

Содержит положительные и отрицательные ионы (Na + Cl )

Существуют как нейтральные молекулы (C 6 H 12 O 2 )

Твердые вещества такие как поваренная соль (NaCl (s) )

Твердые, жидкие или газы (C 6 H 12 O 6 (с) , H 2 O (л) , CO 2 (г) )

Высокая точки плавления и кипения

Нижняя плавка и точки кипения (т.е., часто существуют в виде жидкости или газа при комнатная температура)

Сильный сила притяжения между частицами

Относительно слабое усилие притяжения между молекулами

Отдельно в заряженные частицы в воде, чтобы получить раствор, который проводит электричество

Остаться той же самой молекулы в воде и не будет проводить электричество


Определение наличия Соединение ионное или ковалентное

Рассчитайте разницу между электроотрицательностями два элемента в соединении и среднее их электроотрицательности, и найти пересечение этих значений на рисунок, показанный ниже, чтобы помочь определить, является ли соединение ионным или ковалентные, или металлические.

Практическая задача 1:

Для каждое из следующих соединений, предскажите, будете ли вы можно было бы ожидать, что он будет ионным или ковалентным.

(а) оксид хрома (III), Cr 2 O 3

(б) четыреххлористый углерод, CCl 4

(в) метанол, CH 3 OH

(г) фторид стронция, SrF 2

Нажмите здесь чтобы проверить свой ответ на практическую задачу 1

Практическая задача 2:

Использование следующие данные, чтобы предложить способ различения между ионными и ковалентными соединениями.

Соединение Точка плавления ( o C) Точка кипения ( o C)
Cr 2 O 3 2266 4000
SrF 2 1470 2489
CCl 4 -22.9 76,6
CH 3 OH -97,8 64,7

Нажмите здесь, чтобы проверить свой ответ на практическую задачу 2


Формулы

Молекула — самая маленькая частица, имеющая любую из свойства соединения.Формула молекулы должна быть нейтральный. При написании формулы ионного соединения заряды на ионах должны уравновешиваться, количество положительных зарядов должно равняться количеству отрицательных зарядов.

Примеры:

CaCl 2 Сбалансированная формула имеет 2 положительных заряда (1 кальций ион с +2 зарядом) и 2 отрицательных заряда (2 хлорида ионы с зарядом -1)
Al 2 (SO 4 ) 3 Сбалансированная формула имеет 6 положительных зарядов (2 алюминиевых ионы с зарядом +3) и 6 отрицательных зарядов (3 сульфатных ионов с зарядом -2)


Смеси Vs.Соединения

Закон постоянного состава гласит, что соотношение по массе элементов в химическом соединении равно всегда одинаково, независимо от источника соединения. В закон постоянного состава может использоваться, чтобы различать соединения и смеси элементов: Соединения имеют постоянный состав; смеси не . Вода всегда 88,8% O и 11,2% H по весу, независимо от его источника. Латунь — это пример смеси двух элементов: меди и цинка.Может содержат всего от 10% до 45% цинка.

Еще одно различие между соединениями и смесями элементов это легкость, с которой можно разделить элементы. Смеси, такие как атмосфера, содержат два или более веществ, которые относительно легко отделить. Отдельные компоненты смеси могут быть физически отделены друг от друга.

Химические соединения сильно отличаются от смесей: элементы в химическом соединении могут быть разделены только уничтожение соединения.Некоторые различия между химическим соединения и смеси элементов иллюстрируются следующий пример с использованием изюмных отрубей и «Crispix.».

Изюмовые отруби обладают следующими характеристиками смеси .

  • Крупа не имеет постоянного состава; то соотношение изюма и отрубей меняется от образца к образец.
  • Легко физически разделить два «элементы», чтобы выбрать изюм, для пример, и съесть их отдельно.

Crispix имеет некоторые характерные свойства соединения .

  • Соотношение рисовых хлопьев и кукурузных хлопьев постоянно; Это составляет 1: 1 в каждой выборке.
  • Нет возможности разделить «элементы» не разрывая узы, скрепляющие их.


Чистые вещества и смеси Учебное пособие по химии

Сноски

1. Область, в которой все физические и химические свойства одинаковы, называется фазой.
Чистое вещество состоит только из одной фазы.
Данная фаза может быть твердой, жидкой или газообразной.

2. Гомогенная смесь состоит из одной фазы.
Поскольку газы смешиваются полностью, любая смесь газов будет состоять из одной фазы и будет однородной.
Растворимая соль, растворенная в жидкой воде для получения водного раствора соли, также состоит из единственной фазы.
Растворимая жидкость, такая как этанол, растворенная в жидкой воде, также состоит только из одной фазы.

3. Гетерогенная смесь состоит более чем из одной фазы.

4. H 2 O — это молекулярная формула воды, она говорит нам, что в каждой молекуле воды присутствуют 2 атома водорода и 1 атом кислорода.
Вы можете узнать больше в учебнике по молекулярным формулам.

5. Сульфид железа — это название, данное соединению, содержащему 1 «атом» железа и 1 «атом» серы, в зависимости от его состава.
Вы можете назвать это бинарным неорганическим ионным соединением (солью), и в этом случае предпочтительным названием IUPAC является сульфид железа (2+).
Более старое название того же соединения по ИЮПАК — сульфид железа (II) (или сульфид железа (II)).
Еще более старое название того же соединения — сульфид железа (или сульфид железа).

6. Предпочтительное написание ИЮПАК для элемента с химическим символом S — это сера, а не сера.
Вы все еще можете найти старое написание слова «сера», используемое для обозначения элемента сера.

7. Атомы серы могут располагаться по-разному. Вы можете узнать больше об этом в руководстве по аллотропам.

8. Термин жидкость в химии относится к состоянию (или фазе) вещества, в котором все «частицы» (например, молекулы) идентичны. Следовательно, жидкость по определению является чистым веществом. В обычном обиходе люди называют многие типы смесей «жидкостями», например, ликер в стакане нехимик может называть жидкостью, но химик думает об этом как о смеси, известной как водный раствор, потому что в воде растворено много веществ (аква), которые придают ей аромат и цвет.
Самый общий термин для текущего вещества — «жидкость». Жидкость — это жидкость, водный раствор — это жидкость, а газы — это жидкости.

9. Кислород также может существовать в другой форме, известной как озон, в которой 3 атома кислорода химически связаны друг с другом (O 3 ). O 2 и O 3 известны как аллотропы кислорода.

10. Это НЕ исчерпывающий список методов разделения. Вы также можете прочитать о некоторых методах, которые химики используют для отделения веществ от смесей, в следующих руководствах AUS-e-TUTE:
Хроматография, электрофорез и масс-спектроскопия
И существует множество методов, используемых в коммерческих целях для отделения металлов от руд.Возможно, вы захотите прочитать следующие уроки AUS-e-TUTE по извлечению металлов:
Концепции извлечения металлов, восстановительный углеродный метод извлечения металлов, извлечение меди плавлением, электролитическое извлечение алюминия, электролитическое извлечение натрия, электрохимическое извлечение меди

11. Золотые самородки могут быть достаточно большими, чтобы их можно было разглядеть на окружающей земле. Найденный подобный золотой самородок привел к созданию огромных золотых приисков Калгурли в Западной Австралии.
Подробнее об этом можно прочитать в декабрьском выпуске AUS-e-NEWS за 2012 год.

12. Строго говоря, это свойство следует называть ферромагнетизмом.
Ферромагнетизм относится к сильному притяжению магнитного поля и проявляется элементами железа (Fe), кобальта (Co) и никеля (Ni) в твердом состоянии.
В общем смысле «магнетизм» относится к «ферромагнетизму».
Есть и другие виды магнестизма:
⚛ парамагнетизм, вещества с неспаренными электронами испытывают слабое притяжение к магнитному полю
⚛ диамагнетизм, очень слабое отталкивание от магнитного поля, которое испытывает вся материя

13.Когда-то считалось, что болезнь Гуамское слабоумие вызывается мукой, приготовленной из токсичных семян саговника.
Подробнее об этом можно прочитать в сентябрьском номере AUS-e-NEWS за 2017 год.

14. Обычно хлорид натрия (NaCl) называют солью или поваренной солью. Для химика хлорид натрия — всего лишь один пример соли. В химии соли — это соединения, состоящие из катионов (положительно заряженные ионы) и анионов (отрицательно заряженные ионы), которые удерживаются вместе в трехмерной решетке с помощью электростатических сил притяжения (ионные связи).Таким образом, соль представляет собой ионное соединение, состоящее из двух ионов, бинарное ионное соединение.

15. Солнечное производство испарительной соли подробно обсуждалось в сентябрьском выпуске AUS-e-NEWS за 2016 год.

16. Когда вещество растворяется в воде, полученная смесь называется водным раствором. Количество вещества, растворенного в данном объеме воды, называется концентрацией раствора.
Подробнее о растворах и концентрации можно прочитать в Руководстве по концепциям решений.

3.5: Чистые вещества и смеси

Задача обучения

  • Различают чистые вещества и смеси
  • Определять смеси как однородные или неоднородные

Чистые вещества

Когда мы говорим о чистой субстанции , мы говорим о чем-то, что содержит только один вид материи. Это может быть один-единственный элемент или одно-единственное соединение, но каждый образец этого вещества, который вы исследуете, должен содержать в точности одно и то же с фиксированным, определенным набором свойств.

Чистое вещество Элемент или соединение? Состоит из:
Свинец (Pb) элемент атомов свинца
Кислород (O 2 ) элемент молекул кислорода *
Вода (H 2 O) соединение молекул воды
Аммиак (NH 3 ) соединение молекул аммиака

* Примечание: чистый газообразный кислород состоит из молекул, но по-прежнему считается элементом, а не соединением, поскольку молекулы состоят из элементов одного типа.Соединения состоят из одного или нескольких элементов.

Смеси

Если мы берем два или более чистых вещества и смешиваем их вместе, мы называем это смесью . Смеси всегда можно снова разделить на составляющие чистые вещества, потому что связывание между атомами составляющих веществ не происходит в смеси. В то время как соединение может иметь свойства, сильно отличающиеся от свойств составляющих его элементов, в смесях вещества сохраняют свои индивидуальные свойства.Например, натрий — мягкий блестящий металл, а хлор — едкий зеленый газ. Эти два элемента могут объединяться с образованием соединения, хлорида натрия (поваренная соль), которое представляет собой белое кристаллическое твердое вещество, обладающее свойствами натрия или хлора . Если, однако, вы смешали поваренную соль с молотым перцем, вы все равно могли бы видеть отдельные зерна каждого из них, и, если бы вы были терпеливы, вы могли бы взять пинцет и осторожно разделить их обратно на чистую соль и чистый перец. .

Гетерогенная смесь

Гетерогенная смесь представляет собой смесь, состав которой неоднороден по всей смеси. Овощной суп — это неоднородная смесь. Любая данная ложка супа будет содержать различное количество различных овощей и других компонентов супа.

Гомогенная смесь / Раствор

Гомогенная смесь представляет собой комбинацию двух или более веществ, которые настолько тщательно перемешаны, что смесь ведет себя как единое вещество.Еще одно слово для обозначения однородной смеси — раствор. Таким образом, комбинация соли и стальной ваты представляет собой неоднородную смесь, поскольку легко увидеть, какие частицы вещества представляют собой кристаллы соли, а какие — стальную вату. С другой стороны, если вы возьмете кристаллы соли и растворите их в воде, очень трудно определить наличие более одного вещества, просто взглянув, даже если вы используете мощный микроскоп. Соль, растворенная в воде, представляет собой гомогенную смесь или раствор (Рисунок \ (\ PageIndex {3} \)).

Рисунок \ (\ PageIndex {3} \): Типы смесей © Thinkstock Слева комбинация двух веществ представляет собой гетерогенную смесь, поскольку частицы двух компонентов выглядят по-разному. Справа кристаллы соли растворились в воде настолько тонко, что вы не можете сказать, присутствует ли соль. Гомогенная смесь выглядит как единое вещество.

Пример \ (\ PageIndex {3} \)

Определите следующие комбинации как гетерогенные смеси или гомогенные смеси.

  • газированная вода (углекислый газ растворен в воде.)
  • смесь металлической стружки железа и порошка серы (и железо, и сера являются элементами.)

Рисунок \ (\ PageIndex {4} \): Смесь железных опилок и порошка серы ( Asoult, смесь Fe-S 03, CC BY 4.0)

Решение

  1. Поскольку диоксид углерода растворен в воде, мы можем сделать вывод из поведения кристаллов соли, растворенных в воде, что диоксид углерода, растворенный в воде, является (также) гомогенной смесью.
  2. Если предположить, что железо и сера просто смешаны вместе, должно быть легко увидеть, что такое железо, а что такое сера, так что это неоднородная смесь.

Упражнение \ (\ PageIndex {3} \)

Являются ли следующие комбинации гомогенными смесями или гетерогенными смесями?

  1. человеческое тело
  2. амальгама, комбинация некоторых других металлов, растворенных в небольшом количестве ртути

Ответы

  1. гетерогенная смесь
  2. однородная смесь

Классификация материалов

Рисунок \ (\ PageIndex {1} \): Взаимосвязь между типами веществ и методами, используемыми для разделения смесей

Обычная поваренная соль называется хлоридом натрия.Он считается веществом , потому что он имеет однородный и определенный состав. Все образцы хлорида натрия химически идентичны. Вода также является чистым веществом. Соль легко растворяется в воде, но соленую воду нельзя классифицировать как вещество, поскольку ее состав может варьироваться. Вы можете растворить небольшое или большое количество соли в определенном количестве воды. Смесь представляет собой физическую смесь двух или более компонентов, каждый из которых сохраняет свою идентичность и свойства в смеси .Меняется только форма соли, когда она растворяется в воде. Он сохраняет свой состав и свойства.

Этап

Фаза — это любая часть образца, имеющая однородный состав и свойства. По определению, чистое вещество или гомогенная смесь состоит из одной фазы. Гетерогенная смесь состоит из двух или более фаз. Когда масло и вода смешиваются, они не смешиваются равномерно, а образуют два отдельных слоя. Каждый из слоев называется фазой.

Пример \ (\ PageIndex {1} \)

Обозначьте каждое вещество как соединение, элемент, гетерогенную смесь или гомогенную смесь (раствор).

  1. фильтрованный чай
  2. свежевыжатый апельсиновый сок
  3. компакт-диск
  4. оксид алюминия, белый порошок, содержащий атомы алюминия и кислорода в соотношении 2: 3
  5. селен

Дано : химическое вещество

Запрошено : его классификация

Стратегия:

  1. Определите, является ли вещество химически чистым.Если оно чистое, это либо элемент, либо соединение. Если вещество можно разделить на элементы, это соединение.
  2. Если вещество не является химически чистым, это либо гетерогенная смесь, либо гомогенная смесь. Если его состав однороден во всем, это однородная смесь.

Решение:

  1. A) Чай представляет собой раствор соединений в воде, поэтому он не является химически чистым. Обычно его отделяют от чайных листьев фильтрацией.
    B) Поскольку состав раствора однороден повсюду, это гомогенная смесь .
  2. A) Апельсиновый сок содержит твердые частицы (мякоть), а также жидкость; он не является химически чистым.
    B) Апельсиновый сок представляет собой неоднородную смесь , поскольку его состав неоднороден.
  3. A) Компакт-диск — это твердый материал, содержащий более одного элемента, с видимыми по краям участками разного состава.Следовательно, компакт-диск не является химически чистым.
    B) Области разного состава указывают на то, что компакт-диск представляет собой гетерогенную смесь.
  4. A) Оксид алюминия представляет собой отдельное химически чистое соединение .
  5. A) Селен — один из известных элементов .

Упражнение \ (\ PageIndex {1} \)

Обозначьте каждое вещество как соединение, элемент, гетерогенную смесь или гомогенную смесь (раствор).

  1. белое вино
  2. ртуть
  3. заправка для салата в стиле ранчо
  4. сахар столовый (сахароза)
Ответ:
гомогенная смесь (раствор)
Ответ b:
элемент
Ответ c:
гетерогенная смесь
Ответ d:
соединение

Пример \ (\ PageIndex {2} \)

Как химик классифицирует каждый образец вещества?

  1. соленая вода
  2. почва
  3. вода
  4. кислород

РЕШЕНИЕ

  1. Соленая вода действует как единое целое, даже если содержит два вещества — соль и воду.Морская вода — это однородная смесь или раствор.
  2. Почва состоит из небольших кусочков различных материалов, поэтому представляет собой неоднородную смесь.
  3. Вода — это вещество; более конкретно, поскольку вода состоит из водорода и кислорода, она представляет собой соединение.
  4. Кислород, вещество, это элемент.

Упражнение \ (\ PageIndex {2} \)

Как химик классифицирует каждый образец вещества?

  1. кофе
  2. водород
  3. яйцо
Ответ:
однородная смесь (раствор), предположим, это фильтрованный кофе
Ответ b:
элемент
Ответ c:
гетерогенная смесь.

    Сводка

    Вещество можно разделить на две большие категории: чистые вещества и смеси. Чистое вещество — это форма вещества, имеющая постоянный состав и постоянные свойства во всем образце. Смеси представляют собой физические комбинации двух или более элементов и / или соединений. Смеси можно разделить на однородные и гетерогенные. Элементы и соединения являются примерами чистых веществ. Соединения — это вещества, состоящие из более чем одного типа атомов.Элементы — это простейшие вещества, состоящие только из одного типа атомов.

    Ключевые выводы

    • Чистые вещества состоят из одного элемента или соединений.
    • Комбинации разных веществ называются смесями.
    • Гомогенные смеси — это смеси двух или более соединений (или элементов), которые не отличаются друг от друга визуально.
    • Гетерогенные смеси — это смеси двух или более соединений (или элементов), которые визуально отличимы друг от друга.
    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *