Сжигание топлива: Топливо и способы его сжигания – Горение топлива

Содержание

Топливо и способы его сжигания

Разновидности топлива. На практике используются три вида топлива: твердое, жидкое и газообразное.

К твердому топливу относятся антрацит, каменный уголь, бурый уголь, горючие сланцы, торф и дрова.

Качество топлива можно определить по его теплотворной способности, т.е. количеством теплоты (в килоджоулях) которое образуется при сгорании одного кг топлива. Чем больше в топливе углеродов, тем выше его теплотворная способность.

ugolИскопаемые угли могут использоваться не только в виде топлива. К примеру, ¼ добытых углей подвергают пиролизу, таким образом, получая кокс и различные вещества, которые в дальнейшем используются для производства пластмасс, красителей, медикаментов и других продуктов. Добыча, а также использование природного топлива, в том числе и ископаемых углей, непрерывно растет в нашей стране.

К жидкому топливу относят продукты переработки нефти: бензин, керосин, мазут. Удельная теплота сгорания нефти и ее продуктов чрезвычайно велика.

К газообразному топливу относится природный газ, который преимущественно состоит из метана.

На сегодняшний день масштабы применения данного вида топлива все больше набирают обороты.

Сжигание топлива. В промышленности для сжигания твердого топлива используются печи непрерывного действия. Принцип непрерывности поддерживается за счет колосниковой решетки, на которую постоянно подается твердое топливо. Скорость протекания реакций, в которых участвуют твердые вещества, напрямую зависит от их поверхности, в свою очередь последняя – от степени измельчения. Однако степень измельчения ограничивается оптимальными размерами частиц.

Во время подачи воздуха в топку необходимо соблюдать ряд определенных условий. Если воздуха недостаточно, то сгорание будет неполным: образуется оксид углерода (II) при этом остаются мелкие несгоревшие частицы угля в виде сажи (черный дым). Таким образом, выделяется намного меньше теплоты по сравнению с теоретически возможным количеством. И напротив, если воздух поступает в избытке, то большая часть выделенной теплоты напрасно затрачивается на его обогревание.

Для более рационального сжигания топлива сооружаются печи, которые способны сжигать его в пылеобразном состоянии. Таким же образом сжигается и жидкое топливо.

В последнее время все чаще и чаще в качестве топлива используются горючие газы. Для сжигания газообразное топливо и воздух подают в топку по металлической трубке (сопло). Когда смесь выходит из сопла, ее поджигают. Для сжигания газообразного топлива также используются особые керамические печи. В них горючий газ и необходимое количество воздуха подаются в мельчайшие каналы, место, где происходит сгорание.

gas2Газообразное топливо обладает рядом преимуществи достоинтсв перед другими видами топлива. Во-первых, добыча и транспортировка газообразного топлива намного выгоднее экономически. Во-вторых, упрощается устройство топок и облегчается труд человека при подаче топлива в печь. В-третьих, упрощается управление процессом горения и облегчается соблюдение гигиены труда. В-четвертых, топливо сжигается более рационально. Кроме этого, сжигание газообразного топлива практически безвредно для окружающей среды.

Значение топлива в народном хозяйстве. В настоящее время для энергетической вооруженности нашей страны ведутся постоянные строительные работы различных гидротепловых электростанций. Однако около 85% всей энергии мы получаем за счет сжигания топлива. Все виды современного транспорта работают на различных видах нефтепродуктов (бензин, солярные масла, керосин, мазут). Огромное значение имеют и такие химические источники энергии как, магний, литий, бор, алюминий и гидриды этих элементов. При их сжигании выделяется много теплоты, которая используется достаточно широко, например в ракетных двигателях и т.д.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Горение топлива

Горение топлива — это процесс окисления горючих компонентов, происходящий при высоких температурах и сопровождающийся выделением тепла. Характер горения определяется множеством факторов, в том числе способом сжигания, конструкцией топки, концентрацией кислорода и т. д. Но условия протекания, продолжительность и конечные результаты топочных процессов в значительной мере зависят от состава, физических и химических характеристик топлива.

Состав топлива

К твердому топливу относят каменный и бурый уголь, торф, горючие сланцы, древесину. Эти виды топлив представляют собой сложные органические соединения, образованные в основном пятью элементами — углеродом С, водородом Н, кислородом О, серой S и азотом N. В состав топлива также входит влага и негорючие минеральные вещества, которые после сгорания образуют золу. Влага и зола — это внешний балласт топлива, а кислород и азот — внутренний.

Основным элементом горючей части является углерод, он обуславливает выделение наибольшего количества тепла. Однако, чем больше доля углерода в составе твердого топлива, тем труднее оно воспламеняется. Водород при сгорании выделяет в 4,4 раза больше тепла, чем углерод, но его доля в составе твердых топлив невелика. Кислород, не будучи теплообразующим элементом и связывая водород и углерод, снижает теплоту сгорания, поэтому является элементом нежелательным. Особенно велико его содержание в торфе и древесине. Количество азота в твердом топливе небольшое, но он способен образовывать вредные для окружающей среды и человека оксиды. Также вредной примесью является сера, она выделяет мало теплоты, но образующиеся оксиды приводят к коррозии металла котлов и загрязнению атмосферы.

Технические характеристики топлива и их влияние на процесс горения

Важнейшими техническими характеристиками топлива являются: теплота сгорания, выход летучих веществ, свойства нелетучего остатка (кокса), зольность и влагосодержание.

Теплота сгорания топлива

Теплота сгорания — это количество тепла, выделяющееся при полном сгорании единицы массы (кДж/кг) или объема топлива (кДж/м3). Различают высшую и низшую теплоту сгорания. В высшую входит тепло, выделяемое при конденсации паров, которые содержатся в продуктах сгорания. При сжигании топлива в топках котлов уходящие дымовые газы имеют температуру, при которой влага находится в парообразном состоянии. Поэтому в этом случае применяют низшую теплоту сгорания, которая не учитывает теплоту конденсации водяных паров.

Состав и низшая теплота сгорания всех известных месторождений угля определены и приводятся в расчетных характеристиках.

Выход летучих веществ

При нагревании твердого топлива без доступа воздуха под воздействием высокой температуры сначала выделяются водяные пары, а затем происходит термическое разложение молекул с выделением газообразных веществ, получивших название летучих веществ.

Выход летучих веществ может происходить в интервале температур от 160 до 1100 °С, но в среднем – в области температур 400-800 °С. Температура начала выхода летучих, количество и состав газообразных продуктов зависят от химического состава топлива. Чем топливо химически старше, тем меньше выход летучих и выше температура начала их выделения.

Летучие вещества обеспечивают более раннее воспламенение твердой частицы и оказывают значительное влияние на горение топлива. Молодые по возрасту топлива — торф, бурый уголь — легко загораются, сгорают быстро и практически полностью. Наоборот, топливо с низким выходом летучих, например, антрацит, загорается труднее, горит намного медленнее и сгорает не полностью (с повышенной потерей тепла).

Свойства нелетучего остатка (кокса)

Твердая часть топлива, оставшаяся после выхода летучих, состоящая в основном из углерода и минеральной части, называется коксом. Коксовый остаток может быть в зависимости от свойств органических соединений, входящих в горючую массу: спекшимся, слабоспекшимся (разрушающимся при воздействии), порошкообразным. Антрацит, торф, бурые угли дают порошкообразный нелетучий остаток. Большинство каменных углей спекается, но не всегда сильно. Слипшийся или порошкообразный нелетучий остаток дают каменные угли с очень большим выходом летучих (42-45%) и с очень малым выходом (менее 17%).

Структура коксового остатка важна при сжигании угля в топках на колосниковых решетках. При факельном сжигании в энергетических котлах характеристика кокса не имеет большого значения.

Зольность

Твердое топливо содержит наибольшее количество негорючих минеральных примесей. Это прежде всего глина, силикаты, железный колчедан, но также могут входить закись железа, сульфаты, карбонаты и силикаты железа, оксиды различных металлов, хлориды, щелочи и т.д. Большая часть их попадает при добыче в виде пород, между которыми залегают пласты угля, но присутствуют и минеральные вещества, перешедшие в топливо из углеобразователей или в процессе преобразования его исходной массы.

При сжигании топлива минеральные примеси претерпевают ряд реакций, в результате которых образуется твердый негорючий остаток, называемый золой. Вес и состав золы не идентичны весу и составу минеральных примесей топлива.

Свойства золы играют большую роль в организации работы котла и топки. Ее частички, уносимые продуктами сгорания, при высоких скоростях истирают поверхности нагрева, а при малых скоростях отлагаются на них, что ведет к ухудшению теплопередачи. Зола, уносимая в дымовую трубу, способна нанести вред окружающей среде, во избежание этого требуется установка золоуловителей.

Важным свойством золы является ее плавкость, различают тугоплавкую (выше 1425 °С), среднеплавкую (1200-1425 °С) и легкоплавкую (менее 1200 °С) золу. Зола, прошедшая стадию плавления и превратившаяся в спекшуюся или сплавленную массу, называется шлаком. Температурная характеристика плавкости золы имеет большое значение для обеспечения надежной работы топки и поверхностей котла, правильный выбор температуры газов около этих поверхностей позволит исключить шлакование.

Влагосодержание

Влага — нежелательная составляющая топлива, она наряду с минеральными примесями является балластом и уменьшает содержание горючей части. Помимо этого, она снижает тепловую ценность, так как дополнительно требуются затраты энергии на ее испарение.

Влага в топливе может быть внутренней и внешней. Внешняя влага содержится в капиллярах или удерживается на поверхности. С химическим возрастом количество капиллярной влаги сокращается. Поверхностной влаги тем больше, чем меньше куски топлива. Внутренняя влага входит в органическое вещество.

Содержание влаги в топливе снижает теплоту его сгорания, ведет к увеличению его расхода. При этом увеличиваются объемы продуктов сгорания, потери теплоты с уходящими газами и снижается КПД котлоагрегата. Повышенная влажность в зимнее время приводит к смерзанию угля, затруднениям при размоле и уменьшению сыпучести.

Способы сжигания топлива в зависимости от вида топки

Основные виды топочных устройств:

  • слоевые,
  • камерные.

Слоевые топки предназначены для сжигания крупнокускового твердого топлива. Они могут быть с плотным и кипящим слоем. При сжигании в плотном слое воздух для горения проходит через слой, не влияя на его устойчивость, то есть сила тяжести горящих частиц превышает динамический напор воздуха. При сжигании в кипящем слое благодаря повышенной скорости воздуха частицы переходят в состояние «кипения». При этом происходит активное перемешивание окислителя и топлива, благодаря чему интенсифицируется горение топлива.

В камерных топках сжигают твердое пылевидное топливо, а также жидкое и газообразное. Камерные топки подразделяются на циклонные и факельные. При факельном сжигании частицы угля должны быть не более 100 мкм, они сгорают в объеме топочной камеры. Циклонное сжигание допускает больший размер частиц, под влиянием центробежных сил они отбрасываются на стенки топки и полностью выгорают в закрученном потоке в зоне высоких температур.

Горение топлива. Основные стадии процесса

В процессе горения твердого топлива можно выделить определенные стадии: подогрев и испарение влаги, возгонка летучих и образование коксового остатка, горение летучих и кокса, образование шлака. Такое деление процесса горения относительно условно, так как хотя эти этапы протекают последовательно, частично они налагаются друг на друга. Так, возгонка летучих веществ начинается до окончательного испарения всей влаги, образование летучих идет одновременно с процессом их горения, так же как и начало окисления коксового остатка предшествует окончанию горения летучих, а дожигание кокса может идти и после образования шлака.

Время течения каждой стадии процесса горения в значительной мере определяется свойствами топлива. Дольше всего длится стадия горения кокса, даже у топлив с большим выходом летучих. Существенное влияние на продолжительность стадий процесса горения оказывают разнообразные режимные факторы и конструктивные особенности топки.

1. Подготовка топлива до воспламенения

Топливо, поступающее в топку, подвергается нагреванию, в результате чего при наличии влаги происходит ее испарение и подсушка топлива. Время, необходимое на подогрев и подсушку, зависит от количества влаги и температуры, с которой топливо подается в топочное устройство. Для топлив с большим содержанием влаги (торф, влажные бурые угли) стадия прогрева и подсушивания сравнительна продолжительна.

В слоевые топки топливо подают с температурой, приближенной к окружающей среде. Только в зимнее время в случае смерзания угля его температура ниже, чем в котельном помещении. Для сжигания в факельных и вихревых топках топливо подвергают дроблению и размолу, сопровождаемому сушкой горячим воздухом или дымовыми газами. Чем выше температура поступающего топлива, тем меньше времени и тепла необходимо на подогрев его до температуры воспламенения.

Подсушка топлива в топке происходит за счет двух источников тепла: конвективного тепла продуктов сгорания и лучистого тепла факела, обмуровки, шлака.

В камерных топках подогрев осуществляется преимущественно за счет первого источника, то есть подмешивания к топливу продуктов сгорания в месте его ввода. Поэтому одно из важных требований, предъявляемых к конструкции устройств для ввода топлива в топку, — обеспечение интенсивного подсоса продуктов сгорания. Уменьшению времени нагрева и подсушки также способствует более высокая температура в топке. С этой целью при сжигании топлив с началом выхода летучих при высоких температурах (более 400 °С) в камерных топках делают зажигательные пояса, то есть закрывают экранные трубы огнеупорным теплоизоляционным материалом, чтобы снизить их тепловосприятие.

При сжигании топлива в слое роль каждого вида источников тепла определяется конструкцией топки. В топках с цепными решетками нагревание и подсушка осуществляются преимущественно лучистым теплом факела. В топках с неподвижной решеткой и подачей топлива сверху подогрев и подсушивание происходят за счет движущихся через слой снизу вверх продуктов сгорания.

В процессе нагревания при температуре выше 110 °С начинается термическое разложение органических веществ, входящих в состав топлив. Наименее прочными являются те соединения, которые содержат значительное количество кислорода. Эти соединения распадаются при сравнительно невысоких температурах с образованием летучих веществ и твердого остатка, состоящего преимущественно из углерода.

Молодые по химическому составу топлива, содержащие много кислорода, имеют низкую температуру начала выхода газообразных веществ и дают их больший процент. Топлива с малым содержанием соединений кислорода имеют небольшой выход летучих и более высокую температуру их воспламенения.

Содержание в твердом топливе молекул, которые легко подвергаются разложению при нагревании, оказывает влияние и на реакционную способность нелетучего остатка. Сначала разложение горючей массы происходит преимущественно на наружной поверхности топлива. По мере дальнейшего прогревания пирогенетические реакции начинают происходить и внутри частиц топлива, в них повышается давление и внешняя оболочка разрывается. При сжигании топлив с большим выходом летучих коксовый остаток становится пористым и имеет большую поверхность по сравнению с плотным твердым остатком.

2. Процесс горения газообразных соединений и кокса

Собственно горение топлива начинается с воспламенения летучих веществ. В период подготовки топлива происходят разветвленные цепные реакции окисления газообразных веществ, сначала эти реакции протекают с малыми скоростями. Выделяющееся тепло воспринимается поверхностями топки и частично накапливается в виде энергии движущихся молекул. Последнее приводит к возрастанию скорости цепных реакций. При определенной температуре реакции окисления идут с такой скоростью, что выделяющееся тепло полностью покрывает теплопоглощение. Эта температура является температурой воспламенения.

Температура воспламенения не является константой, она зависит как от свойств топлива, так и от условий в зоне воспламенения, в среднем составляет 400-600 °С. После воспламенения газообразной смеси дальнейшее самоускорение реакций окисления вызывает повышение температуры. Для поддержания горения необходим непрерывный подвод окислителя и горючих веществ.

Воспламенение газообразных веществ приводит к окутыванию коксовой частицы огневой оболочкой. Горение кокса начинается, когда к концу подходит горение летучих. Твердая частица прогревается до высокой температуры, и по мере уменьшения количества летучих веществ снижается толщина пограничного горящего слоя, кислород достигает раскаленной поверхности углерода.

Горение кокса начинается при температуре 1000 °С и является самым длительным процессом. Причина в том, что, во-первых, снижается концентрация кислорода, во-вторых, гетерогенные реакции протекают более медленно, чем гомогенные. В итоге длительность горения частицы твердого топлива определяется в основном временем горения коксового остатка (около 2/3 общего времени). Для топлив с большим выходом летучих, твердый остаток составляет менее ½ начальной массы частицы, поэтому их сжигание происходит быстро и возможность недожога невысока. Химически старые топлива имеют плотную частицу, горение которой занимает почти все время нахождения в топке.

Коксовый остаток большинства твердых топлив в основном, а для некоторых видов — целиком состоит из углерода. Горение твердого углерода происходит с образованием окиси углерода и углекислого газа.

Оптимальные условия для тепловыделения

Создание оптимальных условий для процесса горения углерода — основа правильного построения технологического метода сжигания твердых топлив в котельных агрегатах. На достижение наибольшего тепловыделения в топке могут оказывать влияние следующие факторы: температура, избыток воздуха, первичное и вторичное смесеобразование.

Температура. Тепловыделение при сжигании топлива существенно зависит от температурного режима топки. При относительно низких температурах в ядре факела имеет место неполнота сгорания горючих веществ, в продуктах сгорания остаются окись углерода, водород, углеводороды. При температурах от 1000 до 1800-2000 °С достижимо полное сгорание топлива.

Избыток воздуха. Удельное тепловыделение достигает максимального значения при полном сгорании и коэффициенте избытка воздуха, равном единице. С уменьшением коэффициента избытка воздуха выделение тепла падает, так как недостаток кислорода приводит к окислению меньшего количества топлива. Понижается температурный уровень, снижаются скорости реакций, что приводит к резкому уменьшению тепловыделения.

Повышение коэффициента избытка воздуха больше единицы снижает тепловыделение еще сильнее, чем недостаток воздуха. В реальных условиях сжигания топлива в топках котлов предельные значения тепловыделения не достигаются, так как присутствует неполнота сгорания. Она во многом зависит от того, как организованы процессы смесеобразования.

Процессы смесеобразования. В камерных топках первичное смесеобразование достигается подсушкой и перемешиванием топлива с воздухом, подачей в зону подготовки части воздуха (первичного), созданием широко раскрытого факела с широкой поверхностью и высокой турбулизацией, применением подогретого воздуха.

В слоевых топках задача первичного смесеобразования состоит в том, чтобы подавать необходимое количество воздуха в разные зоны горения на решетке.

С целью обеспечения догорания газообразных продуктов неполного горения и кокса организуют процессы вторичного смесеобразования. Этим процессам способствуют: подача вторичного воздуха с высокой скоростью, создание такой аэродинамики, при которой достигается равномерное заполнение факелом всей топки и, следовательно, вырастает время пребывания газов и коксовых частичек в топке.

3. Образование шлака

В процессе окисления горючей массы твердого топлива происходят значительные изменения и минеральных примесей. Легкоплавкие вещества и сплавы с низкой температурой плавления растворяют тугоплавкие соединения.

Обязательным условием нормальной работы котлоагрегатов является бесперебойный отвод продуктов сгорания и образующегося шлака.

При слоевом сжигании шлакообразование может приводить к механическому недожогу — минеральные примеси обволакивают недогоревшие частиц кокса либо вязкий шлак может перекрывать воздушные проходы, преграждая доступ кислорода к горящему коксу. Для снижения недожога применяют различные мероприятия — в топках с цепными решетками увеличивают время нахождения шлака на решетке, производят частую шуровку.

В слоевых топках вывод шлака производится в сухом виде. В камерных топках шлакоудаление может быть сухим и жидким.

Таким образом, горение топлива является сложным физико-химическим процессом, на который оказывает воздействие большое количество различных факторов, но все они должны быть учтены при проектировании котлов и топочных устройств.

Горение топлива.

Топливо и его горение



Топливом называют горючие вещества, применяемые для получения теплоты (тепловой энергии) при их сжигании. Под сжиганием обычно подразумевают окисление горючих веществ кислородом воздуха.
Промышленным топливом считаются не все горючие вещества, а лишь те, которые удовлетворяют следующим требованиям:

  • при сгорании выделяют достаточно большое количество теплоты;
  • не дают продуктов сгорания, губительно действующих на окружающий растительный и животный мир;
  • встречаются в больших количествах в природе или легко получаются при переработке других веществ;
  • легко добываются и транспортируются на большие расстояния;
  • быстро воспламеняются.

Топливо, добываемое из недр земли в готовом виде, называют естественным, а получаемое путем переработки горючих веществ и природного топлива – искусственным. Как естественное, так и искусственное топливо подразделяют на твердое, жидкое и газообразное.

В качестве примера естественных твердых топлив можно привести ископаемый уголь, торф, горючие сланцы, дрова, отходы сельскохозяйственного производства. Искусственное твердое топливо – кокс, полукокс, пылевидное топливо, брикеты, древесный уголь.
К естественному жидкому топливу относится нефть, а к искусственному – получаемые из нефти продукты – бензин, керосин, дизельное топливо, газойль, мазут, нефтяное и котельное топливо.

По назначению топливо подразделяют на энергетическое и технологическое.
К энергетическим относят все низкосортные топлива, которые можно сжигать на электростанциях, в производственно-бытовых и других тепловых установках в натуральном виде или после переработки. Это антрацит, бурые угли, торф, природный газ, а также продукты переработки других топлив.
К технологическому топливу относят высокосортное топливо и коксующиеся угли.

По методу добычи и потребления различают местное и привозное топливо.

***

Составные части топлива

Топливо состоит из органической и минеральной частей.
Органическую часть топлива составляют следующие химические элементы: углерод ), водород 2), кислород 2), азот (N2) и сера (S). Топливо может состоять из смеси этих элементов или только их части.
Так, органическую массу кокса или древесного угля в основном составляет углерод, а нефтепродуктов и газового топлива – углерод, водород и кислород.

Наиболее ценные из перечисленных элементов топлива – углерод и водород.
Кислород и азот являются внутренним балластом топлива, поскольку они не горят. Сера является нежелательным компонентом топлива, несмотря на то, что сгорая, она выделяет теплоту. При сгорании этого элемента образуется сернистый газ и серная кислота, пагубно влияющие на экологию и вызывающие сильную коррозию металлов.

Минеральная часть топлива составляют вода и минеральные примеси, которые являются внешней балластной частью (внешним балластом) топлива. Содержание балластной части в топливе очень нежелательно, поскольку увеличивая массу и объем топлива, она уменьшает его тепловую ценность.
Минеральные составляющие после сжигания образуют твердый остаток – золу.

***

Сущность процесса горения

Горение есть окисление горючих элементов топлива кислородом, сопровождающееся выделением теплоты.
В зависимости от скорости распространения пламени различают нормальное горение и горение со взрывом. При нормальном горении скорость распространения пламени равна 15-25 м/с, а при взрывном горении – 2000-3000 м/с. Чтобы топливо начало гореть, его необходимо нагреть до определенной температуры, называемой температурой воспламенения.
Так, например, каменный уголь воспламеняется при температуре 225-375 ˚С, сухой торф – 225-300 ˚С, дрова – 350-450 ˚С, керосин – 380 ˚С, бензин – 415 ˚С, метан (СН4) – 650-700 ˚С и т. д.

При нагревании топлива до температуры воспламенения начинается распад горючей массы на составные элементы, которые затем окисляются кислородом и выделяют теплоту. Эта теплота способствует нагреву массы близлежащего топлива, в которых начинают протекать аналогичные процессы (распад и окисление), и, таким образом, вся масса топлива, находящегося в топке, начинает гореть.
Для того, чтобы процесс горения не прекратился, выделяющаяся теплота должна поддерживать температуру топлива не ниже температуры воспламенения.

Горение может быть полным и неполным.
Полным горением называют процесс окисления горючих элементов топлива кислородом, при котором выделяются продукты, не способные гореть в дальнейшем.
Неполное сгорание топлива сопровождается выделением продуктов горения, которые в дальнейшем могут воспламеняться и сгорать повторно. Так, при полном сгорании углерода выделяется углекислый газ СО2, который в дальнейшем гореть не способен.

Однако, если углерод сгорает при недостаточном количестве кислорода, то продуктом его окисления является углекислота СО, которая может загореться при соответствующих условиях. При этом неполное горение сопровождается выделением значительно меньшего количества теплоты, т. е. считается нежелательным явлением. Для того чтобы процесс горения был полным, необходимо обеспечить подачу достаточного количества воздуха (содержащего кислород) в зону горения.
На практике, сжигая топливо, стараются придерживаться определенного баланса между количеством воздуха и топлива, поскольку избыток воздуха сопровождается потерями теплоты на его подогрев.

***



Количество воздуха, необходимое для полного сгорания топлива

Количество воздуха, необходимое для полного сгорания топлива, определить несложно, если известно процентное содержание в топливе основных горючих элементов – углерода, водорода, серы и кислорода.
Так как атомная масса углерода 12, а кислорода – 16, то для получения углекислого газа СО2 необходимо 12 частей углерода соединить с 32 частями кислорода, т. е. на одну массовую долю углерода должно приходиться 2,67 частей кислорода.
Зная атомную массу водорода и серы, а также формулы продуктов их полного окисления, можно аналогично рассчитать необходимое количество кислорода для сжигания 1 части любого горючего элемента.

При определении количества воздуха, необходимого для полного горения, следует учитывать, что в топливе тоже содержится некоторое количество кислорода, а также то, что массовая доля кислорода в воздухе — 23,2 %. В общем случае формула для определения массового количества воздуха для полного сгорания топлива имеет вид:

mT = (2,67Ср + 8Нр + Sр – Ор)/0,232,

где: Ср, Нр, Sр, Ор – соответственно массовое содержание углерода, водорода, серы и кислорода в топливе.

При сгорании топлива часть кислорода воздуха не успевает вступить в реакцию окисления, поэтому для обеспечения полного сгорания топлива следует к нему подводить воздух с некоторым избытком по сравнению с теоретически необходимым количеством. Отношение действительного количества воздуха к теоретически необходимому количеству называют коэффициентом избытка воздуха. На практике этот коэффициент (в зависимости от вида топлива) может принимать значения от 1,05 (газообразное и пылевидное топливо) до 1,8 (твердое топливо).

***

Теплота сгорания топлива

Важнейшая характеристика топлива – теплота его сгорания – количество теплоты, выделившейся при полном сгорании единицы количества топлива (для жидких и твердых топлив – кг, для газообразных – м3). Различают высшую и низшую теплоту сгорания.
Высшей теплотой сгорания Qв называют теплоту, выделяемую при полном сгорании единицы количества топлива, в результате которого образующаяся влага конденсируется и выделяется в виде жидкости из продуктов сгорания.
Если в результате сгорания единицы количества топлива образуемая влага остается в продуктах сгорания в парообразном состоянии, то выделяемую при этом теплоту называют низшей теплотой сгорания Qн. Эта величина меньше высшей теплоты сгорания топлива на теплоту парообразования (конденсации) влаги, образуемой при сжигании единицы количества топлива.

Теплоту сгорания топлива, кДж/кг, можно определить опытным путем (при сжигании порции топлива в специальном приборе – калориметре) или расчетом (по формулам Менделеева), если известен элементарный состав топлива.

Например, для твердого топлива:

Qв = 339С + 1250Н – 108,85(О – S);

для жидкого топлива:

Qн = Qв – 25,1(9Нр + Wр),

где: С, Н, О, S и W – соответственно процентное содержание углерода, водорода, кислорода, серы и влаги в рабочем топливе.

***

Условное топливо

При расчете расхода топлива, а также топливных ресурсов пользуются понятием условное топливо.
Это реальное топливо, теплота сгорания которого равна 29,3 МДж/кг.
Для перевода любого топлива в условное, пользуются тепловым эквивалентом, который получается от деления теплоты Qрц сгорания данного топлива на теплоту сгорания условного топлива, т. е. на 29300 кДж/кг или 29,3 МДж/кг.
Так, например, для торфа Эт = 8500/29300 = 0,29, т. е. 1 тонна торфа по своей тепловой ценности равноценна 0,29 тонны условного топлива.

***

Температура горения топлива

Следует различать теоретическую и действительную температуру горения.
Теоретической температурой горения называют максимальную температуру, которую способно давать данное топливо при полном сгорании с теоретически необходимым количеством воздуха. Ее определяют опытным путем, или аналитически, используя формулы, в которых учитывается массовая доля и теплотворная способность каждого горючего элемента в топливе. При этом теоретическая температура горения будет равна отношению теплоты, полученной от сгорания единицы топлива, к сумме произведений массовых составляющих горючих элементов на их теплотворную способность.
Теоретически определенная температура горения топлива всегда выше действительной, поскольку при расчетах не учитывается ее понижение из-за потерь теплоты на лучеиспускание, избыток воздуха при сжигании, неполное сгорание топлива и т. п.

Действительная температура горения (при коэффициенте избытка воздуха равном 1,0): антрацита — 2270 ˚С, торфа – 1700 ˚С, мазута – 1125 ˚С, природного газа – 2000 ˚С.

***

Способы сжигания топлива

В котельной практике известны слоевой, факельный и вихревой способы сжигания топлива.

Слоевой способ сжигания топлива (рис. 1а) заключается в следующем. Загруженное в топку топливо распределяется ровным слоем по колосниковой решетке, через которую проходит воздух, встречающий на своем пути неподвижный или движущийся слой горящего топлива.
При взаимодействии с топливом воздух превращается в газовоздушный поток, который, пройдя через топочное пространство, выходит наружу. Для предотвращения уноса топлива необходимо, чтобы вес частичек топлива был больше силы газовоздушного потока. Однако, при слишком больших размерах кусков топлива замедляется процесс горения и уменьшается количество теплоты, получаемой в единицу времени, поэтому оптимальный размер кусков – 20-30 мм.

Основным достоинством слоевого способа сжигания твердого топлива является наличие на колосниках запаса горящего топлива, обеспечивающего устойчивость протекания процесса. Существенным недостатком этого способа является необходимость использования твердого топлива с оптимальными размерами кусков, что требует предварительной их сортировки и дробления.

Факельный способ сжигания топлива (рис. 1б), в отличие от слоевого, заключается в том, что частицы топлива движутся вместе с газовоздушным потоком в топочном пространстве. Поэтому масса частиц должна быть как можно меньше, и они должны удерживаться в газовоздушном потоке.
Этим обеспечивается очень тщательное перемешивание частичек топлива с воздухом, интенсивное их горение, получается более однородный, устойчивый факел горения и происходит наиболее полное выгорание горючих элементов, составляющих горючую массу топлива. Поэтому при факельном способе применяют твердое топливо в виде очень мелких частичек (пыли), размеры которых составляют доли миллиметра.

Существенный недостаток этого способа – малая скорость обтекания частиц топлива газовоздушным потоком, которая не позволяет значительно увеличить интенсивность горения, а также большая чувствительность к изменению режима работы, поскольку в топочном пространстве постоянно находится небольшое количество (запас) топлива. Поэтому регулирование процесса возможно при одновременном изменении подачи топлива и воздуха.

Вихревой способ сжигания топлива (рис. 1в) заключается в создании в топочном пространстве вихря, благодаря которому топливо, поступающее в топку, подхватывается газовоздушным потоком и движется вместе с ним по определенной траектории до полного выгорания горючих элементов из горючей массы.
Вихревое движение топлива в газовоздушном потоке способствует более длительному нахождению топлива в топочном пространстве, что создает условия для полного сгорания частиц размером 3-5 мм и для получения более устойчивого горения, чем при факельном способе сжигания.

***

Котлы и котельные установки

Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)

Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):



Процесс сгорания топлива

12.05.2010

Введение

Для обеспечения сгорания в двигателе внутреннего сгорания небольшое количество топлива смешивается с поступающим воздухом. К сожалению, двигатель внутреннего сгорания не может сжигать без остатка все топливо, которое он использует. Вследствие этого двигатель выпускает побочные продукты сгорания в виде отработавших газов. Некоторые из этих побочных продуктов вредны и загрязняют воздух. Борясь с этой проблемой, изготовители автомобилей разработали так называемые устройства понижения токсичности выхлопа, которые ограничивают выброс этих вредных веществ или полностью устраняют его.

Сгорание

В процессе сгорания происходят несколько химических реакций. Одни соединения разрушаются, а новые соединения образуются. Управление процессом сгорания — это ключ к управлению всей работой и токсичностью выхлопа двигателя внутреннего сгорания.

Для процесса сгорания требуются три элемента:

1.    Воздух
2.    Топливо
3.    Искра зажигания

Эти три элемента иногда упоминаются как «триада сгорания». Если один элемент триады отсутствует, сгорание невозможно. Двигатель внутреннего сгорания рассчитывается на объединение этих трех элементов, поддерживая полный контроль над процессом.

Воздух

Воздух состоит из атомов азота (N), кислорода (О ) и других газов. Большую часть воздуха составляет азот, являющийся инертным, негорючим газом. Воздух не горит, но в нем содержится достаточное количество кислорода, что позволяет поддерживать сгорание.

Топливо

Бензин состоит из углеводородов, которые образуются в результате переработки сырой нефти. Углеводороды состоят из атомов водорода (Н) и углерода (С). В бензин добавляются различные химикаты, типа ингибиторов коррозии, красителей и очищающих средств. Эти химикаты называются присадками.
Тепло и давление, присутствующие в двигателе внутреннего сгорания, могут заставить бензин, находящийся в камере сгорания, воспламениться раньше, чем генерируется искра зажигания. Это называется преждевременным воспламенением и более подробно описывается дальше. Октановое число бензина указывает на то, насколько хорошо он противостоит преждевременному воспламенению. Дополнительная очистка может способствовать увеличению октанового числа.
В настоящее время в регионах с чрезвычайно высоким уровнем загрязнения воздуха используется тип топлива, называемый улучшенным бензином (подвергнутым реформингу) (RFG). Такой бензин имеет специальные присадки, называемые окислителями, которые улучшают сгорание, увеличивают октановое число и уменьшают токсичность выхлопа.

Искра зажигания

В двигателе внутреннего сгорания воздух и топливо поступают в камеру сгорания, и затем генерируется искра зажигания, вызывающая сгорание. Перед зажиганием воздушно-топливной смеси двигатель нагревается и сжимает смесь. Нагревание помогает процессу смесеобразования, а сжатие увеличивает энергию, генерируемую при сгорании.

Процесс сгорания

В двигателе внутреннего сгорания сгорание происходит в течение доли секунды (приблизительно в течение 2 миллисекунд). В этот момент разрушаются связи между атомами водорода и углерода. Разрушение связей приводит к высвобождению энергии в камере сгорания, толканию поршня вниз и инициированию вращения коленчатого вала.
После разделения атомов водорода и углерода они соединяются с атомами кислорода, содержащимися в воздухе. Атомы водорода объединяются с кислородом, образуя воду. Атомы углерода объединяются с кислородом, образуя двуокись углерода (углекислый газ).

Говоря языком химии, полное сгорание в двигателе внутреннего сгорания выражается формулой:

НС + О2 = Н2 О + СО2

Другими словами:

топливо + кислород = вода и двуокись углерода

Абсолютно эффективный двигатель внутреннего сгорания на выпуске имел бы только воду (Н О) и двуокись углерода (СО ), что соответствует Данной выше химической формуле. Это означало бы, что все углеводороды в процессе сгорания разложились. К сожалению, дело обстоит не так.

Неэффективное сгорание -это главная причина наличия вредных веществ в выхлопе автомобиля. Эффективное сгорание ведет к наименьшей токсичности выхлопа. Эффективность сгорания увеличивается посредством корректировки соотношения «воздух/топливо».

Соотношение «воздух/топливо»

Инженеры-автомобилестроители определили, что токсичность выхлопа автомобиля можно уменьшить, если бензиновый двигатель работает с соотношением «воздух/топливо», равным 14.7:1. Технический термин известен как «стехиометрическое соотношение». Стехиометрическое соотношение означает химически правильную воздушно-топливную смесь, которая производит желаемую химическую реакцию, входе которой происходит полное сгорание топлива с желаемой токсичностью выхлопа.
Соотношение «воздух/топливо» 14.7:1 обеспечивает наилучшее управление всеми тремя компонентами (углеводороды, одноокись углерода и оксиды азота) при выпуске почти во всех условиях. Соотношение «воздух/топливо» также увеличивает эффективность каталитического нейтрализатора, который является частью системы выпуска автомобиля.

Бедная воздушно-топливная смесь

Обеднение воздушно-топливной смеси обычно вызывается неисправностью в двигателе. Обеднение — это состояние, когда двигатель получает слишком много воздуха или кислорода. Причиной слишком высокого уровня кислорода могут стать утечки вакуума или неисправная система подачи топлива.

Богатая воздушно-топливная смесь

Богатая воздушно-топливная смесь — это также указание на неисправность двигателя. Обогащение — это состояние, когда двигатель не может сжечь все топливо, которое вошло в камеры сгорания. Состояние обогащения может возникать в результате высокого давления топлива, проблем с опережением зажигания или низкой компрессии.

Аномальное сгорание

Имеются два типа аномального сгорания, которое может происходить в двигателе: детонация и преждевременное воспламенение.
Детонация — это неустойчивый процесс горения, который может вызывать неисправность прокладки головки цилиндров, а также и другие повреждения двигателя. Детонация возникает, когда в камере сгорания наблюдается перегрев и повышенное давление. Когда это происходит, создается взрывная сила, которая инициирует резкий рост давления в цилиндрах, сопровождаемый сильным металлическим стуком. Ударные волны, похожие на удары молотка, генерируемые при детонации, подвергают прокладку головки цилиндров, поршень, кольца, свечу зажигания и подшипники шатуна серьезным перегрузкам.
Преждевременное воспламенение — это другое аномальное состояние горения, которое иногда путают с детонацией. Преждевременное воспламенение имеет место, когда какая-либо точка в камере сгорания становится настолько горячей, что становится источником зажигания и заставляет топливо воспламеняться до генерирования искры зажигания. Оно может сделать свой вклад в детонацию или даже стать ее причиной.
Вместо воспламенения топлива в правильный момент времени, чтобы дать коленчатому валу плавный толчок в требуемом направлении, топливо загорается преждевременно. Это вызывает мгновенный обратный удар в тот момент, когда поршень пытается повернуть коленчатый вал в неправильном направлении. Этот удар вследствие напряжений, которые он создает, может быть очень разрушительным. Кроме того, преждевременное воспламенение может локализовать тепло до такой степени, что оно может частично проплавить или прожечь отверстие в головке поршня.

Токсичность выхлопа

Стехиометрическая воздушно-топливная смесь обеспечивает наилучший компромисс между динамическими характеристиками, экономичностью и токсичностью выхлопа.
При богатой воздушно-топливной смеси все топливо не сгорает. Поэтому увеличивается уровень выделений углеводородов и одноокиси углерода. Бедная воздушно-топливная смесь может при сгорании генерировать повышенное количество тепла. Поэтому увеличивается содержание оксидов азота. Чрезмерно обедненная воздушно-топливная смесь в результате приводит к пропускам воспламенения. Это увеличивает выделения углеводородов.
Каталитические нейтрализаторы, которые химически нейтрализуют токсичные отработавшие газы, наиболее эффективны в очень узком диапазоне, близком к стехиометрическому соотношению.

Побочные продукты сгорания

Поскольку двигатель внутреннего сгорания не имеет абсолютной эффективности, в процессе сгорания генерируются три нежелательных побочных продукта:
1.    Углеводороды (НС)
2.    Одноокись углерода (СО)
3.    Оксиды азота     (N0  X )

Неполное сгорание вызывает выделение углеводорода и одноокиси углерода. Выделения углеводорода — это углеводороды, которые не разрушились в процессе сгорания. Одноокись углерода образуется, потому что не имеется достаточного количества атомов кислорода, чтобы связать углерод.

В идеальном случае азот должен проходить камеру сгорания неизменным. Но когда температура в камере сгорания достигает приблизительно 1 371 °С (2 500 °F), атомы азота и кислорода связываются, образуя  (N0  X )

Химическая формула процесса сгорания, при котором образуются оксиды азота выглядит следующим образом:

НС + О2 + N2 = Н2 О + СО + N0x

Формула «NO » используется для оксидов азота, потому что OHci отражает комбинацию атома азота и любого количества атомов кислорода. Например, оксид азота (N0) состоит из одного атома азота и одного атома кислорода, в то время как двуокись азота (N0 ) состоит из одного атома азота и двух атомов кислорода.

Высокое содержание НС

Высокое содержание НС может быть вызвано недостаточной эффективностью системы зажигания, неправильным опережением зажигания или неправильными фазами газораспределения, протечками вакуума, попаданием масла или низкой степенью сжатия. Доля углеводородов измеряется в количестве частиц на миллион.

Высокое содержание СО

Высокое содержание СО может быть вызвано такими факторами, как:
•    Чрезмерно богатая воздушно-топливная смесь
•    Загрязнение воздушного фильтра
•    Выход из строя клапана PCV
•    Загрязнение топлива маслом
•    Заедание или протечки в топливной форсунке
На исправном автомобиле с каталитическим нейтрализатором выделение одноокиси углерода обычно приближается к нулю. Содержание одноокиси углерода измеряется в процентах от полного объема в воздухе.

NOx

NOx генерируются при высокой температуре горения (выше приблизительно 1 371 °С (2 500 °F)) и обычно образуются, если температура горения не контролируется. Содержание оксидов азота измеряется в количестве частиц на миллион.

Так же рекомендуем прочитать Вам интересную статью Кузовные детали

Удельная теплота сгорания топлива и горючих материалов

В таблицах представлена массовая удельная теплота сгорания топлива (жидкого, твердого и газообразного) и некоторых других горючих материалов. Рассмотрено такое топливо, как: уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ и т. д.

При экзотермической реакции окисления топлива его химическая энергия переходит в тепловую с выделением определенного количества теплоты. Образующуюся тепловую энергию принято называть теплотой сгорания топлива. Она зависит от его химического состава, влажности и является основным показателем топлива. Теплота сгорания топлива, отнесенная на 1 кг массы или 1 м3 объема образует массовую или объемную удельную теплоты сгорания.

Удельной теплотой сгорания топлива называется количество теплоты, выделяемое при полном сгорании единицы массы или объема твердого, жидкого или газообразного топлива. В Международной системе единиц эта величина измеряется в Дж/кг или Дж/м3.

Удельную теплоту сгорания топлива можно определить экспериментально или вычислить аналитически. Экспериментальные методы определения теплотворной способности основаны на практическом измерении количества теплоты, выделившейся при горении топлива, например в калориметре с термостатом и бомбой для сжигания. Для топлива с известным химическим составом удельную теплоту сгорания можно определить по формуле Менделеева.

Различают высшую и низшую удельные теплоты сгорания. Высшая теплота сгорания равна максимальному количеству теплоты, выделяемому при полном сгорании топлива, с учетом тепла затраченного на испарение влаги, содержащейся в топливе. Низшая теплота сгорания меньше значения высшей на величину теплоты конденсации водяного пара, который образуется из влаги топлива и водорода органической массы, превращающегося при горении в воду.

Для определения показателей качества топлива, а также в теплотехнических расчетах обычно используют низшую удельную теплоту сгорания, которая является важнейшей тепловой и эксплуатационной характеристикой топлива и приведена в таблицах ниже.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

В таблице представлены значения удельной теплоты сгорания сухого твердого топлива в размерности МДж/кг. Топливо в таблице расположено по названию в алфавитном порядке.

Наибольшей теплотворной способностью из рассмотренных твердых видов топлива обладает коксующийся уголь — его удельная теплота сгорания равна 36,3 МДж/кг (или в единицах СИ 36,3·106 Дж/кг). Кроме того высокая теплота сгорания свойственна каменному углю, антрациту, древесному углю и углю бурому.

К топливам с низкой энергоэффективностью можно отнести древесину, дрова, порох, фрезторф, горючие сланцы. Например, удельная теплота сгорания дров составляет 8,4…12,5, а пороха — всего 3,8 МДж/кг.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)
Топливо Удельная теплота сгорания, МДж/кг
Антрацит 26,8…34,8
Древесные гранулы (пиллеты) 18,5
Дрова сухие 8,4…11
Дрова березовые сухие 12,5
Кокс газовый 26,9
Кокс доменный 30,4
Полукокс 27,3
Порох 3,8
Сланец 4,6…9
Сланцы горючие 5,9…15
Твердое ракетное топливо 4,2…10,5
Торф 16,3
Торф волокнистый 21,8
Торф фрезерный 8,1…10,5
Торфяная крошка 10,8
Уголь бурый 13…25
Уголь бурый (брикеты) 20,2
Уголь бурый (пыль) 25
Уголь донецкий 19,7…24
Уголь древесный 31,5…34,4
Уголь каменный 27
Уголь коксующийся 36,3
Уголь кузнецкий 22,8…25,1
Уголь челябинский 12,8
Уголь экибастузский 16,7
Фрезторф 8,1
Шлак 27,5

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Приведена таблица удельной теплоты сгорания жидкого топлива и некоторых других органических жидкостей. Следует отметить, что высоким тепловыделением при сгорании отличаются такие топлива, как: бензин, авиационный керосин, дизельное топливо и нефть.

Удельная теплота сгорания спирта и ацетона существенно ниже традиционных моторных топлив. Кроме того, относительно низким значением теплоты сгорания обладает жидкое ракетное топливо и этиленгликоль — при полном сгорании 1 кг этих углеводородов выделится количество теплоты, равное 9,2 и 13,3 МДж, соответственно.

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)
Топливо Удельная теплота сгорания, МДж/кг
Ацетон 31,4
Бензин А-72 (ГОСТ 2084-67) 44,2
Бензин авиационный Б-70 (ГОСТ 1012-72) 44,1
Бензин АИ-93 (ГОСТ 2084-67) 43,6
Бензол 40,6
Дизельное топливо зимнее (ГОСТ 305-73) 43,6
Дизельное топливо летнее (ГОСТ 305-73) 43,4
Жидкое ракетное топливо (керосин + жидкий кислород) 9,2
Керосин авиационный 42,9
Керосин осветительный (ГОСТ 4753-68) 43,7
Ксилол 43,2
Мазут высокосернистый 39
Мазут малосернистый 40,5
Мазут низкосернистый 41,7
Мазут сернистый 39,6
Метиловый спирт (метанол) 21,1
н-Бутиловый спирт 36,8
Нефть 43,5…46
Нефть метановая 21,5
Толуол 40,9
Уайт-спирит (ГОСТ 313452) 44
Этиленгликоль 13,3
Этиловый спирт (этанол) 30,6

Удельная теплота сгорания газообразного топлива и горючих газов

Представлена таблица удельной теплоты сгорания газообразного топлива и некоторых других горючих газов в размерности МДж/кг. Из рассмотренных газов наибольшей массовой удельной теплотой сгорания отличается водород. При полном сгорании одного килограмма этого газа выделится 119,83 МДж тепла. Также высокой теплотворной способностью обладает такое топливо, как природный газ — удельная теплота сгорания природного газа равна 41…49 МДж/кг (у чистого метана 50 МДж/кг).

Удельная теплота сгорания газообразного топлива и горючих газов (водород, природный газ, метан)
Топливо Удельная теплота сгорания, МДж/кг
1-Бутен 45,3
Аммиак 18,6
Ацетилен 48,3
Водород 119,83
Водород, смесь с метаном (50% H2 и 50% CH4 по массе) 85
Водород, смесь с метаном и оксидом углерода (33-33-33% по массе) 60
Водород, смесь с оксидом углерода (50% H2 50% CO2 по массе) 65
Газ доменных печей 3
Газ коксовых печей 38,5
Газ сжиженный углеводородный СУГ (пропан-бутан) 43,8
Изобутан 45,6
Метан 50
н-Бутан 45,7
н-Гексан 45,1
н-Пентан 45,4
Попутный газ 40,6…43
Природный газ 41…49
Пропадиен 46,3
Пропан 46,3
Пропилен 45,8
Пропилен, смесь с водородом и окисью углерода (90%-9%-1% по массе) 52
Этан 47,5
Этилен 47,2

Удельная теплота сгорания некоторых горючих материалов

Приведена таблица удельной теплоты сгорания некоторых горючих материалов (стройматериалы, древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен.

Удельная теплота сгорания некоторых горючих материалов
Топливо Удельная теплота сгорания, МДж/кг
Бумага 17,6
Дерматин 21,5
Древесина (бруски влажностью 14 %) 13,8
Древесина в штабелях 16,6
Древесина дубовая 19,9
Древесина еловая 20,3
Древесина зеленая 6,3
Древесина сосновая 20,9
Капрон 31,1
Карболитовые изделия 26,9
Картон 16,5
Каучук бутадиенстирольный СКС-30АР 43,9
Каучук натуральный 44,8
Каучук синтетический 40,2
Каучук СКС 43,9
Каучук хлоропреновый 28
Линолеум поливинилхлоридный 14,3
Линолеум поливинилхлоридный двухслойный 17,9
Линолеум поливинилхлоридный на войлочной основе 16,6
Линолеум поливинилхлоридный на теплой основе 17,6
Линолеум поливинилхлоридный на тканевой основе 20,3
Линолеум резиновый (релин) 27,2
Парафин твердый 11,2
Пенопласт ПХВ-1 19,5
Пенопласт ФС-7 24,4
Пенопласт ФФ 31,4
Пенополистирол ПСБ-С 41,6
Пенополиуретан 24,3
Плита древесноволокнистая 20,9
Поливинилхлорид (ПВХ) 20,7
Поликарбонат 31
Полипропилен 45,7
Полистирол 39
Полиэтилен высокого давления 47
Полиэтилен низкого давления 46,7
Резина 33,5
Рубероид 29,5
Сажа канальная 28,3
Сено 16,7
Солома 17
Стекло органическое (оргстекло) 27,7
Текстолит 20,9
Толь 16
Тротил 15
Хлопок 17,5
Целлюлоза 16,4
Шерсть и шерстяные волокна 23,1

Источники:

  1. Абрютин А. А. и др. Тепловой расчет котлов. Нормативный метод.
  2. ГОСТ 147-2013 Топливо твердое минеральное. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания.
  3. ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания.
  4. ГОСТ 22667-82 Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
  5. ГОСТ 31369-2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
  6. Земский Г. Т. Огнеопасные свойства неорганических и органических материалов: справочник М.: ВНИИПО, 2016 — 970 с.

Последствия неполного сгорания топлива в двигателе. Оптимизация процессов горения топлива

По статистике всего около 5% автолюбителей выбирают АЗС ориентируясь на качество топлива. Остальные по доступности, бренду и совету друзей. Качество топлива-это в первую очередь качество его сгорания или горения. Другими словами, только 5% принимают во внимание последствия неполного сгорания. В то время как остальные или не слышали об этом ничего, или доверяют вывескам-ЕВРО5, или надеются на дельный совет друга, или используют присадки для повышения октанового, цетанового числа и депрессорные или антигели.

Все перечисленные способы не оптимизируют процессы сгорания в двигателе и не влияют на его эксплуатационные характеристики. Тяжелые фракции топлива имеют высокую точку кипения. От этой характеристики и зависит насколько будет неполным сгорание.

Причины неполного сгорания:

  • Наличие воды, серы, смолы, парафина, соли органических кислот, механических примесей в топливе.
  • Непрогретый двигатель.
  • Неисправные инжектора.

Влияние на эксплуатационные характеристики и ресурс двигателя.

Присутствие воды — неоспоримый факт. Приводит к образованию коррозии инжектора, поршней и других деталей; образованию шлака, трудному запуску, особенно дизельного двигателя в зимнее время. Попадание конденсата воды в масло приводит к снижению эффективности смазки и как следствие к износу пар трения, таких, как коленвал, подшипники; повышению температуры и перегреву.

Сгорание серы происходит с выделением оксида серы 2 и 3, которые вступают в реакцию с конденсатом воды и образуют серную кислоту. Всем известны свойства этой кислоты. Она вызывает коррозию в двигателе, стенок цилиндров, инжектора, а также выхлопной трубы. Мелкодисперсная окись железа, попадая в масло, начинает работать как абразив, увеличивая зазоры между сопряженными поверхностями трения. Кроме того, неполное сгорание способствует образованию нагара, который в свою очередь, накапливаясь на стенках камеры сгорания приводит к уменьшению ее теплопроводности, что вызывает локальный перегрев и снижение ресурса работы сальников клапанов; ускоренному износу поршневых колец. Окалины нагара являются абразивом, попадая в мотор приводят к механическому износу, появлению задиров на цилиндре и как, следствие снижение компрессии, падение мощности и кпд двигателя. Следствием износа поршневых колец становится снижение компрессии и увеличение расхода топлива и масла на угар. Наличие серы в выхлопных газах приводят к осаждению масла, попадая в поддон, что приводит к старению моторного масла и его деградации, и потери смазочного эффекта, что способствует перегреву.

Соли органических кислот и механические примеси образуются при хранении топлива, которые вызывают повышенный износ в местах трения поршня о стенки цилиндров, что приводит к снижению мощности и расходу топлива.

 В качестве самых тяжелых фракций выступают смолы и сложные парафины, точка кипения которых самая высокая и, следовательно, самые тяжелые условия для их полного сгорания. Остатки несгоревших тяжелых фракций оседают в виде сажи на стенках камеры сгорания, на стенках всего газоотводящего тракта и в катализаторе дожига, а также накапливаются в поршневых канавках компрессионных колец и в зазорах маслосъемных колец, нарушая их правильную работу и увеличивая их износ.

    

Движение на непрогретом двигателе и экстренное торможение также способствует неполному сгоранию топлива. При чем это характерно не только для тяжелых фракций, но и для легких, температура кипения которых около 40С, что является причиной повреждения и выхода из строя катализатора. При резком торможении топлива в камере сгорания оказывается больше, чем может сгореть. В результате оно попадает в цилиндры, где смывает со стенок масляную пленку, что в свою очередь приводит к повреждению поршней и стенок цилиндров.

В результате коррозийных процессов, образования нагара и шлаков подвержены износу выпускной топливный клапан, инжектора, топливный насос. В результате снижения разгрузочной эффективности выпускного клапана в магистрали и на такте впуска сохраняется высокое давление, инжектор закрывается не полностью, и как следствие попадание топлива в камеру сгорания, что может привести, в том числе к гидроудару. Кроме того, изменяется факел распыла топлива и его глубина распространения в камере сгорания, которые в свою очередь также зависят и от вязкости и размера капель. Ухудшение этих характеристик приводит к неполному сгоранию, снижению мощности, перерасходу топлива и появлению дыма.

Оптимизация процессов горения топлива

Бороться с последствиями неполного сгорания призван продукт Fuelex производящийся как для дизельных, так и для бензиновых двигателей. Являясь каталитической добавкой в топливо, он существенно изменяет процессы горения. Топливо при сгорании в его присутствии подвергается дополнительному окислению во всем распыленном объеме в камере сгорания, благодаря чему происходит изменение скорости нарастания окисления и температуры. Дополнительному окислению подвергаются и ранее не сгоревшие продукты, тем самым способствуя очищению от сажи камеры сгорания и газоотводящего тракта. Эти процессы сопровождаются повышением КПД, уменьшением расхода топлива и уменьшением вредных выбросов в атмосферу. Последний факт мало интересует Российскую действительность. Даже всемирный скандал с концерном Фольксваген не затронул продажи этих автомобилей в России, поскольку по нашим законам количество выбросов вредных веществ не превышает нормы, НО!  облегчение работы топливного катализатора и продление сроков его службы за счет применения Fuelex не может не заинтересовать ни автолюбителя, ни профессионала.

Горение бензина без катализатора горения топлива

Горение бензина с применнением катализатора горения топлива

Тема 5. Способы сжигания топлив и горелочные устройства.

36

Тема 5.Сжигание и горелки

5.1. Способы сжигания твердого топлива

5.2. Сжигание жидких топлив

5.2.1. Качество мазута.

5.2.2. Проблемы подготовки мазута к сжиганию

5.2.3. Проблемы при использовании мазута на котельных и ТЭЦ

5.3. Сжигание газообразных топлив

5.3.1. Подготовка газа

5.3.2. Особенности процесса горения природного газа

5.3.3. Сжигание газообразного топлива

5.3.4. Газовые горелки

5.4. Комбинированные горелки

5.5. Приборы контроля пламени

5.6. Газоанализаторы

5.7. Примеры газовых горелок

5.7.1. БК-2595ПС

5.7.2. МДГГ

5.7.3.БИГ-2-14

Weishaupt WG40

5.8. Удаление продуктов горения.

5.1. Способы сжигания твердого топлива

Способы сжигания. Топочное устройство, или топка, являет­ся основным элементом котельного агрегата или огневой промышленной печи и служит для сжигания топлива наиболее эко­номичным способом и превращения его химической энергия в тепло. В топке происходят горение топлива, передача части теп­лоты продуктов сгорания поверхностям нагрева, находящимся в зоне горения, а также улавливание некоторого количества очаговых остатков (золы, шлака). В современных котельных агрега­тах и печах до 50 % теплоты, выделенной в топке, передается поверхностям нагрева излучением. В топочной технике обычно используют следующие основные способы сжигания твердого топлива: слоевой, факельный (камер­ный), вихревой и сжигание в кипящем слое (рис. 5.5). Каждый из этих способов имеет свои особенности, касающиеся основных прин­ципов организации аэродинамических процессов, протекающих в топочной камере. Для сжигания жидких и газообразных топлив применяется только факельный (камерный) способ сжигания.

Слоевой способ. Процесс сжигания этим способом осуществляют в слоевых топках

(см. рис. 5.5а ), имеющих разнообразные конструкции. Слоевой процесс горения характерен тем, что в нем поток воздуха встречает при своем движении неподвижный или медленно движущийся слой топлива и, взаимодействуя с ним, превращается в поток топочных газов.

Важной особенностью слоевых топок является наличие запаса топлива на решетке, увязанного с его часовым расходом, что по­зволяет осуществлять первичное регулирование мощности топки только изменением количества подаваемого воздуха. Запас топли­ва на решетке обеспечивает также определенную устойчивость процесса горения.

В условиях современной топочной техники слоевой способ сжигания топлива является устаревшим, так как его различные схемы и варианты непригодны или трудно приспосабливаемы к крупным энергетическим установкам. Однако слоевые методы сжига­ния твердого топлива еще длительное время будут применяться в котельных малой и средней энергетики.

На рис. 5.6 6 показаны принципиальные схемы слоевых топок. При слоевом способе сжигания необходимый для горения воздух пода­ется из зольника 1 к слою топлива 3 через свободное сечение ко­лосниковой решетки 2. В топочной камере 4 над слоем горят газооб­разные продукты термического разложения топлива и вынесенные из слоя мелкие частицы топлива. Продукты сгорания вместе с из­быточным воздухом из топки поступают в газоходы котла.

Слоевые топки получили широкое применение в котлах малой и средней мощности. Они разделяются по нескольким классифи­кационным признакам. В зависимости от способа обслуживания бывают топки с ручным обслуживанием (см. рис. 5.6, а), немехани­зированные, полумеханизированные (см. рис. 5.6, б, в) и механизи­рованные (см. рис. 5.6, г, д). Представленные на рис. 5.6 слоевые топки могут быть разделены на три группы

Рис. 5.5. Способы сжигания твердого топлива

а – в плотном слое; б – в пылевидном состоянии; в – в циклонной топке; г – в кипящем слое.

1. Топки с неподвижной колосниковой решеткой и неподвижно лежашим на ней плотным, фильтрующимся воздухом, слоем топлива (см. рис. 5.6, а, в). При возрастании скорости воздуха, Исходящего через слой топлива, последний может стать «кипящим», т. е. частицы его приобретают возвратно-поступательное перещение вверх—вниз до полного сгорания. Такой слой топлива горит более интенсивно вследствие увеличения контактной по­верхности с воздухом (окислителем топлива), что улучшает ее теплопроизводительность. Процесс горения более эффективен при фракционировании топлива по размерам его кусочков.

  1. Топки с неподвижной колосниковой решеткой и перемеща­ющимся по ней слоем топлива (см. рис. 5.6, б, г).

  2. Топки с движущимся вместе с колосниковой решеткой слоем топлива (см. рис. 5.6, д).

Простейшая слоевая топка с неподвижной колосниковой ре­шеткой и ручным обслуживанием (см. рис. 5.6, а) применяется для сжигания всех видов твердого топлива. Такими топками оборудуют котлы лишь очень малой паропроизводительности — 0,275…0,55 кг/с (1… 2 т/ч).

В топке с неподвижной наклонной колосниковой решеткой (см. рис. 5.6, б) топливо по мере сгорания движется по решетке под действием силы тяжести. Эти топки применяют для сжигания влажных топлив (древесных отходов, кускового торфа) под кот­лами паропроизводительностью 0,7… 1,8 кг/с (2,5…6,5 т/ч).

В полумеханизированной топке (см. рис. 5.6, в), подача топлива на неподвижную колосниковую решетку осуществляется с помо­щью забрасывателя 5. В этих топках сжигают каменные и бурые угли, сортированный антрацит под котлами паропроизводитель­ностью 0,55…2,8 кг/с (2… 10 т/ч).

Простейшей механизированной топкой является топка с шу­рующей планкой (см. рис. 5.6, г). Она состоит из неподвижной лосниковой решетки, по всей ширине которой скользит план­ка б клиновидного сечения. Планка совершает возвратно-посту­пательные перемещения с помощью специального устройства. При­меняют эти топки для сжигания бурых углей под котлами паро­производительностью до 2,8 кг/с (10 т/ч).

Наиболее распространенным типом механизированной сло­евой топки является топка с цепной механической решеткой (см. рис. 5.6, д). Цепная механическая решетка выполняется в виде бесконечного колосникового полотна, движущегося вместе с лежащим на нем слоем горящего топлива. Каждая новая порция топлива, поступающая на решетку, движется вслед за слоем топлива. Скорость движения решетки можно изменять в зависимо­сти от расхода топлива (режима работы котла) от 2 до 16 м/ч.Эти топки применяют для сжигания сортированного антрацита и неспекающихся углей с умеренной влажностью и зольностью и выходом летучих веществ Ут = 10…25 %. Существующие модификации топок с цепными решетками позволяют применять их для сжигания и других топлив. Топки с цепными решетками устанавлиавают под котлами паропроизводительностью 3…10 кг/с (10,5…35 т/ч) и выше.

Факельный способ. В отличие от слоевого этот процесс (См рис. 5.5, б) характеризуется непрерывностью движения в топочном пространстве частичек топлива вместе с потоком воздуха и продуктов сгорания, в котором они находятся во взвешенном состоянии.

Для обеспечения устойчивости и однородности горящего фа­кела, а следовательно, и газовоздушного потока с взвешенным в нем топливом частички твердого топлива размалываются до пылевидного состояния, до размеров, измеряемых микронами (от 60 до 90 % всех частиц имеют размер менее 90 мкм). Жидкое топливо предварительно распыливается в форсунках в очень мел­кие капли, чтобы капельки не выпадали из потока и успевали полностью сгореть за короткое время нахождения в топке. Газо­образное топливо подается в топку через горелки и не требует I особой предварительной подготовки.

Особенностью факельных топок является незначительный за­пас топлива в топочной камере, отчего процесс горения неустой­чив и весьма чувствителен к изменению режима. Регулировать мощ­ность топки можно, лишь одновременно изменяя подачу в топоч­ную камеру топлива и воздуха. При факельном сжигании (рис. 5.7 твёрдое топливо предварительно размельчается в системе пылеприготовления и в виде пыли вдува­ется в топку, где оно сгорает во взвешенном состоянии. Размол топлива резко увеличивает повер­хность его реагирования, что спо­собствует лучшему сгоранию.

Основными достоинствами пы­левидного способа сжигания явля­ются возможность создания мощных топок и возможность эконо­мичного и надежного сжигания зольных, влажных и отбросных топлив под котлами разных мощностей.

К недостаткам этого способа можно отнести высокую стоимость оборудования системы пылеприготовления, расход электроэнергии на размол, более низкие удельные тепловые нагрузки камеры горения (примерно вдвое), чем при слоевых топках, что заметно увеличивает объемы топочных пространств.

Пылеприготовление из кускового топлива состоит из следующих операций:

удаление из топлива металлических предметов при помощи магнитных сепараторов;

дробление крупных кусков топлива в дробилках;

сушка и размол топлива в специальных мельницах.

При рабочей влаге WР < 20 % сушка топлива производится в мельнице одновременно с процессом размола, для чего в мельницу подается горячий воздух из воздухоподогревателя котла. Тем­пература воздуха доходит до 400 °С, и он одновременно служит для выноса пыли из мельницы.

При размоле топлива образуются пылинки размером 0…500 мк. Основной характеристикой пыли является тонкость ее помола, ко­торая по ГОСТ 3584—53 характеризуется остатком на ситах с ячей­ками 90 и 200 мк, обозначаемые R90 и R2оо. Так, R90 = 10 % означает, что на сите с размером ячеек 90 мк осталось 10 % пыли, а вся остальная пыль прошла через сито.

Оптимальная тонкость помола (тонина) определяется суммар­ным фактором: минимальным расходом электроэнергии на помол топлива и потерями от механического недожога. Тонкость помола зависит от реакционной способности топлива, характеризуемой в основном выходом летучих веществ. Чем выше содержание в топливе ле­тучих веществ, тем грубее помол.

Размольные свойства топлива ха­рактеризуются коэффициентом размолоспособности, (для антрацита Кло = 1; для тощего угля Кло = 1,6; Для подмосковного бурого угля Кл0 = 1,75).

Широкое распространение получили индивидуальная схема пыле­приготовления и схема пылеприготовления с промежуточным бункером- На рис. 5.8 показана схема индвиидуального пылеприготовления, которой пыль из мельницы непосредственно поступает в топку. В этой схеме из бункера сырого угля 4 топливо подается на автоматические весы 3, а затем в питатель 2. Отсю­да топливо направляется в шаровую барабанную мельницу (ШБМ) , где оно размалывается и подсушивается, для чего в барабан мель­ницы вдувается горячий воздух. Из мельницы пыль выносится в се­паратор 5, где готовая пыль отделяется от грубых фракций, которые возвращаются в мельницу. Готовая пыль из сепаратора нагнетается мельничным вентилятором б через горелки 7 в топочное простран­ство котла. Производительность мельницы регулируется изменением подачи топлива питателем с одновременным изменением числа обо­ротов мельничного вентилятора.

Основными недостатками этой схемы являются отсутствие за­паса пыли, что снижает надежность работы котла, и сильный из­нос мельничного вентилятора, через который пропускается вся угольная пыль.

На рис. 5.9 дана схема пылеприготовления с промежуточным бункером. Отличие ее состоит в том, что за сепаратором ставится циклон 6, в который и направляется готовая пыль. В циклоне 90…95% пыли отделяется от воздуха и осаждается, а затем на­правляется в промежуточный бункер 9. Пыль из циклона в бункер спускается через клапаны (мигалки) 8, которые открываются при давлении на них определенной порции пыли. Воздух с остат­ком тонкой пыли отсасывается из циклона мельничным вентилятором 12 и нагнетается в трубопровод первичного воздуха, куда в свою очередь поступает пыль из промежуточного бункера с помо­щью шнековых или лопастных пылепитателей 10. Схема пылеприготовления с промежуточным бункером, как наиболее гибкая и надежная, получила наиболее широкое распространение.

Для размола топлива применяют мельницы различных типов. Выбор типа мельницы зависит от размольных характеристик топлива, выхода летучих веществ и влажности топлива. Различают мельницы тихоходные и быстроходные.

Для размола антрацита и каменных углей с небольшим выхо­дом летучих веществ, сжигаемых котлоагрегатами средней и большой паропроизводительности, применяют тихоходные ша­ровые барабанные мельницы (ШБМ).(Рис.5.10). Основными достоинствами барабанной мельницы являются хорошая регулируемостьтонкости помола, и надежность помола. К недостаткам этих мельниц следует отнести: громозкость, высокую стоимость, повышенный удельный расход электроэнергии, значительный шум, сопровождающий работу мельницы.

Быстроходные мельницы применяют двух типов: молотковые и мельницы-вентиляторы.

Молотковые мельницы с аксиальным (ММА) или тангенциальным (ММТ) подводом сушильного агента применяют для размола бурых углей, сланцев, фрезерного торфа и каменных углей с выходом летучих веществ Vг > 30 %. Устанавливают их с котлоагрегатами производительностью свыше 5 кг/с (рис.5.11).К достоинствам молотковой мельницы следует отнести ее ком­пактность, простоту эксплуатации и небольшой удель­ный расход электроэнергии. Основным недостатком этих мельниц является быстрый износ бил, вызывающий за­метное снижение производи­тельности мельницы.

Мельница-вентилятор (МБ) предназначена для размола, главным образом, высоковлажных бурых углей и фрезерного торфа. Применяют топки с МВ в котлоагрегатах средней произ­водительности. Мелющим органом МВ является массивная крыль­чатка 1 (рис. 5.12) с частотой вращения 380… 1470 об/мин, рас­положенная в бронированном корпусе 6.

Вихревой способ. В рассмотренных факельных топках частицы топлива сгорают в объеме топки на лету. Длительность пребыва­ния их в топочном пространстве не превышает времени ‘пребыва­ния продуктов сгорания в топке и составляет 1,5… 3 с. В циклон­ных топках, которые предназначены для сжигания мелкодробле­ного топлива и грубой пыли, крупные частицы угля находятся во взвешенном состоянии столько времени, сколько это необходи­мо для полного выгорания их независимо от длительности пребы­вания продуктов сгорания в топке.

В них сжигают достаточно мелкие частицы угля (обычно мельче 5 мм), а необходимый для горения воздух подают с огромными (до 100 м/с) скоростями по касательной к образующей циклона-В топке создается мощный вихрь, вовлекающий частицы в циркуляционное движение, в котором они интенсивно обдуваются потоком (см. рис. 5.5, в).

Значительная удельная поверхность мелких частиц, большие зна­чения коэффициентов массоотдачи между потоком и частицами высокие концентрации горючего в камере обеспечивают получение больших теплонапряжений объема топки (q= 0,65… 1,3 МВт/м3 при a= 1,05… 1,1), в результате чего в топке развиваются температуры, близкие к адиабатным (до 2000 °С). Зола угля плавится, жидкий шлак, стекая по стенкам, тормозит движение частиц, налипающих на его поверхность, что еще больше увеличивает скорость их омывания потоком, а значит и коэффициент массоотдачи.

Поскольку центробежный эффект уменьшается с увеличением радиуса циклона, диаметр последнего обычно не превышает 2 м, что позволяет получить тепловую мощность 40…60 МВт.

В нашей стране применяются в основном технологические цик­лонные топочные камеры, например для сжигания серы (в целях получения SО2 — сырья для производства Н24; при этом ис­пользуется и теплота горения), для плавления и обжига руд и нерудных материалов (например фосфоритов) и т.д. В последнее время в циклонных топках осуществляют огневое обезвреживание сточных вод, т. е. выжигание содержащихся в них вредных приме­сей за счет подачи дополнительного (обычно газообразного или жидкого) топлива.

В топочных камерах, в которых топливо сгорает при высоких температурах, образуется большое количество крайне токсичных оксидов азота. Предельно допустимая концентрация (ПДК) N0, безопасная для здоровья людей, в воздухе населенных пунктов составляет 0,08 мг/м3.

Поскольку образование оксидов азота существенно уменьша­ется при снижении температуры, в последние годы энергетики проявляют все больший интерес к так называемому низкотемпе­ратурному (в отличие от высокотемпературного — с температу­рой 1100°С и выше) сжиганию в псевдоожиженном слое, когда устойчивое и полное горение каменных и бурых углей удается обеспечить при 750…950 «С.

Сжигание в кипящем слое. Слой мелкозернистого материала, продуваемый снизу вверх воздухом со скоростью, превышающей предел устойчивости плотного слоя, но недостаточной для выно­са частиц из слоя, создает циркуляцию. Интенсивная циркуляция частиц в ограниченном объеме камеры создает впечатление бурно кипящей жидкости. Значительная часть воздуха проходит через такой слой в виде пузырей, сильно перемешивающих мелкозернистый материал, что еще больше усиливает сходство с кипящей жидкостью и объясняет происхождение названия.

Способ сжигания в псевдосжиженном (кипящем) слое (см. рис. 5.5, г) является в определенном смысле промежуточным между слоевым и камерным. Его преимуществом является возможность сжигания относительно мелких кусочков топлива (обычно мельче 5… 10 мм) при скорости воздуха 0,1…0,5 м/с.

Топки с кипящим слоем широко используются в промышленности для сжигания колчеданов в целях получения SО2, обжига различных руд и их концентратов (цинковых, медных, никелевых, золотосодержащих) и т. д.

Отправить ответ

avatar
  Подписаться  
Уведомление о