Уравнение с параметром квадратное – Квадратные уравнения с параметром. Задание 18 в ЕГЭ

Квадратные уравнения с параметром | Александр Будников

Задачи с параметрами. Простейшие задачи на квадратный трёхчлен.

        Сегодня мы рассмотрим задачи на квадратный трёхчлен, про который, в зависимости от параметра, надо будет что-то выяснить. Это «что-то» может быть самым разнообразным, насколько только хватит фантазии у составителей задачи. Это самый простой тип задач с параметрами. И, если на ЕГЭ вам попалась такая – считайте, что вам повезло!

        Но, прежде чем приступать к разбору самих задач, ответьте сами себе на такие простые вопросы:

        — Что такое квадратное уравнение, как оно выглядит и как решается?

        — Что такое дискриминант и куда его пристроить?

        — Что такое теорема Виета и где её можно применить?

        Если вы верно отвечаете на эти простые вопросы, то 50% успеха в решении параметрических задач на квадратный трёхчлен вам обеспечены! А остальные 50% — это обычная алгебра и арифметика: раскрытие скобок, приведение подобных, решение уравнений, неравенств и систем и т.д.

        Итак, приступим!

        Для начала рассмотрим совсем безобидную задачку. Для разминки. 🙂

 

        Пример 1

       

        Приступаем к решению. Во-первых, чтобы в будущем не накосячить в коэффициентах, всегда полезно выписать их отдельно. Прямо в столбик. Вот так:      

        a = 1

        b = -(a-1)

        c = a-2

        Да-да! Часть коэффициентов в уравнении (а именно – b и с) зависит от параметра. В этом как раз и состоит вся фишка таких задач. А теперь снова въедливо перечитываем условие. Ключевой зацепкой в формулировке задания являются слова «единственный корень». И когда же квадратное уравнение имеет

единственный корень? Подключаем наши теоретические знания о квадратных уравнениях. Только в одном единственном случае – когда его дискриминант равен нулю.

        Так и пишем:

        D = 0

        Осталось составить выражение для дискриминанта и приравнять его к нулю. Поехали!

       

        Теперь надо приравнять наш дискриминант к нулю:

       

       Можно, конечно, решать это квадратное уравнение через дискриминант, а можно немного схитрить. На что у нас похожа левая часть, если как следует присмотреться? Она у нас похожа на квадрат разности (a-3)2!

        Респект внимательным! Верно! Если заменить наше выражение слева на (a-3)2, то уравнение будет решаться в уме!

        (a — 3)2 = 0

        a

3 = 0

        a = 3

        Вот и всё. Это значит, что единственный корень наше квадратное уравнение с параметром будет иметь только в одном единственном случае – когда значение параметра «а» равно тройке.)

        Ответ: 3

 

        Это был разминочный пример. Чтобы общую идею уловить.) Теперь будет задачка посерьёзнее.

 

        Пример 2

        

        Вот такая задачка. Начинаем распутывать.  Первым делом выпишем наше квадратное уравнение:

        0,5x2 — 2x + 3a + 1,5 = 0

        Самым логичным шагом, было бы умножить обе части на 2. Тогда у нас исчезнут дробные коэффициенты и само уравнение станет посимпатичнее. Умножаем:

         

        

        Выписываем в столбик наши коэффициенты a, b, c:

          a = 1

          b = -4

         

c = 6a+3

         Видно, что коэффициенты a и b у нас постоянны, а вот свободный член с зависит от параметра «а»! Который может быть каким угодно – положительным, отрицательным, целым, дробным, иррациональным – всяким!

         А теперь, чтобы продвинуться дальше, вновь подключаем наши теоретические познания в области квадратных уравнений и начинаем рассуждать. Примерно так:

         «Для того чтобы сумма кубов корней была меньше 28, эти самые корни, во-первых, должны существовать. Сами по себе. В принципе. А корни у квадратного уравнения существуют, тогда и только тогда, когда его дискриминант неотрицательный. Кроме того, в задании говорится о двух различных корнях. Эта фраза означает, что наш дискриминант обязан быть не просто неотрицательным, а строго положительным

         Если вы рассуждаете таким образом, то вы движетесь правильным курсом! Верно.) Составляем условие положительности для дискриминанта:

          D = (-4)2 — 4·1·(6a+3) = 16-24a-12 = 4-24a

          4-24a > 0

          -24a > -4

          a < 1/6

        Полученное условие говорит нам о том, что два различных корня у нашего уравнения будет не при любых значениях параметра «а», а только при тех, которые меньше одной шестой! Это глобальное требование, которое должно выполняться железно. Неважно, меньше 28 наша сумма кубов корней или больше. Значения параметра «а», большие или равные 1/6, нас заведомо не устроят. Гуд.) Соломки подстелили. Движемся дальше.

        Теперь приступаем к загадочной сумме кубов корней. По условию она у нас должна быть меньше 28. Так и пишем:

         

        Значит, для того чтобы ответить на вопрос задачи, нам надо совместно рассмотреть два условия:

         

        А дальше начинаем отдельно работать с этой самой суммой кубов. Есть два способа такой работы: первый способ для трудолюбивых и второй способ – для внимательных.

        Способ для трудолюбивых заключается в непосредственном нахождении корней уравнения через параметр. Прямо по общей формуле корней. Вот так:

         

        Теперь составляем нужную нам сумму кубов найденных корней и требуем, чтобы она была меньше 28: 

          

        А дальше – обычная алгебра: раскрываем сумму кубов по формуле сокращённого умножения, приводим подобные, сокращаем и т.д. Если бы корни нашего уравнения получились покрасивее, без радикалов, то такой «лобовой» способ был бы неплох. Но проблема в том, что наши корни выглядят немного страшновато. И подставлять их в сумму кубов как-то неохота, да. Поэтому, для того чтобы избежать этой громоздкой процедуры, я предлагаю второй способ – для внимательных.

        Для этого раскрываем сумму кубов корней по соответствующей формуле сокращенного умножения. Прямо в общем виде:

        

        

        А дальше проделываем вот такой красивый фокус: во вторых скобках выражаем сумму квадратов корней через сумму корней и их произведение. Вот так:

         

        Итого:

        

        Казалось бы, и что из этого? Сейчас интересно будет! Давайте, посмотрим ещё разок на наше уравнение. Как можно внимательнее:

        

        Чему здесь равен коэффициент при x2? Правильно, единичке! А как такое уравнение называется? Правильно, приведённое! А, раз приведённое, то, стало быть, для него справедлива теорема Виета:

         

        Вот и ещё одна теорема нам пригодилась! Теперь, прямо по теореме Виета, подставляем сумму и произведение корней в наше требование для суммы кубов:

         

        

         Осталось раскрыть скобки и решить простенькое линейное неравенство:

          4·(16-18a-9) < 28

          64–72a+36 < 28

          -72a < 28-64+36

          -72a < 0

          a > 0

          Вспоминаем, что ещё у нас есть глобальное требование a < 1/6. Значит, наше полученное множество a > 0 необходимо пересечь с условием a < 1/6. Рисуем картинку, пересекаем, и записываем окончательный ответ.

         

          Ответ:

         

          Да. Вот такой маленький интервальчик. От нуля до одной шестой… Видите, насколько знание теоремы Виета, порой, облегчает жизнь!

          Вот вам небольшой практический совет: если в задании говорится о таких конструкциях, как сумма, произведение, сумма квадратов, сумма кубов корней, то пробуем применить теорему Виета. В 99% случаев решение значительно упрощается.

 

          Это были довольно простые примеры. Чтобы суть уловить. Теперь будут примеры посолиднее.

          Например, такая задачка из реального варианта ЕГЭ:

 

          Пример 3

          

          Что, внушает? Ничего не боимся и действуем по нашему излюбленному принципу: «Не знаешь, что нужно, делай что можно!»

          Опять аккуратно выписываем все коэффициенты нашего квадратного уравнения:

          

          a = 1

          b = -6

          c = a2-4a

          А теперь вчитываемся в условие задачи и находим слова «модуль разности корней уравнения». Модуль разности нас пока не волнует, а вот слова

«корней уравнения» примем во внимание. Раз говорится о корнях (неважно, двух одинаковых или двух различных), то наш дискриминант обязан быть неотрицательным! Так и пишем:

          D ≥ 0

          Что ж, аккуратно расписываем наш дискриминант через параметр а:

          D = (-6)2 – 4·1·(12 + a2-4a) = 36 — 48 — 4а+ 16а = -4а2+16а-12.

          А теперь решаем квадратное неравенство. По стандартной схеме, через соответствующее квадратное уравнение и схематичный рисунок параболы:

         

         

          

          

          Значит, для того чтобы у нашего уравнения в принципе имелись хоть какие-то корни, параметр а должен находиться в отрезке [-1; 3]. Это железное требование. Хорошо. Запомним.)

          А теперь приступаем к этому самому модулю разности корней уравнения. От нас хотят, чтобы вот такая штука

         

         принимала бы наибольшее значение. Для этого, ничего не поделать, но теперь нам всё-таки придётся находить сами корни и составлять их разность: x1 – x2. Теорема Виета здесь в этот раз бессильна.

          Что ж, считаем корни по общей формуле:

          Дальше составляем модуль разности этих самых корней:

 

          Теперь вспоминаем, что корень квадратный – величина заведомо неотрицательная. Стало быть, без ущерба для здоровья, модуль можно смело опустить. Итого наш модуль разности корней выглядит так:

        

         И эта функция f(a) должна принимать наибольшее значение. А для поиска наибольшего значения у нас есть такой мощный инструмент, как производная! Вперёд и с песнями!)

         Дифференцируем нашу функцию и приравниваем производную к нулю:

         

         

         Получили единственную критическую точку a = 2. Но это ещё не ответ, так как нам ещё надо проверить, что найденная точка и в самом деле является точкой максимума! Для этого исследуем знаки нашей производной слева и справа от двойки. Это легко делается простой подстановкой (например, а = 1,5 и а = 2,5).

         

          Слева от двойки производная положительна, а справа от двойки – отрицательна. Это значит, что наша точка a = 2 и вправду является точкой максимума. Заштрихованная зона на картинке означает, что нашу функцию  мы рассматриваем только на отрезке [1; 3]. Вне этого отрезка нашей функции f(a) попросту не существует. Потому, что в заштрихованной области наш дискриминант отрицательный, и разговоры о каких-либо корнях (и о функции тоже) бессмысленны. Это понятно, думаю.

          Всё. Вот теперь наша задача полностью решена.

          Ответ: 2.

 

          Здесь было применение производной. А бывают и такие задачи, где приходится решать уравнения либо неравенства с так ненавистными многими учениками модулями и сравнивать некрасивые иррациональные числа с корнями. Главное – не бояться! Разберём похожую злую задачку (тоже из ЕГЭ, кстати).

 

          Пример 4

          

          Итак, приступаем. Первым делом замечаем, что параметр а ни в коем случае не может быть равен нулю. Почему? А вы подставьте в исходное уравнение вместо а нолик. Что получится?


 

  

          Получили линейное уравнение, имеющее единственный корень x=2. А это уже совсем не наш случай. От нас хотят, чтобы уравнение имело два различных корня, а для этого нам необходимо, чтобы оно, как минимум, было хотя бы квадратным.)

          Итак, а ≠ 0.

          При всех остальных значениях параметра наше уравнение будет вполне себе квадратным. И, следовательно, чтобы оно имело два различных корня, необходимо (и достаточно), чтобы его дискриминант был положительным. То есть, первое наше требование будет D > 0.

          А далее по накатанной колее. Считаем дискриминант:

          D = 4(a-1)2 – 4a(a-4) = 4a2-8a+4-4a2+16a = 4+8a

         

          Вот так. Значит, наше уравнение имеет два различных корня тогда и только тогда, когда параметр a > -1/2. При прочих «а» у уравнения будет либо один корень, либо вообще ни одного. Берём на заметку это условие и движемся дальше.

          Далее в задаче идёт речь о расстоянии между корнями. Расстояние между корнями, в математическом смысле, означает вот такую величину:

        

         Зачем здесь нужен модуль? А затем, что любое расстояние (что в природе, что в математике) – величина неотрицательная. Причём здесь совершенно неважно, какой именно корень будет стоять в этой разности первым, а какой вторым: модуль – функция чётная и сжигает минус. Точно так же, как и квадрат.

          Значит, ответом на вопрос задачи является решение вот такой системы:

         

          Теперь, ясен перец, нам надо найти сами корни. Здесь тоже всё очевидно и прозрачно. Аккуратно подставляем все коэффициенты в нашу общую формулу корней и считаем:

          

          Отлично. Корни получены. Теперь начинаем формировать наше расстояние:

         

         Наше расстояние между корнями должно быть больше трёх, поэтому теперь нам надо решить вот такое неравенство:

         

         Неравенство – не подарок: модуль, корень… Но и мы всё-таки уже решаем серьёзную задачу №18 из ЕГЭ! Делаем всё что можно, чтобы максимально упростить внешний вид неравенства. Мне здесь больше всего не нравится дробь. Поэтому первым делом я избавлюсь от знаменателя, умножив обе части неравенства на |a|. Это можно сделать, поскольку мы, во-первых, в самом начале решения примера договорились, что а ≠ 0, а во-вторых, сам модуль – величина неотрицательная.

          Итак, смело умножаем обе части неравенства на положительное число |a|. Знак неравенства сохраняется:

         

         Вот так. Теперь в нашем распоряжении имеется иррациональное неравенство с модулем. Ясное дело, для того чтобы решить его, надо избавляться от модуля. Поэтому придётся разбивать решение на два случая – когда параметр а, стоящий под модулем, положителен и когда отрицателен. Другого пути избавиться от модуля у нас, к сожалению, нет.

          Итак!

          Случай 1 (a>0, |a|=a)

          В этом случае наш модуль раскрывается с плюсом, и неравенство (уже без модуля!) принимает следующий вид:

         

          Неравенство имеет структуру: «корень больше функции». Такие иррациональные неравенства решаются по следующей стандартной схеме:

         

          Отдельно рассматривается случай а), когда обе части неравенства возводятся в квадрат и правая часть неотрицательна и отдельно – случай б), когда правая часть всё-таки отрицательна, но зато сам корень при этом извлекается.) И решения этих двух систем объединяются.

          Тогда, в соответствии с этой схемой, наше неравенство распишется вот так:

         

         А теперь можно существенно упростить себе дальнейшую работу. Для этого вспомним, что в случае 1 мы рассматриваем только a>0. С учётом этого требования, вторую систему можно вообще вычеркнуть из рассмотрения, поскольку, второе неравенство в ней (3a<0) эквивалентно неравенству a<0, а условия a>0 и a<0 – это два взаимно исключающих требования.

          Упрощаем нашу совокупность с учётом главного условия a>0:

         

         Вот так. А теперь решаем самое обычное квадратное неравенство:

        

         

        

        

         Нас интересует промежуток между корнями. Стало быть,

        

         Отлично. Теперь этот промежуток пересекаем со вторым условием системы a>0:

         

         Есть. Таким образом, первым кусочком ответа к нашему неравенству (а пока не ко всей задаче!) будет вот такой интервал:

         

         Всё. Случай 1 разложен по полочкам. Переходим к случаю 2.

 

          Случай 2 (a<0, |a|=-a)

         В этом случае наш модуль раскрывается с минусом, и неравенство принимает следующий вид:

         

         Опять имеем структуру: «корень больше функции». Применяем нашу стандартную схему с двумя системами (см. выше):

          

         С учётом общего требования a<0, мы снова, как и в предыдущем случае, проводим максимальные упрощения: вычёркиваем вторую систему в силу противоречивости двух требований -3а < 0 и нашего общего условия a<0 для всего случая 2.

         

          А дальше снова решаем обычное квадратное неравенство:

          

         

          И опять сокращаем себе работу. Ибо оно у нас уже решено в процессе разбора случая 1! Решение этого неравенства выглядело вот так:

         

          Осталось лишь пересечь этот интервал с нашим новым условием a<0.

          Пересекаем:

         

          Вот и второй кусочек ответа готов:

         

          Кстати сказать, как я узнал, что ноль лежит именно между нашими иррациональными корнями? Легко! Очевидно, что правый корень заведомо положителен. А что касается левого корня, то я просто в уме сравнил иррациональное число

        

         с нулём. Вот так:

         

          А теперь объединяем оба найденных интервала. Ибо мы решаем совокупность (а не систему):

         

         Готово дело. Эти два интервала – это пока ещё только решение неравенства

         

         Кто забыл, данное неравенство отвечает у нас за расстояние между корнями нашего уравнения. Которое должно больше 3. Но! Это ещё не ответ!

         Ещё у нас есть условие положительного дискриминанта! Неравенство a>-1/2, помните? Это значит, что данное множество нам ещё надо пересечь с условием a>-1/2. Иными словами, теперь мы должны пересечь два множества:

         

         Но есть одна проблемка. Мы не знаем, как именно расположено на прямой число -1/2 относительно левого (отрицательного) корня. Для этого нам придётся сравнить между собой два числа:

         

         Поэтому сейчас берём черновик и начинаем сравнивать наши числа. Примерно так:

         

          Это значит, что дробь -1/2 на числовой прямой находится левее нашего левого корня. И картинка к окончательному ответу задачи будет какая-то вот такая:

         

          Всё, задача полностью решена и можно записывать окончательный ответ.

          Ответ:

        

 

         Ну как? Уловили суть? Тогда решаем самостоятельно.)

 

         1. Найдите все значения параметра b, при которых уравнение

         ax2 + 3x +5 = 0 

         имеет единственный корень.

 

         2. Найдите все значения параметра а, при каждом из которых больший корень уравнения

         x2 – (14a-9)x + 49a2 – 63a + 20 = 0

         меньше 9.

 

         3. Найдите все значения параметра а, при каждом из которых сумма квадратов корней уравнения

         x2 – 4ax + 5a = 0

         равна 6.

 

         4. Найдите все значения параметра а, при каждом из которых уравнение

         x2 + 2(a-2)x + a + 3 = 0

         имеет два различных корня, расстояние между которыми больше 3.

 

          Ответы (в беспорядке):

          

abudnikov.ru

Урок «Решение квадратных уравнений с параметром»

Министерство образования и науки Самарской области

Государственное автономное образовательное учреждение дополнительного профессионального образования (повышения квалификации) специалистов

САМАРСКИЙ ОБЛАСТНОЙ ИНСТИТУТ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

И ПЕРЕПОДГОТОВКИ РАБОТНИКОВ ОБРАЗОВАНИЯ

Итоговая работа

На курсах повышения квалификации

«Методические особенности обучения решению задач с параметром в условиях перехода к новым образовательным стандартам».

По ИОЧ ВБ 13.03.2017г-17.03.2017г

по теме:

« Квадратные уравнения с параметрами»


 

Выполнила:

Тихонова Надежда Викторовна,

Преподаватель математики

БГПОУ Сызранский «политехнический колледж»

 Сызрань 2017 г.

. КВАДРАТНЫЕ УРАВНЕНИЯ С ПАРАМЕТРАМИ

Уравнение вида ax2+bx+c=0, где a, b, c – числа, причем а≠0 называется

квадратным уравнением.

а – первый коэффициент, b – второй коэффициент, с – свободный член.

Например:

а) 2х2– 3х + 0,7 = 0

б) -0,9 х2+ 8 – 2 1/6х=0

Найти a, b, c?

Решим уравнение ax2+bx+c=0

а) если а=0, то уравнение имеет вид bx+c=0. Тогда x=-c|b

б) если а≠0, то уравнение имеет:

1) 2 различных корня х1≠х2, если Д>0,

2) 2 равных корня х1=х2, если Д=0

3) не имеет корней, если Д<0.

Рассмотрим примеры.

Пример №1. При каких значениях уравнение имеет 2 корня?

2х2+6х+b=0

Уравнение квадратное.

Найдем Д=36-4*2*b=36-8b. По условию задачи уравнение имеет 2 корня,

значит Д>0.

Решим неравенство 36-8b>0

-8b>-36

b<4,5.

Ответ: при b<4,5.

Пример № 2. При каких значениях имеет один корень?

3х2-6х+2v=0

Уравнение квадратное. Д=36-4*3*2v=36-24v.

Так как уравнение имеет один корень, то Д=0.

36-24v=0

24v=36

V=1,5.

Пример № 3. При каких t уравнение не имеет корней?

2×2-15x+t=0

Уравнение квадратное. Д=225-4*2t=225-8 t По условию Д<0, то

225-8t<0

-8t<-225

t>281/8.

Ответ: при t>281/8/

Пример № 4.

При каких значениях m равно один из корней уравнения равен нулю. х2 – 2х + 2m – 3 = 0

Решение: Если х = 0, то имеем:

02 – 2 .0 + 2m – 3 = 0

2m = 3

m = 1,5

Проверим, не равняется ли второй корень уравнения нулю.

х = 0

х = 2

х2 – 2х = 0

Ответ: m = 1,5

При решении квадратного уравнения с параметрами контрольными будут те значения параметра, при которых коэффициент при х2 обращается в 0. Дело в том, что если этот коэффициент равен нулю, то уравнение превращается в линейное и решается по соответствующему алгоритму; если же этот коэффициент отличен от нуля, то имеем квадратное уравнение, которое решается по иному алгоритму. Дальнейшее решение зависит от дискриминанта.


 

Пример №.5

Решить уравнение х2 – (2р + 1)х + (р2 + р – 2) = 0

Решение: Здесь коэффициент перед х2 отличен от нуля, значит данное уравнение при любых значениях параметра является квадратным. Найдем дискриминант:

D = (2р + 1)2 – 4∙1(р2 + р – 2) = (4р2 + 4р + 1) – (4р2 + 4р – 8) = 4р2 + 4р + 1 – – 4р2 – 4р + 8 = 9

D > 0, значит квадратное уравнение имеет два решения

х1 = р + 2

х2 = р – 1

Ответ: при любых значениях р х1 = р + 2; х2 = р – 1

Пример № 6.

Решить уравнение рх2 +( 1 – р)х – 1 = 0

Решение: Мы не можем утверждать, что данное уравнение является квадратным. Рассмотрим контрольные (точки) значения р = 0, имеем два случая.

Если р=0, то получается уравнение вида 0∙х2 + х – 1 = 0, которое является линейным и имеет корень х = 1

Если р ≠0, то уравнение является квадратным, можно применять формулы корней квадратного уравнения.

D = (1 – р)2 – 4∙.р .(-1) = 1 – 2р + р2 + 4р = (1+ р)2

х1 = 1

х2 = –

Ответ: при р = 0 х = 1; при р ≠0 х1 = 1 х2 = –


 

Пример № 7

Решить уравнение: (а – 1)х 2 + 2(2а + 1)х + (4а + 3) = 0

Решение: здесь контрольными будут те значения параметра, при которых коэффициент при х2 обращается в 0.

Если а – 1 = 0, а = 1, уравнение имеет вид 0∙ х2 + 6х + 7 = 0 и является линейным. Корнем этого уравнения является х =

Если а–1 ≠ 0, а ≠ 0, уравнение является квадратным. Найдем его дискриминант.

D = (2∙(2а + 1))2 – 4(а – 1)(4а + 3) = 4(4а2 + 4а + 1) – 4(4а2 – а – 3) = 4(5а + 4)

Дальнейшие рассуждения зависят от значения дискриминанта.

Если D < 0, то квадратное уравнение не имеет корней; если D = 0, то уравнение имеет один корень, если D > 0, то уравнение имеет два корня.

Дискриминант обращается в нуль при а = – (можно сказать, что это – второе контрольное значение параметра; при переходе через него происходит качественное изменение уравнения – меняется число корней уравнения).

Если а < – , то D < 0 и следовательно, квадратное уравнение не имеет корней.

Если а > – , то если D > 0 и, значит квадратное уравнение имеет два корня:

х1 =

х2 =

Если а = – , то D = 0, то уравнение имеет единственное решение

х =

Ответ: при а = 1, х = – ;

при а = –, х = ;

при а < –, корней нет;

при а > –, х1 =

х2 =

Иногда задания сформулированы так, что искать корни нет необходимости.

Пример №8

При каких значениях m ровно один из корней х2+(m+3)х +|m| – 3 = 0

уравнения равен нулю.

Решение. Если нуль является корнем уравнения, квадратный трехчлен х2+(m+3)х +|m| – 3 при х = 0 обращается в нуль. 02+(m+3) .0 +|m| – 3 = 0

|m| – 3 = 0 m1 = 3 m2 = –3

Найдем второй корень при найденных значениях m.

Если m=3, то уравнение принимает вид х2+6х = 0; х1 = 0 х2 = –6

Если m= –3, то уравнение принимает вид х2 = 0, которое имеет два кратных корня, равных нулю.

Ответ: при m = 3

Пример №9

Сколько корней имеет уравнение 3х (х – 1) 2 = kх в зависимости от значения параметра k ?

Решение: 3х (х – 1) 2 = kх

3х (х – 1) 2 – kх = 0

х (3(х – 1) 2 – k) = 0

Один корень есть всегда – х0 = 0

Исследуем 3х 2 – 6х + 3 – k = 0

D = 32 – 3(3 – k) = 3k

а) Если k = 0, существует один корень х = 1;

б) Если k > 0, существуют два корня х1 = х2 = , но необходимо исследовать случай, когда один из корней равен 0. Это так, если k = 3;

в) Если k < 0, корней нет.

Ответ: уравнение 3х (х – 1) 2 = kх имеет при

1) k > 0

k ≠ 3 три корня;

2) k = 0 два корня

3) k = 3 два корня

4) k < 0 один корень.

xn--j1ahfl.xn--p1ai

Квадратные уравнения с параметром.

Презентация на тему: «Уравнения второй степени с параметром» Выполнили ученицы 9 В класса: Возиянова Светлана Галиева Анастасия

Презентация на тему:

«Уравнения второй степени с параметром»

Выполнили ученицы 9 В класса:

Возиянова Светлана

Галиева Анастасия

Цели: Определение количества корней квадратного уравнения в зависимости от параметра; Решение уравнений с параметром.

Цели:

  • Определение количества корней квадратного уравнения в зависимости от параметра;
  • Решение уравнений с параметром.
Квадратное уравнение Уравнение вида ах²+bx+с=0, где а, b, с Є R, а ≠ 0 называется квадратным уравнением. D=b²-4ac – дискриминант квадратного уравнения. Если D0, то уравнение имеет два различных корня: Если D=0, то уравнение имеет один корень.

Квадратное уравнение

Уравнение вида ах²+bx+с=0, где а, b, с Є R, а ≠ 0 называется квадратным уравнением. D=b²-4ac – дискриминант квадратного уравнения.

Если D0, то уравнение имеет два различных корня:

Если D=0, то уравнение имеет один корень.

Алгоритм решения квадратных уравнений с параметром 1)Если в квадратном уравнении главный коэффициент содержит параметр, то обязательно нужно выяснить, при каких значениях параметра главный коэффициент равен нулю. В этом случае квадратное уравнение превращается в линейное, которое имеет один корень. 2) Если в квадратном уравнении главный коэффициент не содержит параметра, то количество корней зависит только от значения дискриминанта.

Алгоритм решения квадратных уравнений с параметром

1)Если в квадратном уравнении главный коэффициент содержит параметр, то обязательно нужно выяснить, при каких значениях параметра главный коэффициент равен нулю. В этом случае квадратное уравнение превращается в линейное, которое имеет один корень.

2) Если в квадратном уравнении главный коэффициент не содержит параметра, то количество корней зависит только от значения дискриминанта.

Примеры: Пример 1. При каком значение параметра b уравнение 2х²-bx+18=0 имеет единственный корень? Решение: Данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю. Имеем: D=b²-4*2*18 = b²-144; b²-144=0; b= -12 или b= 12. Ответ: b= -12, или b=12

Примеры:

Пример 1. При каком значение параметра b уравнение 2х²-bx+18=0 имеет единственный корень?

Решение: Данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю. Имеем:

D=b²-4*2*18 = b²-144;

b²-144=0;

b= -12 или b= 12.

Ответ: b= -12, или b=12

Пример 2. При каком значение параметра b уравнение (b+6)x²-(b-2)x+1=0 имеет единственный корень? Решение: Считать такое уравнение квадратным является ошибкой. Это уравнение степени не выше второй. При b= -6 получаем линейное уравнение 8x+1=0, имеющее один корень. При b ≠ -6 данное уравнение является квадратным; оно имеет единственный корень, если его дискриминант равен нулю: D=(b-2)²-4(b+6) = b²-4b+4-4b-24 = b²-8b-20 Имеем: b²-8b-20=0, отсюда b= -2 или b=10. Ответ: b= -2, или b=10, или b= -6

Пример 2. При каком значение параметра b уравнение (b+6)x²-(b-2)x+1=0 имеет единственный корень?

Решение: Считать такое уравнение квадратным является ошибкой. Это уравнение степени не выше второй.

При b= -6 получаем линейное уравнение 8x+1=0, имеющее один корень.

При b ≠ -6 данное уравнение является квадратным; оно имеет единственный корень, если его дискриминант равен нулю:

D=(b-2)²-4(b+6) = b²-4b+4-4b-24 = b²-8b-20

Имеем: b²-8b-20=0, отсюда b= -2 или b=10.

Ответ: b= -2, или b=10, или b= -6

Пример 2. При каком значение параметра b уравнение (b+6)x²-(b-2)x+1=0 имеет единственный корень? Решение: Считать такое уравнение квадратным является ошибкой. Это уравнение степени не выше второй. При b= -6 получаем линейное уравнение 8x+1=0, имеющее один корень. При b ≠ -6 данное уравнение является квадратным; оно имеет единственный корень, если его дискриминант равен нулю: D=(b-2)²-4(b+6) = b²-4b+4-4b-24 = b²-8b-20 Имеем: b²-8b-20=0, отсюда b= -2 или b=10. Ответ: b= -2, или b=10, или b= -6 0. Отсюда а-1/3. Однако промежуток (-1/3;+∞) содержит значение а=0, при котором исходное уравнение имеет единственный корень, что не удовлетворяет условию задачи.  Ответ: а= -3, или -1/30 «

Пример 3. При каких значениях параметра а уравнение a(a+3)х²+(2a+6)x-3a-9=0 имеет больше одного корня?

 

Решение: При а=0 получаем линейное уравнение 6х-9=0, имеющее единственный корень. 

При а=-3 получаем линейное уравнение 0х=0, имеющее бесконечно много корней. 

Если а≠0 и а≠ -3, то, разделив обе части уравнения на а+3, получим квадратное уравнение ах²+2х-3=0. Дискриминант этого уравнения равен 4(1+3а). Для выполнения условия задачи он должен быть положительным, т.е. 4(1+3а)0. Отсюда а-1/3. Однако промежуток (-1/3;+∞) содержит значение а=0, при котором исходное уравнение имеет единственный корень, что не удовлетворяет условию задачи. 

Ответ: а= -3, или -1/30

Пример 4. Решить уравнение (a²-b²)х²-2ax+1=0.   Решение: Рассмотрим три случая: 1) a=b=0. Уравнение 0x+1=0 решений не имеет. 2) a²=b²≠0. Уравнение -2ax+1=0 имеет один корень x=1/2a. 3) a²-b²≠0. Корни уравнения: x1= 1/a-b, x2= 1/a+b. При b=0 D=b²=0, поэтому уравнение имеет один корень x=1/a (a ≠0). Ответ: x=1/2a при a²=b²≠0; x=1/a при a ≠0, b=0; ∅ при a=0, b=0; x1= 1/a-b, x2= 1/a+b при a ² ≠ b ², b ≠0

Пример 4. Решить уравнение (a²-b²)х²-2ax+1=0.

 

Решение: Рассмотрим три случая:

1) a=b=0. Уравнение 0x+1=0 решений не имеет.

2) a²=b²≠0. Уравнение -2ax+1=0 имеет один корень x=1/2a.

3) a²-b²≠0. Корни уравнения: x1= 1/a-b, x2= 1/a+b.

При b=0 D=b²=0, поэтому уравнение имеет один корень x=1/a (a ≠0).

Ответ: x=1/2a при a²=b²≠0; x=1/a при a ≠0, b=0; ∅ при a=0, b=0; x1= 1/a-b, x2= 1/a+b при a ² ≠ b ², b ≠0

Пример 5. Решить уравнение (4a/x²-a²)+ (x-a/x(x+a))=(1/x(x-a)) Решение: При x≠0, x≠a, x≠-a уравнение приведём к равносильному 4ax+x²-2ax+a²-x-a=0. (x+a)²-(x+a)=0 (x+a)(x+a-1)=0 Так как x≠-a, то уравнение имеет одно решение x=1-a. Условия x≠0, x≠a влекут за собой требования a≠1, a≠1/2. Уравнение 1-a=-a решений не имеет. Ответ: x=1-a при a≠1/2; a≠1; ∅ при a=1/2, a=1

Пример 5. Решить уравнение (4a/x²-a²)+ (x-a/x(x+a))=(1/x(x-a))

Решение: При x≠0, x≠a, x≠-a уравнение приведём к равносильному 4ax+x²-2ax+a²-x-a=0.

(x+a)²-(x+a)=0

(x+a)(x+a-1)=0

Так как x≠-a, то уравнение имеет одно решение x=1-a. Условия x≠0, x≠a влекут за собой требования a≠1, a≠1/2. Уравнение 1-a=-a решений не имеет.

Ответ: x=1-a при a≠1/2; a≠1; ∅ при a=1/2, a=1

Пример 6. При каких значениях a уравнение aх²-x+3=0 имеет единственное решение?  Решение: Ошибочно считать данное уравнение квадратным. На самом деле это уравнение степени не выше второй. Исходя из этого соображения, рассмотрим следующие случаи:  1)a=0. При этом уравнение принимает вид -x+3=0, откуда x=3, т.е. решение единственно.  2) a≠0, тогда aх²-x+3=0 – квадратное уравнение, дискриминант D=1-12a. Для того, чтобы уравнение имело единственное решение, нужно, чтобы D=0, откуда a=1/12.  Ответ: a=0 или a=1/12

Пример 6. При каких значениях a уравнение aх²-x+3=0 имеет единственное решение? 

Решение: Ошибочно считать данное уравнение квадратным. На самом деле это уравнение степени не выше второй. Исходя из этого соображения, рассмотрим следующие случаи: 

1)a=0. При этом уравнение принимает вид -x+3=0, откуда x=3, т.е. решение единственно. 

2) a≠0, тогда aх²-x+3=0 – квадратное уравнение, дискриминант D=1-12a. Для того, чтобы уравнение имело единственное решение, нужно, чтобы D=0, откуда a=1/12. 

Ответ: a=0 или a=1/12

Пример 7. Один из корней квадратного уравнения х²+2ах+2-3а=0 равен 1. Найдите значение параметра а и второй корень уравнения. Решение: х1=1 подставим его в уравнение и получим верное равенство: 1²+2а*1+2-3а=0 или 3-а=0, откуда а=3. Подставим это значение параметра а в данное уравнение: х²+2*3*х²+2-3*3=0 или х²+6х-7=0. Решим это квадратное уравнение: х1=1 и х2= -7. Получили а=3 и х2= -7 Ответ: а=3; х2= -7

Пример 7. Один из корней квадратного уравнения х²+2ах+2-3а=0 равен 1. Найдите значение параметра а и второй корень уравнения.

Решение: х1=1 подставим его в уравнение и получим верное равенство: 1²+2а*1+2-3а=0 или 3-а=0, откуда а=3. Подставим это значение параметра а в данное уравнение: х²+2*3*х²+2-3*3=0 или х²+6х-7=0.

Решим это квадратное уравнение: х1=1 и х2= -7.

Получили а=3 и х2= -7

Ответ: а=3; х2= -7

Пример 8. При каких значениях параметра а сумма квадратов корней уравнения x²+ax+a=0 равна 3?   Решение: Пусть x1 и x2 – корни данного уравнения. По условию x1² + x2²=3, т.е. (x1+x2)²-2x1x2 = 3. Применяя теорему Виета, можно записать (-a)²-2a=3; a²-2a-3=0. Отсюда a=-1 или a=3. Казалось бы, решение завершено. Однако теорема Виета «работает» лишь для тех квадратных уравнений, у которых есть корни. А данное квадратное уравнение имеет корни не при всех значениях параметра a. Существование корней определяется условием D ≥0. Для данного уравнения D=a ²-4a. Следовательно, найденные значения a= -1 и a=3 должны удовлетворять неравенству a²-4a≥0. Легко установить, что подходит только a= -1. Ответ: а= -1

Пример 8. При каких значениях параметра а сумма квадратов корней уравнения x²+ax+a=0 равна 3?

 

Решение: Пусть x1 и x2 – корни данного уравнения. По условию x1² + x2²=3, т.е. (x1+x2)²-2x1x2 = 3. Применяя теорему Виета, можно записать (-a)²-2a=3; a²-2a-3=0. Отсюда a=-1 или a=3.

Казалось бы, решение завершено. Однако теорема Виета «работает» лишь для тех квадратных уравнений, у которых есть корни. А данное квадратное уравнение имеет корни не при всех значениях параметра a. Существование корней определяется условием D ≥0. Для данного уравнения D=a ²-4a. Следовательно, найденные значения a= -1 и a=3 должны удовлетворять неравенству a²-4a≥0. Легко установить, что подходит только a= -1.

Ответ: а= -1

Пример 9. При каких значениях параметра а уравнение (a+6)х²+2ax+1=0 имеет единственное решение?   Решение: По условию задачи уравнение необязательно является квадратным, поэтому рассмотрим два случая:  1) а+6=0; а=-6  Если а = -6, то -12х+1=0, х = 1/12.  2) Если а ≠ -6, то квадратное уравнение имеет единственное решение, если D =0 D=4a²-4(a+6)=4(a²-a-6) a²-a-6=0 a1=3, a2=-2. Ответ: при a ∈ {-6, -2, 3}

Пример 9. При каких значениях параметра а уравнение (a+6)х²+2ax+1=0 имеет единственное решение?

 

Решение: По условию задачи уравнение необязательно является квадратным, поэтому рассмотрим два случая: 

1) а+6=0; а=-6 

Если а = -6, то -12х+1=0, х = 1/12. 

2) Если а ≠ -6, то квадратное уравнение имеет единственное решение, если D =0 D=4a²-4(a+6)=4(a²-a-6) a²-a-6=0 a1=3, a2=-2.

Ответ: при a ∈ {-6, -2, 3}

Пример 9. При каких значениях параметра а уравнение (a+6)х²+2ax+1=0 имеет единственное решение?   Решение: По условию задачи уравнение необязательно является квадратным, поэтому рассмотрим два случая:  1) а+6=0; а=-6  Если а = -6, то -12х+1=0, х = 1/12.  2) Если а ≠ -6, то квадратное уравнение имеет единственное решение, если D =0 D=4a²-4(a+6)=4(a²-a-6) a²-a-6=0 a1=3, a2=-2. Ответ: при a ∈ {-6, -2, 3} 0. Из неравенства (2a+3)²-4(a²-a+5)0 следует, что 16a-110, откуда a11/16. Наименьшее целое значение a ∈ (11/16; +∞) равно 1. Ответ: a=1. «

Пример 10. Найти наименьшее целое a, при котором уравнение x²+(2a+3)x+a²-a+5=0 имеет два различных корня.

Решение: Уравнение имеет два различных корня, если D0. Из неравенства (2a+3)²-4(a²-a+5)0 следует, что 16a-110, откуда a11/16. Наименьшее целое значение a ∈ (11/16; +∞) равно 1.

Ответ: a=1.

Источники: 1) Алгебра. Углублённый уровень. 8 класс (Мерзляк А. Г., Поляков В. М.)  2) Локоть В.В. Задачи с параметрами. Линейные и квадратные уравнения, неравенства, системы

Источники:

  • 1) Алгебра. Углублённый уровень. 8 класс (Мерзляк А. Г., Поляков В. М.) 
  • 2) Локоть В.В. Задачи с параметрами. Линейные и квадратные уравнения, неравенства, системы

multiurok.ru

Методика обучения решению квадратных уравнений с параметром

Решение задач с параметром вызывает затруднения у учащихся, так как практических заданий по данной теме в школьных учебниках недостаточно.

Цели разработки темы

  • формирование устойчивого интереса к познавательному процессу при изучении математики и оценка возможности овладения предметом с точки зрения дальнейшей перспективы;
  • обеспечение прочного и сознательного усвоения учащимися системой математических знаний, умений и навыков;
  • формирование качества мышления, характерного для математической деятельности и необходимые человеку для жизни в современном обществе;
  • выявление и развитие математических способностей учащихся.
  • Задачи разработки темы:
  • показать универсальные алгоритмы для решения квадратных уравнений с параметром;
  • научить приемам решения различного класса задач с параметром, способствовать овладению технических и интеллектуальных математических умений на уровне свободного их использования;
  • использование новых современных педагогических технологий обучения.

В математике параметр – это постоянная величина, выраженная буквой, сохраняющая свое постоянное значение лишь в условиях данной задачи (“параметр” с греческого “parametron” – отмеривающий)..

Если ставится задача для каждого значения параметра а из некоторого числового множества А решить уравнение F(х;а)= 0 относительно х, то это уравнение называют уравнением с переменной х и параметром а, а множество А – областью изменения параметра. Под областью определения уравнения F(х;а)=0 с параметром а понимаются такие системы значений х и а, при которых F(х;а) имеет смысл. Все значения параметра а, при которых F(х;а) не имеет смысла, включать в число значений параметра, при которых уравнение не имеет решений. Под областью изменения параметра (если не сделано специальных оговорок) берется множество всех действительных чисел, а задачу решения уравнения с параметром формулировать следующим образом: решить уравнение F(х;а)=0 (с переменной х и параметром а) – это значит на множестве действительных чисел решить семейство уравнений, получающихся из данного уравнения при всех действительных значениях параметра или установить, что решений нет.

В связи с тем, что выписать каждое уравнение из бесконечного семейства уравнений невозможно, но каждое уравнение семейства должно быть решено, следовательно, необходимо по некоторому целесообразному признаку разбить множество всех значений параметра на подмножества и решить затем заданное уравнение на каждом из этих подмножеств. Для разбиения множества значений параметра на подмножества, удобно пользоваться теми значениями параметра, при которых или при переходе через которые происходят качественные изменения уравнения. Такие значения параметра называются контрольными.

1. КВАДРАТНЫЕ УРАВНЕНИЯ С ПАРАМЕТРОМ

Задачи с параметрами можно разделить на два больших класса:

  • задачи, в которых необходимо при всех значениях параметра из некоторого множества решить уравнение;
  • задачи, в которых требуется найти все значения параметра, при каждом из которых решение уравнения удовлетворяют некоторым условиям.

В зависимости от типа задачи изменяется и вид ответа. В первом случае в решении и ответе должны быть рассмотрены все возможные значения параметров. Если хотя бы одно значение какого-либо параметра не исследовано, решение задачи не может быть признано полным.

Во втором случае в ответе перечисляются только те значения параметра, при которых выполнены условия задачи, а при решении подобных задач обычно решать заданное уравнение нет необходимости.

Уравнение вида Ах2 + Вх + С= 0 , где А, В, С — выражения, зависимые от параметра, х – переменная — называется квадратным уравнением с параметром.

Уравнение вида ах2+вх+с=0, где , а, в, с – действительные числа, называют квадратным уравнением. D=в2-4ас называется дискриминантом квадратного уравнения (“дискриминант” по – латыни “различитель”).

В зависимости от значения дискриминанта возможны три случая:

D > 0. Данное квадратное уравнение имеет два действительных корня

D=0. Данное уравнение имеет корень двойной кратности

D<0. Данное уравнение не имеет действительных корней.

Для уравнения ах2+2кх+с=0 со вторым коэффициентом (в=2к) четным, для нахождения корней удобно пользоваться формулами: , где D1= 2-ас.

№ 1.1. Определите все значения параметра а при которых уравнение ах2+2(а+1)х+а+3=0 имеет два неравных корня.

Решение.

Если а=0, то имеем 0·х2+2(0+1)х+0+3=0, 2х+3=0 — данное уравнение является линейным, х=-1,5 – единственный корень. Итак, а=0 не удовлетворяет условию задачи.

Если а?0, то уравнение имеет два различных корня, когда дискриминант >0.

Найдем=(а+1)2-а(а+3)=-а+1,-а+1>0, а<1. С учетом а 0 ответ: .

№ 1.2. Определите все значения параметра а, при котором уравнение 2ах2-4(а+1)х+4а+1=0 имеет один корень.

Решение.

Если а=0, то имеем 2·0·х2-4(0+1)х+4·0+1=0, -4х+1=0 - данное уравнение является линейным, х=0,25 – единственный корень. Итак, а=0 удовлетворяет условию задачи.

Если а 0, то исходное уравнение является квадратным и имеет единственный корень при =0. Найдем =(2(a+1))2-2a(4а+1) = -4a2+6a+4,4a2+6a+4=0,   а1=2, а2=-0,5.

С учетом а=0, запишем ответ: а=-0,5, а=0, а=2.

№ 1.3. При каких значениях параметра а квадратное уравнение (5а-1)х2-(5а+2)х+3а-2=0  не имеет корней?

Решение.

Если 5а-1=0,а=0,2, то имеем (5*0,2-1)х2-(5*0,2+2)х+3*0,2-2=0,

-3х-1,4=0 — данное уравнение является линейным, х = — единственный корень.

Итак, а=0,2 не удовлетворяет условию задачи.

Если а 0,2, то квадратное уравнение не имеет корней, если дискриминант квадратного уравнения D<0. Найдем D=(5а+2)2-4(5a-1)(3а-2)=-35a2+72a-4,-35a2+72a-4<0,

35a2-72a+4>0, а1=2, а2=, (а-2)(а-)>0. С учетом а 0,2 ответ:

№ 1.4. Определите все значения параметра а при которых уравнение (2а-1)х2 +ах+2а-3=0 имеет не более одного решения.

Решение.

Если 2а-1=0,а=0,5, то имеем (2·0,5-1)х2+0,5·х+2·0,5-3=0, 0,5х-2=0 — данное уравнение является линейным, х=4 - единственный корень.

Итак, а=0,5 удовлетворяет условию задачи.

Если а 0,5, то квадратное уравнение имеет не более одного решения, если дискриминант квадратного уравнения D0.

Найдем D=а2-4(2a-1)(2а-3)=-15a2+32a-12, -15a2+32a-120,

15a2-32a+12?0, а1=, а2=, (а-)(а-) 0.

С учетом а 0,5, имеем .

С учетом а=0,5, запишем ответ: .

2. НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ С ПАРАМЕТРОМ.

Квадратное уравнение ах2+вх+с=0, где а 0 называется неполным, если хотя бы один из коэффициентов в или с равен 0.

Общая схема решения неполных квадратных уравнений с параметрами.

ах2=0, где а 0, в=0, с=0. Если а 0 ,то уравнение примет вид: х2=0, х=0.

Следовательно, уравнение имеет два совпадающих корня, равных нулю.

Если а=0, то х — любое действительное число.

ах2+с=0, где а0, в=0, с0. Если а0,то уравнение примет вид: следовательно, уравнение имеет корни, то они равны по абсолютной величине, но противоположны по знаку; < 0, то , следовательно, уравнение корней не имеет. Если а=0 и с0, то уравнение действительных корней не имеет.

ах2+вх=0, где а0, в0, с=0. Если а0,то уравнение примет вид: х(а+в)=0,или Если а=0, то вх=0, х=0.

№ 2.1. При каких значениях параметра а оба корня уравнения 2х2+(3а2-|а|)х-а2-3а=0 равны нулю?

Решение.

Оба корня квадратного уравнения равны нулю, когда

№ 2.2. При каких значениях параметра а, корни уравнения 2 х2-(5а-3)х+1=0 равны по модулю, но противоположны по знаку?

Решение.

Корни квадратного уравнения равны по модулю, но противоположны по знаку, когда 5а-3=0,а=0,6, но с учетом того, что имеем уравнение 2х2+1=0, х2=-0,5, которое корней не имеет. Ответ: .

№ 2.3. При каких значениях параметра а один из двух различных корней уравнения 3х2+х+2а-3=0 равен нулю?

Решение.

Параметр должен удовлетворять условию: 2а-3=0, а=1,5. Ответ: а=1,5.

№ 2.4. При каких значениях параметра а корни уравнения 2+(а2-4а)х+а-1=0 равны по модулю, но противоположны по знаку?

Решение.

Корни квадратного уравнения равны по модулю, но противоположны по знаку, когда:

Ответ: а=0.

№ 2.5. Решить относительно х неполное квадратное уравнение х2-2а+1=а.

Решение.

х2=а+2а-1; х2=3а-1.

Если 3а-1=0, а= ,то уравнение имеет два совпадающих корня, равных нулю.

Если 3а-1<0, а<, то уравнение корней не имеет.

Если 3а-1>0. а>, то уравнение имеет два корня .

Ответ: при арешений нет; при а= х=0; при

3. ИССЛЕДОВАНИЕ И РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ С ПАРАМЕТРОМ.

№ 3.1. Исследовать и решить уравнение с параметром х2 –2(а-1)х+2а+1=0.

Решение.

Найдем дискриминант: D=(а — 1)2 -2а – 1= а2 -2а+1-2а-1= а2 — 4а.

D > 0, а2 - 4а > 0, а (а -4) > 0, а < 0 или а > 4, то уравнение имеет два действительных корня ;

D =0, а (а-4)=0, а=0, то х=а-1, х=0-1, х=-1, а=4,то х=а-1, х=4-1, х=3;

D < 0, а(а-4) < 0, 0 < а < 4, то уравнение не имеет корней.

Ответ: при а; при а=0 х=-1;

при а=4 х=3; при а корней нет.

№ 3.2. Исследовать и решить уравнение с параметром (а–1)х2 +2(а+1)х+а–2= 0.

Решение.

1) При а-1=0, а=1 имеем линейное уравнение 4х-1=0, х=– единственное решение.

2) При а 1 уравнение является квадратным, найдем дискриминант:

D1 = (а+1)2-(а–1)(2а-2)=а2+2а+1-а2 +2а+а-2=5а-1.

D1>0. 5а-1>0, а>, а 1, то уравнение имеет два корня .

D1=0. 5а-1=0, а=, то уравнение имеет два равных корня .

D1 < 0. 5а-1< 0, а<, то уравнение не имеет действительных корней.

Ответ: при а корней нет; при а = х=1,5; при а=1 х =;

при а.

№ 3.3. Исследовать и решить уравнение с параметром х2 +2х- 8–а(х–4)=0.

Решение.

х2 +2х-8–ах+4а=0; х2 +(2-а)х+4а-8=0. Уравнение является квадратным.

Найдем дискриминант: D=(2-а)2-4(4а-8)=4-4а+а2 -16а+32= а2 -20а+36.

D>0. а2 20а+36>0, (а-18)(а -2)>0, а <2 или а >18, то уравнение имеет два действительных корня .

D=0. (а-18)(а-2)=0, а=2, то ; а=18, то ;

D < 0. (а-18)(а-2)< 0, 2< а <18, то уравнение не имеет действительных корней.

Ответ: при а; при а=2 х=0; при а=18 х=8; при а корней нет.

4. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ С ПРИМЕНЕНИЕМ теоремы ВИЕТА.

Если в квадратном уравнении коэффициент при х2 равен 1, то уравнение принимает вид х2+px+q, где p и q — некоторые числа называется приведенным квадратным уравнением.

Теорема Виета: Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

х2+px+q=0, где х1 и х2 – корни квадратного уравнения, то х1 + х2=-p; х1 х2=q.

ах2+вх+с=0, где х1 и х2 – корни квадратного уравнения, то

Справедливо утверждение, обратное теореме Виета.

Теорема: Если числа p и q таковы, что их сумма равна -p, а произведение равно q. то эти числа являются корнями уравнения х2+px+q=0.

№ 4.1. При каком значении параметра а сумма обратных величин действительных корней уравнения 2х2 -2ах+а2-2=0 равна ?

Решение

Пусть х1 и х2 – корни квадратного уравнения, по условию .

По теореме Виета: Используя соотношения между корнями и условие задачи, имеем:

Найдем дискриминант квадратного уравнения:

Имеем: Ответ: при

№ 4.2. В уравнении 2-5а+3)х2 +(3а-1)х+2=0 определите а так, чтобы один из корней был вдвое больше другого.

Решение.

Пусть х1 и х2 – корни квадратного уравнения, по условию х1 =2 х2. Заметим, что кратное сравнение выполняется только для положительн

urok.1sept.ru

Уравнения с параметром

Справочный материал

Уравнение вида f(x; a) = 0 называется уравнением с переменной х и параметром а.

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х, удовлетворяющие этому уравнению.

Пример 1. ах = 0

  1. Если а = 0, то 0х = 0
                              х – любое действительное число
  2. Если а 0, то х =
                             х = 0

Пример 2. ах = а

  1. Если а = 0, то 0х = 0
                              х – любое действительное число
  2. Если а 0, то х =
                            х = 1

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а2 – 1) х = 2а2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
                          х – любое действительное число

Если а = -1, то 0х = -2
                          Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х.

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

4. + 3(х+1)

5. = –

6. =

Ответы:

  1. При а 1 х =;

при а = 1 корней нет.

  1. При а 3 х = ;

при а = 3 корней нет.

  1. При а 1, а -1, а 0 х = ;

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

  1. При а 2, а 0 х = ;

при а = 0, а = 2 решений нет.

  1. При а -3, а -2, а 0, 5 х =

при а = -3, а = 0, 5, а = -2 решений нет

  1. При а + с 0, с 0 х = ;

при а = —с, с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1    6х + 7 = 0

х = –

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1))2 – 4(а – 1)(4а + 30 = 16а2 + 16а + 4 – 4(4а2 + 3а – 4а – 3) = 16а2 + 16а + 4 – 16а2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

a =

a =

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

х = – = –

Пример 2. При каких значениях параметра а уравнение

х2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1)2 – 4(9а – 5) = 4а2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х1 + х2 = -2(а + 1)
                     х1х2 = 9а – 5

По условию х1 < 0, х2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
— 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > — 1
а > 5/9

(Рис. 1)

< a < 1, либо a > 6

Пример 3. Найдите значения а, при которых данное уравнение имеет решение.

х2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1)2 – 4(2а + 10 = 4а2 – 8а + 4 – 8а – 4 = 4а2 – 16а

4а2 – 16 0

4а(а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
                 а = 4

(Рис. 2)

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а2 – 6а + 8) х2 + (а2 – 4) х + (10 – 3аа2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х2 + ха = 0 имеет хотя бы один общий корень с уравнением 2х2 – 7х + 6 = 0?

5. При каких значениях а уравнения х2 +ах + 1 = 0 и х2 + х + а = 0 имеют хотя бы один общий корень?

Ответы:

1. При а = — 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = — 2

Показательные уравнения с параметром

Пример 1.Найти все значения а, при которых уравнение

9х – (а + 2)*3х-1/х +2а*3-2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 32/х, получим равносильное уравнение

32(х+1/х) – (а + 2)*3х+1/х + 2а = 0 (2)

Пусть 3х+1/х = у, тогда уравнение (2) примет вид у2 – (а + 2)у + 2а = 0, или

(у – 2)(уа) = 0, откуда у1 =2, у2 = а.

Если у = 2, т.е. 3х+1/х = 2 то х + 1/х = log32 , или х2хlog32 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log232 – 4 < 0.

Если у = а, т.е. 3х+1/х = а то х + 1/х = log3а, или х2 хlog3а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log232 – 4 > 0, или |log3а| > 2.

Если log3а > 2, то а > 9, а если log3а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2. При каких значениях а уравнение 2– (а – 3) 2х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х1 = -3, х2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25х – (2а + 5)*5х-1/х + 10а * 5-2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2(а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4х — (5а-3)2х +4а2 – 3а = 0 имеет единственное решение?

Ответ:

  1. 0 < а < 1/50, а > 25/2
  2. при а = 1, а = -2,2
  3. 0 < а 3/4 и а = 1

Логарифмические уравнения с параметром

Пример 1. Найти все значения а, при которых уравнение

log4x(1 + ах) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау2у + 1 = 0 (4)

Если а = 0, то – 2у + 1 = 0
2у = 1
у = 1/2
х = 1/2
х = 1/4

Не выполняется (2) условие из (3).

Пусть а 0, то ау2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.

Если Д = 0 (а = 1), то (4) имеет единственный положительный корень х = 1, удовлетворяющий условиям (3).

Пусть Д > 0 (а < 1), тогда уравнение (4) имеет два различных корня. Так как у = х 0, то в случае Д > 0 уравнение (4) имеет действительные корни разных знаков. Это условие выполняется тогда и только тогда, когда Д > 0 и 1/а < 0, т.е. при а < 0.

Пример 2. Найти все значения а, при которых уравнение

log5(x = 2-a ) – log1/5(a-1-x) = log259 имеет решение.

Решение. log5(x + 2-a) –log5(f – 1 – x) = log53

(1) х + 2 – а = 3(а – 1 – х), если

(2) а – 1 > х

Выражая х из (1) и подставляя в (2), получаем неравенство

2 – а > 1 – а (3)

Чтобы решить неравенство (3), построим графики функций у = 2 – а и у = 1 – а.

Рис. 3

Решения неравенства (3) образуют промежуток (а0; 2), где а0 < 0 и а0 – корень уравнения 2 – а = 1 – а.

Тогда 2 – а = (1– а)2

а2 – а – 1 = 0

а0 =

Ответ: < a 2

Дидактический материал

  1. Найдите, при каких значениях а уравнение log 3 (9x + 9a3)= x имеет ровно два корня.
  2. Найдите, при каких значениях а уравнение log 2 (4xa) = x имеет единственный корень.
  3. При каких значениях а уравнение х – log 3 (2а – 9х) = 0 не имеет корней.

 

Ответы:

  1. при а < 1/3 36
  2. при а = -1/4
  3. при а < -1/8

Литература

Гусев В.А., Мордкович А.Г. Математика. Справочные материалы. – М.: Просвещение, 1990.
  • Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990
  • Крамор В.С. Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И. Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.
  • urok.1sept.ru

    Квадратные уравнения с параметром. Видеоурок. Алгебра 8 Класс

    На данном уроке будет рассмотрена тема: «Квадратные уравнения с параметром». Вы рассмотрите общую постановку решения задач с параметром и решите конкретную задачу с параметром двумя способами.

    Тема: Неравенства

    Урок: Квадратные уравнения с параметром

    Решить задачу с параметром – значит перебрать все значения параметра и для каждого указать ответ. Для квадратных уравнений наличие корней зависит от дискриминанта

    Пример №1 – решить уравнение с параметром

    Решить уравнение:

    I-ый способ.

    Считаем, что  – величина постоянная, и находим корни уравнения:

    . Корни существуют, если . Решаем это линейное неравенство:  При этих значениях параметра, то есть когда дискриминант положителен или равен нулю, корни есть. Причем, когда дискриминант равен нулю, уравнение имеет единственный корень. Когда дискриминант отрицателен – корней нет.

    Ответ: 1. при любом  решений нет; 2. при  уравнение имеет единственное решение: ; 3. при любом значении  уравнение имеет два различных корня:

    Частные случаи:

    Найти значения параметра а, при котором уравнение имеет одно решение.

    Ответ: при  корни есть, уравнение имеет единственное решение: .

    Найти значения параметра а, при котором уравнение не имеет решения.

    Ответ: при любом  решений нет.

    Решим пример №1 графически (II способ):

     или

    Алгоритм:

    Рис. 1. График квадратной функции

    1. Построим график функции, стоящей в левой части  (Рис. 1).

    2. Корнями этой функции является

    3. График этой функции – парабола, ветви которой направлены вверх. Вершина параболы находится по формуле: ; . Подставляем  . Вершина параболы ().

    1. Рассечь построенный график семейством прямых:  (Рис. 2).

    Рис. 2. Рассечение графика функции семейством прямых

    2. Отметить точки пересечения и выписать ответ. По графику очевиден ответ:

    а) при любом  решений нет

    б) при  корни есть, уравнение имеет единственное решение:

    в) при любом значении  уравнение имеет два различных корня:.

    Графический метод позволяет решать некоторые частные задачи, например: при каких значениях параметра уравнение имеет два положительных корня. Из графика очевиден ответ: при  уравнение имеет два различных положительных корня.

    или: при каких значениях параметра уравнение имеет два различных корня разного знака. Из графика очевидно: при  уравнение имеет два корня разного знака.

    Аналогичные частные задачи можно решать и аналитически, для этого следует воспользоваться теоремой Виета.

    Подведение итога урока

    На данном уроке была рассмотрена тема: «Квадратные уравнения с параметром». Вы рассмотрели общую постановку решения задач с параметром и решили конкретную задачу с параметром двумя способами.

     

    Список литературы

    1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.
    2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
    3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

     

    Дополнительные рекомендованные ссылки на ресурсы сети Интернет

    1. ЕГЭ по математике (Источник).
    2. Интернет-портал Frezzii.narod.ru (Источник).
    3. Фестиваль педагогических идей «Открытый урок» (Источник).
    4. InternetUrok.ru (Источник).

     

    Домашнее задание

    1. Решить уравнение 
    2. Что значит: решить задачу с параметром?
    3. №560, 559. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

    interneturok.ru

    Квадратное уравнение с параметрами

    План конспект урока

    На тему:

    «Квадратное уравнение с параметрами»

    МБОУ «Русаковская СШ»

    Белогорского района

    Республики Крым

    Учитель математики

    Бекиров Алексей Рустамович

    Цель: совместить теоритический материал с решением примеров.

    Развивать умения выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки. Развивать умения считаться с разными мнениями и стремиться к координации различных позиций в сотрудничестве. Проявлять способность к эмоциональному восприятию математических объектов, задач, решений и рассуждений.

    Ход урока

    1.Организационный момент – 2 мин.

    2. Актуализация опорных знаний — 10 мин.

    3. Закрепление материала — 25 мин.

    4. Подведение итогов урока — 3 мин.

    5. Выставление оценок — 3 мин.

    6. Организационное окончание урока – 2 мин.

    Актуализация опорных знаний

    Что такое параметр?

    Параметр (от греческого parametron-отмеривающий). В математике величина, числовое значение которой позволяет выделить определенный элемент. БСЭС с. 978

    1. Формула решения квадратных уравнений

    При :

    –при b четном;

    — уравнение не имеет корней;

    — уравнение имеет один корень ;

    — уравнение имеет два корня ;

    1. Графики квадратичной функций

    hello_html_2bc7c7cd.jpg

    Практическая часть

    Пример 1. Решить уравнение относительно а.

    Решение:

    1. уравнение не имеет корней D<0

    <0

    ()

    По обратной теореме Виета.

    hello_html_m39c5729b.png

    1. уравнение имеет один корень D = 0

    При:

    1. уравнение имеет два корня D > 0

    Ответ: -нет корней;

    — имеет один корень;

    – имеет два корня;

    Пример 2. Решить уравнение относительно а.

    Решение:

    1. а=0 уравнение примет вид имеет один корень;

    Уравнение не имеет корней D<0; 4а+9<0; a<-2,25;

    Уравнение имеет один корень D=0; а=-2,25;

    Уравнение имеет два корня D>0; а> -2,25

    Ответ: корней нет;

    один корень;

    два корня;

    Примеры из учебника «Алгебра 9 класс» Ю. Н. Макарычев Н. Г. Миндюк и других. Номера 450 на стр. 121, 1045 на стр. 242.

    Номер 450

    При каких значениях k парабола и прямая имеют только одну общую точку.

    Решение:

    Имеем систему уравнений

    При помощи подстановки вставляя в место в первом уравнений. Правую часть второго уравнения имеем

    . То есть уравнение с параметром имеет один корень при ;

    Найдем точки касания графиков функций ;

    ; x=1;

    Координаты точек касания

    Графически это выглядит так.

    hello_html_m3f6ca41b.png

    Ответ -2; 2.

    Номер 1045

    При каких значениях m квадратный трёхчлен +(m-1)x+m-1 принимает только отрицательные значения.

    Решение:

    Из таблицы графиков квадратичной функции, это будет при этих условиях

    hello_html_m4334e2d2.png

    Это происходит если решить систему неравенств.

    ;

    Методом интервалов решим систему неравенств. m=1; m= ; m=0.

    hello_html_238a1fd3.png

    Ответ: .

    Подведение итогов урока

    В ходе урока мы научились связывать теорию с практической деятельностью.

    infourok.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *