Химическая формула полисахаридов – Полисахариды | Химия онлайн

Содержание

Полисахариды это что такое, примеры и химические свойства полисахаридов

Полисахариды – это высокомолекулярные углеводы, полимеры моносахаридов, или гликаны. Они вырабатываются как растениями, так и животными, могут быть линейными и разветвленными. Условно делятся на 2 категории: полиозы и олигосахариды. Часть гликана вырабатывается в человеческом организме преимущественно в коже для замедления возрастного старения этого органа. Поэтому он активно используется в производстве косметики.

Содержание статьи

Основные функции полисахаридов в организме человека

ФункцияПолисахариды (примеры)Особенности
ЭНЕРГЕТИЧЕСКАЯКрахмал и гликогенНакопление углеводов, обеспечение организма энергией.
ЗАПАСАЮЩАЯГликоген, крахмалОткладывание углеводов про запас, находится преимущественно в жировой ткани, формируется в клетках мышц, печени и желудка, отчасти в головном мозге.
КОФАКТОРНАЯГепарин и синтетические аналогиЯвляются кофакторами ферментативных соединений, отвечают за снижение свертываемости крови.
ОПОРНАЯЦеллюлоза, хондроитинсульфатЦеллюлоза является стеблеобразующей тканью растений, а хондроитинсульфаты выполняют ту же функцию в костной ткани живых организмов.
ГИДРООСМОТИЧЕСКАЯКислые гетерополисахаридыСпособствуют сохранению влаги и ионов с положительным зарядом в клетках.
СТРУКТУРНАЯКислые гетерополисахаридыВыполняют роль цементирующего состава, дополняют собой межклеточное вещество.
ЗАЩИТНАЯКислые гетерополисахариды (в том числе мукополисахариды)Благодаря образованию особого слоя вокруг клеток защищают ткани от различных механических воздействий, внешних вибраций, трения.

Химические свойства полисахаридов

Полисахариды считают полигликозидами и полиацеталями.

Основные химические свойства полисахаридов:

  • Гликозидная связь позволяет моносахаридам образовывать молекулы с другими элементами цепи.
  • Процесс гидролиза запускается в кислотной среде при повышенной температуре. По его завершении формируются изначальные моносахариды или их производные. При неполном процессе формируются олигосахариды и дисахариды.
  • Обновляющие свойства на низком уровне, стойкость к щелочному воздействию.
  • Используются для добычи сложных эфиров.

Перечисленные свойства позволяют использовать полисахариды в различных видах промышленности, при получении новой продукции.

Обратите внимание: Вещества имеют полностью природное возникновение, поэтому получили довольно широкое распространение. Они являются одним из основных участников процессов обмена в организмах.

Физические свойства

В зависимости от разновидности веществ их физические свойства могут отличаться. Большая часть имеет белый цвет, порошкообразную консистенцию, молекулярный вес начинается от 2 млн.

ВидеоВидео

Строение преобладающего большинства – это разветвленные молекулы. Именно эти вещества при контакте с водой увеличиваются в объемах, но не растворяются. Другая группа – линейные молекулы, например амилоза, которые легко растворяются в воде.

Основная классификация полисахаридов

Полисахариды могут разделяться на несколько категорий в зависимости от числа и строения моносахаридов. Их структуру могут составлять минимум 2, максимум 20 моносахаридов.

Структурные единицы полиозов:

Группа моносахаровМоносахара
ШестиатомныеГлюкоза, Галактоза, Фруктоза
ПятиатомныеАрабиноза, Ксилоза
Уроновые кислотыГалактуроновая, Глюкуроновая, Маннуроновая

Есть еще 2 категории: гомополисахариды, которые состоят из одинаковых углеводных компонентов, гетерополисахариды, в состав которых входят разные звенья углеводов.

Гомополисахариды:

  • крахмал,
  • гликоген,
  • клетчатка,
  • хитин,
  • декстран

Гетерополисахариды:

  • хондроитин-сульфаты,
  • гепарин,
  • инулин,
  • пектины,
  • камеди,
  • слизи,
  • гиалуроновая кислота

Еще одна классификация по форме и виду цепи: разветвленная и линейная.

Существующие виды полисахаридов

Понять, что такое полисахариды, какие функции они выполняют в жизни, можно на примере простых и доступных многим веществ.

ВидеоВидео

Крахмал

Это вещество состоит на 80 % из амилопектина и оставшихся 20 % из амилозы. Добывают его из клубней, зерен, семян, корней. Крахмал – это вещество по типу порошка белого цвета, мягкого и приятного на ощупь, характеризующееся наличием поскрипывания при растирании в руках. При ближайшем рассмотрении можно заметить его зерноподобную структуру, которая при растворении в холодной воде оседает в виде осадков. В теплой воде при монотонном размешивании зерна крахмала увеличиваются в объемах, превращаются в киселеобразный состав.

Это интересно! Хороший гидролиз крахмала обеспечивается при добавлении в h3SO4 и нагревании смеси. В этом случае появляется α-D-глюкоза.

Получают крахмал из картофеля, зерен пшеницы. Строение молекул крахмала спиралеобразное, состоящее из шести моносахаридов. Крахмал, полученный из картофеля, является пищевым продуктом, который нашел широкое применение в кулинарии.

Видео
Видео

Гликоген

Гликоген – это тот же крахмал, только животного происхождения. Однако у этого аналога структура молекул более разветвленная, имеющая в цепи до 12 звеньев. В биохимии и биологии гликоген именуется «резервным углеводом». Его локализация в клетках живых организмов образует «энергетическое депо». Он добывается из животных клеток при помощи горячего NaOH, затем выпадает в осадок при соединении со спиртом. Гидролиз осуществляется в растворе с серной кислотой.

ВидеоВидео

Клетчатка

Клетчатка по своей сути является целлюлозой растительного происхождения высокой прочности. Наибольшее процентное содержание клетчатки (50–70 %) содержится в сене, древесине, кукурузе.

Это интересно! Волокнистость целлюлозы обеспечивается за счет водородных связей молекул в цепочках, соединяемых в пучок. Они же дают высокую прочность веществу. Целлюлоза является инертным веществом, нерастворимым в нейтральных средах и не взаимодействующим с ферментами пищеварительного тракта.

Некоторым животным, в частности жвачным, целлюлоза необходима как балластный компонент корма. Может участвовать в процессе гидролиза и вступать в реакции для появления сложных эфиров. При взаимодействии с азотной кислотой превращается в сырье, пригодное для добычи целлулоида, разновидностей пороха и твердого топлива для ракет. По большей части древесная целлюлоза используется для производства бумаги.

ВидеоВидео

Гепарин

Гепарин внешне напоминает аморфное вещество порошкового типа белого окраса. Гепарин является антикоагулянтом кислым гликозаминогликаном, содержащим серу. Структура молекул гепарина позволяет ему быть хорошо растворимым в воде веществом, устойчивым к нагреваниям. Выполняет функцию регулятора свертываемости крови, стабилизации уровня холестерина и давления.

В медицине гепарин применяется:

  • в качестве профилактического и терапевтического препарата для людей, склонных к тромбоэмболии;
  • при проведении операций на сердце и сосудах;
  • в лабораториях при сборе анализов крови;
  • при переливании крови в качестве натриевой соли.
ВидеоВидео

Пектины

Пектины – это клейкие компоненты, которые используются в качестве кондитерских добавок в производстве продукции. Еще часто их называют желирующими веществами. Обычно используется в виде порошковой формы, гораздо реже в жидком состоянии. Общая формула полисахаридов пектинов, промышленное обозначение Е440. Добывают пектины из фруктового, свекольного или другого жмыха. Они являются прекрасной добавкой для консервирования, способной увеличить срок хранения закупорки. В организм человека пектины попадают вместе с овощами, фруктами, выполняют функцию нормализации обмена веществ и гемодинамики, омоложения, выравнивания бактериального баланса.

Обратите внимание: Регулярное употребление пектиновых препаратов дает 2 положительных эффекта для человеческого организма – это его оздоровление и сжигание жира. При попадании в организм 25 г пектина из яблок сжигается около 300 г жира ежедневно.

Пектины являются составляющим компонентом в косметологии, используются как загуститель в различных кремах, разглаживающих морщины, средствах, тонизирующих кожу, отбеливающих и защищающих от ультрафиолета.

ВидеоВидео

Хитин

Хитин – это компонент, без которого не продержится скелет ракообразных и насекомых. Также его можно найти в клетках пивных дрожжей и различных грибов. Хитин способен в несколько раз увеличить запах продукта и вкус готового блюда, внешне его преобразовать и улучшить. В кулинарии также используется как консервант, входит в состав пищевых добавок.

Хитин используется в медицине благодаря многообразию терапевтических свойств, таких как:

  • предотвращение распространения опухолевых клеток;
  • защитная функция клеток и тканей от радиации;
  • укрепление и повышение защитных сил организма;
  • профилактическая мера инсультов, инфарктов;
  • увеличение количества бифидобактерий;
  • запуск процессов обновления тканей;
  • усиление действия препаратов, используемых для снижения свертываемости и разжижения крови.

pohudet.guru

Полисахариды Википедия

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (CH2O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(H2O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6H10O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

ru-wiki.ru

Полисахариды — это… Что такое Полисахариды?

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Классификация полисахаридов

К полисахаридам относятся вещества, построенные из большого числа остатков моносахаридов или их производных. Если полисахарид содержит остатки моносахарида одного вида, его называют гомополисахаридом. В том случае, когда полисахарид составлен из моносахаридов двух видов или более, регулярно или нерегулярно чередующихся в молекуле, его относят к гетерополисахаридам.

К полисахаридам относятся, в частности:

  • декстрин — полисахарид, продукт гидролиза крахмала;
  • крахмал — основной полисахарид, откладываемый как энергетический запас у растительных организмов;
  • гликоген — полисахарид, откладываемый как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений;
  • целлюлоза — основной структурный полисахарид клеточных стенок растений;
  • хитин — основной структурный полисахарид экзоскелета насекомых и членистоногих, а также клеточных стенок грибов;
  • галактоманнаны — запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева;
  • инулин — резервный углерод сложноцветных;
  • глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит;
  • амилоид — применяется при производстве пергаментной бумаги;
  • многоглюкоза — многоконечный продукт гидролиза большинства многосахаридов.

Функциональные свойства

Структурные полисахариды придают клеточным стенкам прочность.

Водорастворимые полисахариды не дают клеткам высохнуть.

Резервные полисахариды по мере необходимости расщепляются на моносахариды и используются организмом.

Литература

  • Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M Essentials of glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9
  • Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J Essentials of glycobiology. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9
 Просмотр этого шаблона Углеводы
Общие:Альдозы · Кетозы · Фуранозы · Пиранозы
ГеометрияАномеры · Мутаротация · Проекция Хоуорса
Моносахариды
ДиозыАльдодиоза (Гликольальдегид)
ТриозыКетотриоза (Дигидроксиацетон) · Альдотриоза (Глицеральдегид)
ТетрозыКетотетроза (Эритрулоза) · Альтотетрозы (Эритроза, Треоза)
ПентозыКетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза)

Дезоксисахариды (Дезоксирибоза)
ГексозаКетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
ГептозыКетогептозы (Седогептулоза, Манногептулоза)
>7Октозы · Нанозы (Нейраминовая кислота)
Мультисахариды
Производные углеводов

dic.academic.ru

Полисахариды — Википедия

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (CH2O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(H2O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6H10O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — это структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

Функции

ФункцияХарактеристика
ЭнергетическаяОсновной источник энергии. Расщепляются до моносахаридов с последующим окислением до СО2 и Н2О. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.
СтруктурнаяВходят в состав оболочек клеток и некоторых органелл. У растений полисахариды выполняют опорную функцию.
ЗапасающаяНакапливаются в тканях растений (крахмал) и животных (гликоген). Используются при возникновении потребности в энергии.
ЗащитнаяСекреты, выделяющиеся разными железами, обогащены углеводами, например глюкопротеидами, защищающими стенки полых органов (пищевод, желудок, бронхи) от механических повреждений, проникновения вредных бактерий и вирусов.

Свойства

Пищевые полисахариды — основные источники энергии. Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усвояемы, они важны для питания. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокон — это изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.[10]

Пищевые волокна считаются важными составляющими питания, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11][12]

Резервные полисахариды

Крахмал

Крахмалы — это полимеры глюкозы, в которых остатки глюкопиранозы образуют альфа-соединения. Они сделаны из смеси амилозы (15–20 %) и амилопектина (80–85 %). Амилоза состоит из линейной цепочки нескольких сотен глюкозных молекул, а амилопектин — это разветвленная молекула, сделанная из нескольких тысяч глюкозных остатков (каждая цепочка из 24–30 глюкозных остатков — это одна единица амилопектина). Крахмалы нерастворимы в воде. Они могут перевариться при разрыве альфа-соединений (гликозидные соединения). И у животных, и людей есть амилазы, поэтому они могут переварить крахмал. Картофель, рис, мука и кукуруза — главные источники крахмала в человеческом питании. Растения запасают глюкозу в виде крахмалов.

Гликоген

Гликоген служит вторым по значению долговременным энергетическим запасом в клетках животных и грибов, который откладывается в виде энергии в жировой ткани. Гликоген в первую очередь образовывается в печени и мышцах, но также может вырабатываться гликогеногенезом в головном мозге и желудке.[13]

Гликоген — это аналог крахмала, глюкозный полимер в растениях, иногда его называют «животный крахмал»,[14] имеет схожую структуру с амилопектином, но больше разветвлен и компактен, чем крахмал. Гликоген — это полимер, связанный гликозидными связями α(1→4) (в точках разветвления — α(1→6)). Гликоген находится в форме гранул в цитозоли/цитоплазме многих клеток и играет важную роль в глюкозном цикле. Гликоген формирует запас энергии, которая быстро пускается в обращение при необходимости в глюкозе, но он менее плотный и быстрее доступен в качестве энергии, чем триглицериды (липиды).

В гепатоцитах вскоре после еды гликоген может составлять до 8 процентов массы (у взрослых — 100—120 г).[15] Только гликоген, запасенный в печени, может быть доступен для других органов. В мышцах гликоген составляет 1-2 % массы. Количество гликогена, отложенного в теле — в особенности в мышцах, печени и эритроцитах[16][17][18] — зависит от физической активности, основного обмена и пищевых привычек, таких как периодическое голодание. Небольшое количество гликогена находится в почках, и ещё меньше в клетках глии в головном мозге и лейкоцитах. В матке также запасается гликоген во время беременности, чтобы рос эмбрион.[15]

Гликоген состоит из разветвленной цепочки глюкозных остатков. Он находится в печени и мышцах.

  • Это энергетический запас для животных.
  • Это основная форма углевода, отложенного в теле животного.
  • Он нерастворим в воде. Йодом окрашивается в красный цвет.
  • Он превращается в глюкозу в процессе гидролиза.
  • Схема гликогена в двумерном сечении. В сердцевине находится белок гликогенин, окруженный ответвлениями глюкозных остатков. Во всей глобулярной грануле может содержаться примерно 30 000 глюкозных остатков.[19]

Структурные полисахариды

Арабиноксиланы

Арабиноксиланы находятся и в главных, и во второстепенных стенках клеток растений, и они являются сополимерами двух пентозных сахаров: арабиноза и ксилоза.

Целлюлоза

Строительный материал растений формируется в первую очередь из целлюлозы. Дерево содержит, кроме целлюлозы, много лигнина, а бумага и хлопок — это почти чистая целлюлоза. Целлюлоза — это полимер, сделанный из повторяющихся глюкозных остатков, соединенных вместе бета-связями. У людей и многих животных нет энзимов разорвать бета-связи, поэтому они не переваривают целлюлозу. Определенные животные, такие как термиты, могут переварить целлюлозу, потому что в их пищеварительной системе присутствуют энзимы, способные переварить её. Целлюлоза нерастворима в воде. Не меняет цвет при смешивании с йодом. При гидролизе переходит в глюкозу. Это самый распространенный углевод в мире.

Хитин

Хитин — один из самых часто встречающихся натуральных полимеров. Он является строительным компонентом многих животных, к примеру экзоскелетов. Он разлагается микроорганизмами в течение долгого времени в окружающей среде. Его распад могут катализировать ферменты под названием хитиназы, которые секретируют такие микроорганизмы как бактерии и грибы, и производят некоторые растения. У некоторых из этих микроорганизмов есть рецепторы, которые расщепляют хитин до простого сахара. При нахождении хитина они начинают выделять ферменты, расщепляющие его до гликозидных связей, чтобы получить простые сахара и аммиак.

Химически хитин очень близок хитозану (более водорастворимое производное хитина). Он также очень похож на целлюлозу: это тоже длинная неразветвленная цепочка глюкозных остатков, но с добавочными группами. Оба материала придают организмам прочность.

Пектины

Пектины — это совокупность полисахаридов, которые состоят из а-1,4-связей между остатками D-галактопиранозилуроновой кислоты. Они есть во многих важнейших клеточных стенках и в недревесных частях растений.

Кислотные полисахариды

Кислотные полисахариды — это полисахариды, содержащие карбоксильные группы, фосфатные группы и/или группы серных сложных эфиров.

Бактериальные капсульные полисахариды

Патогенные бактерии обычно вырабатывают вязкий, слизистый слой полисахаридов. Эта «капсула» скрывает антигеновые белки на поверхности бактерии, которая иначе вызвала бы иммунный ответ и таким образом привела к разрушению бактерии. Капсульные полисахариды водорастворимые, зачастую кислотные, и у них есть молекулярная масса на уровне 100—2000 kDa. Они линейны и состоят из постоянно повторяющихся субъединиц от одного до шести моносахаридов. Существует огромное структурное многообразие; около двух сотен разных полисахаридов производится только одной кишечной палочкой. Смесь капсульных полисахаридов, либо конъюгируется, либо естественным путем используется как вакцина.

Бактерии и многие другие микробы, включая грибы и водоросли, часто секретируют полисахариды, чтобы прилипнуть к поверхностям для предотвращения пересыхания. Люди научились превращать некоторые такие полисахариды в полезные продукты, включая ксантановую камедь, декстран, гуаровая камедь, велановую камедь, дьютановую камедь и пуллулан.

Большинство из этих полисахаридов выделяют полезные вязкоупругие свойства, когда растворяются в воде на очень низком уровне.[20] Это позволяет использовать различные жидкости в ежедневной жизни, к примеру, в таких продуктах как лосьоны, очищающие средства и краски, вязкие в стабильном состоянии, но становятся намного более жидкие при малейшем движении и используются для размешивания или взбалтывания, чтобы наливать, вытирать или расчесывать. Это свойство называется псевдопластичностью; изучение таких материалов называется реология.

У водного раствора таких полисахаридов есть интересное свойство: если придать ему круговое движение, раствор сначала продолжает кружить по инерции, замедляя движение благодаря вязкости, а потом меняет направление, после чего останавливается. Этот разворот происходит благодаря упругости цепочек полисахаридов, которые после растяжения стремятся возвратиться в расслабленное состояние.

Мембранные полисахариды выполняют другие роли в бактериальной экологии и физиологии. Они служат барьером между клеточной стенкой и окружающим миром, посредником во взаимодействии хозяин-паразит, и образуют строительные компоненты биопленки. Эти полисахариды синтезируются из нуклеотидно-активированных предшественников (их называют нуклеотидные сахара) и, во многих случаях, все ферменты, необходимые для биосинтеза, собрания и транспортировки целого полимера закодированые генами, организованны в специальных группах с геномом организма. Липополисахарид — это один из самых важных мембранных полисахаридов, так как он играет ключевую структурную роль для сохранения целостности клетки, а также является важнейшим посредником во взаимодействии между хозяином и паразитом.

Недавно были найдены энзимы, которые образуют A-группу (гомополимерные) и B-группу (гетерополимерные) O-антигенов и определены их метаболические пути.[21] Экзополисахаридный альгинат — это линейный полисахарид, связанный β-1,4-остатками D-маннуроновой и L-гулуроновой кислот, и ответственный за мукоидный фенотип последней стадии муковисцедоза. Локусы Pel и psl — две недавно обнаруженные генетические группы, которые также закодированы экзополисахаридами, и как выяснилось, являются очень важным составляющим биопленки. Рамнолипиды — это биологические поверхностно-активные вещества, производство которых строго регулируется на транскрипционном уровне, но роль, которую они играют во время болезни, пока не изучена. Протеиновое гликозилирование, в частности пилин и флагеллин, стали объектом исследования нескольких групп начиная где-то с 2007 г., и как оказалось, они очень важны для адгезии и инвазии во время бактериальной инфекции.[22]

Примечания

  1. Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9.
  2. Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9.
  3. ↑ IUPAC Gold Book internet edition: «homopolysaccharide (homoglycan)».
  4. ↑ IUPAC Gold Book internet edition: «heteropolysaccharide (heteroglycan)».
  5. ↑ Matthews, C. E.; K. E. Van Holde; K. G. Ahern (1999) Biochemistry. 3rd edition. Benjamin Cummings. ISBN 0-8053-3066-6
  6. ↑ N.A.Campbell (1996) Biology (4th edition). Benjamin Cummings NY. p.23 ISBN 0-8053-1957-3
  7. 1 2 Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005), Chapter 7: Dietary, Functional and Total fiber. (недоступная ссылка — история). US Department of Agriculture, National Agricultural Library and National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Архивировано 27 октября 2011 года.
  8. 1 2 Eastwood M, Kritchevsky D (2005). «Dietary fiber: how did we get where we are?». Annu Rev Nutr 25: 1–8. DOI:10.1146/annurev.nutr.25.121304.131658. PMID 16011456.
  9. Anderson JW (2009). «Health benefits of dietary fiber». Nutr Rev 67 (4): 188–205. DOI:10.1111/j.1753-4887.2009.00189.x. PMID 19335713.
  10. Weickert MO, Pfeiffer AF (2008). «Metabolic effects of dietary fiberand any other substance that consume and prevention of diabetes». J Nutr 138 (3): 439–42. PMID 18287346.
  11. ↑ Dietary Benefits of Fucoidan from Sulfated Polysaccharides.
  12. Jones PJ, Varady KA (2008). «Are functional foods redefining nutritional requirements?» (PDF). Appl Physiol Nutr Metab 33 (1): 118–23. DOI:10.1139/H07-134. PMID 18347661.
  13. ↑ Anatomy and Physiology. Saladin, Kenneth S. McGraw-Hill, 2007.
  14. ↑ Animal starch. Merriam Webster. Проверено 11 мая 2014.
  15. 1 2 Campbell, Neil A. Biology: Exploring Life. — Boston, Massachusetts : Pearson Prentice Hall, 2006. — ISBN 0-13-250882-6.
  16. Moses SW, Bashan N, Gutman A (December 1972). «Glycogen metabolism in the normal red blood cell». Blood 40 (6): 836–43. PMID 5083874.
  17. ↑ http://jeb.biologists.org/cgi/reprint/129/1/141.pdf
  18. Miwa I, Suzuki S (November 2002). «An improved quantitative assay of glycogen in erythrocytes». Annals of Clinical Biochemistry 39 (Pt 6): 612–3. DOI:10.1258/000456302760413432. PMID 12564847.
  19. ↑ Page 12 in: Exercise physiology: energy, nutrition, and human performance, By William D. McArdle, Frank I. Katch, Victor L. Katch, Edition: 6, illustrated, Published by Lippincott Williams & Wilkins, 2006, ISBN 0-7817-4990-5, ISBN 978-0-7817-4990-9, 1068 pages
  20. ↑ Viscosity of Welan Gum vs. Concentration in Water. Архивированная копия (недоступная ссылка — история). Проверено 2 октября 2009. Архивировано 18 июля 2011 года.
  21. Guo H, Yi W, Song JK, Wang PG (2008). «Current understanding on biosynthesis of microbial polysaccharides». Curr Top Med Chem 8 (2): 141–51. DOI:10.2174/156802608783378873. PMID 18289083.
  22. Cornelis P (editor). Pseudomonas: Genomics and Molecular Biology. — 1st. — Caister Academic Press, 2008. — ISBN [1].

См. также

Общие:
Геометрия
Моносахариды
Диозы
Триозы
Тетрозы
Пентозы
ГексозаКетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы
>7
Мультисахариды
Производные углеводов

wikipedia.green

Полисахариды что это такое — общая формула, физические и химические свойства

Полисахариды – это полимерные углеводы, молекулы которых построены из моносахаридных остатков, соединенных гликозидными связями. Это отдельная группа сложных высокомолекулярных углеводов, которые состоят из множества моносахаридов. Основными представителями данного класса являются два компонента – крахмал и целлюлоза. Данные вещества встречаются в природе, они входят в состав растений, овощей, фруктов, также их получают химическим путем в результате проведения многочисленных опытов и исследований. Они используются в разных областях промышленности при производстве разных изделий, вещей, одежды, продуктов и многого другого. Но все же стоит рассмотреть полную характеристику, химическое строение и другие важные особенности.

Содержание статьи

Химические свойства

Первым делом стоит рассмотреть химические свойства полисахаридов. Данные компоненты относятся к сложным высокомолекулярным углеводам, они являются полигликозидами, или, другими словами, полиацеталями. Моносахариды связываются в молекулу при помощи гликозидных связей с рядом стоящими структурными элементами цепочки. В кислотной среде под влиянием высокотемпературного режима происходит процесс гидролиза. При полном процессе образуются исходные моносахариды (возможно, их производные). При неполном – олигосахариды, включая дисахариды.

Восстановительные свойства у данного класса углеводов достаточно слабые. Они устойчивы к воздействию щелочей. Вещества обладают уникальной способностью, которую применяют для получения сложных эфиров. Среди основных представителей класса полисахаридов можно выделить крахмал, целлюлозу (клетчатку), гликоген. Общая формула полисахаридов, которая применяется для обозначения данных компонентов – (С6Н10О5)n.

 

Полисахариды являются распространенной группой веществ, которые имеют природное происхождение. Вырабатываются они растениями и в тканях человека, животных. Это указывает на их активное участие в обменных процессах.

Физические свойства

Полисахариды имеют важные физические свойства, которые стоит внимательно изучить. Большинство компонентов, которые относятся к этому классу, имеют форму порошка, окраска у них белая. Они обладают огромной молекулярной массой, которая может составлять от двух и более миллионов.

ВидеоВидео

Крахмал и целлюлоза имеют вид разветвленных молекул. Они набухают, но не способны растворяться в холодной воде. В отличие от них амилозы (молекулы линейного вида) способны легко растворяться в нейтральной водной среде.

Видео

Функции в организме (таблица)

Что такое полисахариды мы рассмотрели, но теперь стоит выяснить, какое значение углеводы имеют для организма человека. Ниже имеется таблица с основными функциями данных элементов.

Основные функцииПримеры полисахаридовОсновные качества
ЭнергетическиеКрахмал и гликогенГлавное назначение данных компонентов состоит в накоплении углеводов, они насыщают организм глюкозой (источником энергии)
ЗапасающиеГликоген, крахмалВещества представляют важное значение для организма, благодаря им создаются длительные энергетические запасы, которые накапливаются в структуре жировых тканей. Формирование происходит в клетках мышц и в печени (частично в головном мозге и желудке)
КофакторныеГепарин и синтетические аналогиУглеводы выполняют функции кофакторов ферментативных соединений в организме. Понижают свертываемость крови
ОпорныеЦеллюлоза, хондроитинсульфатКлетчатка, или целлюлоза, является основой стеблевых образований, а в костных тканях животных содержатся хондроитинсульфаты
ГидроосмотическиеКислые гетерополисахариды (гиалуроновая кислота)Они сдерживают в клеточных структурах воду и положительно заряженные ионы, предотвращают накопление молекул жидкости в области межклеточного пространства
СтруктурныеКислые гетерополисахариды (гиалуроновая кислота)Имеются в составе межклеточного вещества, обладают цементирующими качествами
ЗащитныеКислые гетерополисахариды, (в том числе мукополисахариды)Они формируют «смазочный» слой на поверхности клеточных структур. Образуются на поверхности органов пищеварения, носовой полости, бронхов, содержатся в суставной жидкости. Защищают ткани от повреждения во время трения, сжатия или внешней вибрации

Классификация по числу и строению моносахаридных остатков

В структуре полиозов от двух до двадцати моносахаридов в двух разных формах – пиранозной или фуранозной.

ВидеоВидео

Ниже имеется таблица со структурными единицами полиозов.

Группа моносахаровМоносахара
ШестиатомныеГлюкоза
Галактоза
ПятиатомныеФруктоза
Арабиноза
Ксилоза
Уроновые кислотыГалактуроновая
Глюкуроновая
Маннуроновая

Различаются гомогликаны (они имеют другое название – гомополисахариды), они имеют в составе цепочки идентичные углеводные составляющие. И, соответственно, если звенья углеводов разные, то элемент получает название гетерополисахарида.

Название группыСоставляющие
Гомополисахариды (или гомополимеры)Крахмал
Гликоген
Клетчатка
Хитин
Декстран
Гетерополисахариды (или гетерополимеры)Хондроитин-сульфаты
Гепарин
Инулин
Пектины
Камеди
Слизи
Гиалуроновая кислота

Основные представители полисахаридов

Существуют разнообразные вещества, которые относятся к группе полисахаридов. Многие из них присутствуют в природе (в растениях, фруктах, овощах, плодах), имеются в организме человека, также их получают при проведении различных химических опытов.

Крахмал

В составе этого компонента присутствует примерно 20% амилозы и 80% амилопектина. Он относится к основному продукту жизнедеятельности организмов растительного происхождения. Наибольшее количество данного вещества наблюдается в составе зерен злаков, корней/клубней или семян.

ВидеоВидео

Элемент имеет порошкообразный вид с белой окраской. Он имеет мягкую структуру, во время растирания наблюдается характерное поскрипывание. При исследовании крахмала под микроскопом прослеживается зернообразная структура. При помещении в холодную жидкость образуется осадок. При нагревании воды и равномерном помешивании зерна набухают, затем образуется масса с киселеобразной консистенцией.

Основное качество элемента состоит в том, что он способен хорошо гидролизоваться во время нагревания в растворе h3SO4. В результате образуется α-D-глюкоза. Растительные источники крахмала – картофель (до 20%), пшеница. Для выявления крахмала в области химии применяют реакцию с йодом. Обычно образуется сине-фиолетовая окраска раствора или пятно такого же цвета.

Гликоген

Этот компонент является животным аналогом крахмала. Он имеет разветвленную структуру и похож на амилопектин, но гликоген обладает большим количеством звеньев в цепочке (до 12). Масса молекулы гликогена может быть 100 млн у. е.

ВидеоВидео

Во время проведения исследований гликоген извлекают из живых клеток при помощи горячей щелочи NaOH, а осаждение осуществляют спиртовым раствором. После этого он гидролизуется в растворе разбавленной серной кислотой.

Клетчатка (растительная целлюлоза)

Данный представитель полисахаридов обладает высокой прочностью. Именно клетчатка является основным компонентом «скелета» растений. К промышленным источникам (от 50 до 70%) относятся древесина, кукуруза, сено.  В составе молекулы имеется D-глюкопираноза, которая соединена гликозидными связями. Молекулы имеют линейную структуру, масса одной составляет до 2 млн у. е.

ВидеоВидео

Высокая прочность обеспечивается за счет присутствия водородных связей в цепочках, которые могут объединяться в виде пучка. Именно таким образом происходит формирование волокнистости. Элемент инертный, он не растворяется в нейтральных средах, не поддается влиянию ферментов пищеварительных органов. Целлюлоза применяется для многих домашних животных (коров, коней) в качестве питательного элемента.

Гепарин

Он считается аморфным элементом, который имеет порошкообразную структуру и белую окраску. В составе гепарина содержится D‑глюкозамин и D-глюкуроновая кислота, данные компоненты соединены в цепочку за счет  α-гликозидной связи. Масса молекулы гепарина составляет около 20 млн у. е. Кислый гликозаминогликан имеет в основе серу. В научных целях элемент был введен из печени. Относится к антикоагулянтам.

ВидеоВидео

Способен хорошо растворяться в воде, во время нагревания не распадается. Биологическая функция гепарина в организме человека состоит в регулировании свертываемости крови. Этот элемент снижает содержание холестерина, нормализует давление.

Пектины

Это клейкие вещества, которые активно применяются в области кулинарии в качестве кондитерской добавки. Также они имеют другое название – желирующие. Элементы имеются в составе фруктов, растительного сырья. В основном применяется порошок пектина, в редких случаях может использоваться жидкая форма.

ВидеоВидео

В организм человека пектины поступают вместе с продуктами растительного происхождения. Они производят полное очищение всех систем организма, при этом сохраняя бактериальный баланс. А также оказывают омолаживающее воздействие, нормализуют обмен веществ, улучшают состояние гемодинамики. Врачи утверждают, что использование пектиновых лекарственных средств способствует усиленному оздоровлению организма человека. Норма потребления – около 15 граммов в сутки.

Хитин

Хитин – основа скелета насекомых, представителей ракообразных, он содержится в структуре дрожжевых бактерий, разных типов грибов. Это вещество применяется для усиления вкуса и аромата продуктов, еды.

ВидеоВидео

Хитин имеет разнообразные терапевтические качества:

  • предотвращает развитие опухолевых клеточных структур;
  • защищает ткани от радиоактивного воздействия;
  • усиливает воздействие лекарственных препаратов, которые направлены на снижение свертываемости и разжижение крови;
  • повышает иммунную систему;
  • можно использовать в составе профилактической терапии инфарктов, инсультов;
  • усиливает рост бифидобактерий, запускает процесс регенерации.

Области применения полисахаридов

Еще в середине 20 века полисахариды стали широко производить для пищевой промышленности и производства лекарственных средств. Но постепенно их стали использовать в других не менее важных областях.

ВидеоВидео

diets.guru

Полисахариды. Крахмал, Целлюлоза.

Биоорганическая химия

Полисахариды. Крахмал, Целлюлоза.

На этой странице мы рассмотрим несахароподобные полисахариды.

Полисахариды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.

Важнейшие представители несахароподобных полисахаридовкрахмал и целлюлоза (клетчатка).

Эти углеводы во многом отличаются от моно- и олигосахаридов. Они не имеют сладкого вкуса, большинство из них не растворимо в воде. По этой причине их называют несахароподобными (в отличие от сахароподобных олигосахаридов, которые также относятся к полисахаридам).

Олигосахариды имеют знаительно меньший размер молекул и свойства, близкие к моносахаридам.

Несахароподобные полисахариды представляют собой высокомолекулярные соединения, которые под каталитическим влиянием кислот или ферментов подвергаются гидролизу с образованием более простых полисахаридов, затем дисахаридов и, в конечном итоге, множества (сотен и тысяч) молекул моносахаридов.

Химическое строение полисахаридов.

По химической природе полисахариды стоит рассматривать как полигликозиды (полиацетали). Каждое звено моносахарида связано гликозидными связями с предыдущим и последующим звеньями.

При этом для связи с последующим звеном предоставляется полуацетальная (гликозидная) гидроксильная группа, а с предыдущим – спиртовая гидроксильная группа.

На конце цепи находится остаток восстанавливающегося моносахарида. Но поскольку доля концевого остатка относительно всей макромолекулы весьма невелика, то полисахариды проявляют очень слабые восстановительные свойства.

Гликозидная природа полисахаридов обусловливает их гидролиз в кислой и высокую устойчивость в щелочной средах.

Полисахариды имеют большую молекулярную массу. Им присущ характерный для высокомолекулярных веществ более высокий уровень структурной организации макромолекул.

Наряду с первичной структурой, т.е. определённой последовательностью мономерных остатков, важную роль играет вторичная структура, определяемая пространственным расположением молекулярной цепи.

Классификация полисахаридов.

Полисахариды можно классифицировать по разным признакам.

Полисахаридные цепи могут быть:

  • разветвлёнными или
  • неразветвлёнными (линейными).

Также, различают:

  • гомополисахаридами — полисахариды, состоящие из остатков одного моносахарида,
  • гетерополисахариды — полисахариды, состоящие из остатков разных    моносахаридов.

Наиболее изучены гомополисахариды.

Их можно разделить по их происхождению:

  • гомополисахариды растительного происхождения
  •      — Крахмалл,      — Целюлоза,      — Пектиновые вещества и т.д.
  • гомополисахариды животного происхождения
  •      — Гликоген,      — Хитин и т.д.
  • гомополисахариды бактериального происхождения
  •      — Гекстраны.

Гетерополисахариды, к числу которых относятся многие животные и бактериальные полисахариды, изучены меньше, однако они играют важную биологическую роль.

Гетерополисахариды в организме связаны с белками и образуют сложные надмолекулярные комплексы.

Для полисахаридов используется общее название гликаны.

Гликаны могут быть:

  • гексозанами (состоят из гексоз),
  • пентозанами, (состоят из пентоз).

В зависимости от природы моносахарида различают:

  • глюканы (в основе – моносахарид глюкоза),
  • маннаны (в основе – моносахарид манноза),
  • галактаны (в основе – моносахарид галактоза) и т.п.
Крахмал

Крахмал (С6Н10О5)n – белый (под микроскопом зернисый) порошок, нерастворимый в холодной воде. В горячей воде крахмал набухает, образуя коллоидный раствор (крахмальный клейстер). С раствором йода даёт синее окрашивание (характерная реакция).

Крахмал образуется в результате фотосинтеза, в листьях растений, и запасается в клубнях, корнях, зёрнах.

Химическое строение крахмала

Крахмал представляет собой смесь двух полисахаридов, построенных из глюкозы (D-глюкопиранозы): амилозы (10-20%) и амилопектина (80-90%).

Дисахаридным фрагментом амилозы является мальтоза. В амилозе D-глюкопиранозные остатки связаны альфа(1-4) гликозидными связями.

По данным рентгеноструктурного анализа макромолекула амилозы свёрнута в спираль. На каждый виток спирали приходится 6 моносахаридных звеньев.

Амилопектин в отличие от амилозы имеет разветвлённое строение.

В цепи D-глюкопиранозные остатки связаны альфа(1-4)-гликозидными связями, а в точках разветвления — бета(1-6)-гликозидными связями. Между точками разветвления располагается 20-25 глюкозидных остатков.

Цепь амилозы включает от 200 до 1000 глюкозных остатков, молекулярная масса 160 000. Молекулярная масса амилопектина достигает 1-6 млн.

Гидролитическое расщепление крахмала.

В пищеварительном тракте человека и животных крахмал подвергается гидролизу и превращается в глюкозу, которая усваивается организмом.

В технике превращение крахмала в глюкозу (процесс осахаривания) осуществляется путём кипячения его в течение нескольких часов с разбавленной серной кислотой. Впоследствии серную кислоту удаляют. Получается густая сладкая масса, так называемая крахмальная патока, содержащая, кроме глюкозы, значительное количество других продуктов гидролиза крахмала. Патока применяется для приготовления кондитерских изделий и различных технических целей.

Если требуется получить чистую глюкозу, то кипячение крахмала ведут дольше. Этим достигается более высокая степень гидролиза крахмала.

При нагревании сухого крахмала до 200-500 град. С происходит частичное разложение его и получается смесь менее сложных, чем крахмал полисахаридов, называемых декстринами.

Разложением крахмала на декстрины объясняется образование блестящей корки на печёном хлебе. Крахмал муки, превращённый в декстрины, легче усваивается вследствие большей растворимости.

Гликоген

В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала.

Откладывается в виде гранул в цитоплазме во многих типах клеток (главным образом печени и мышц).

Химическое строение гликогена.

По строению гликоген подобен амилопектину (структурную формулу см. выше). Но молекулы гликогена значительно больше молекул амилопектина и имеют более разветвленную структуру. Обычно между точками разветвления содержится 10-12 глюкозных звеньев, а иногда даже 6.

Сильное разветвление способствует выполнению гликогеном энергетической функции, так как только при наличии большого числа концевых остатков можно обеспечить быстрое отщепление нужного количества молекул глюкозы.

Молекулярная масса у гликогена необычайно велика. Измерения показали, что она равна 100 млн. Такой размер макромолекул содействует выполнению функции резервного углевода. Так, макромолекула гликогена из-за большого размера не проходит через мембрану и остаётся внутри клетки, пока не возникнет потребность в энергии.

Функции гликогена в метаболизме.

Гликоген является основной формой хранения глюкозы в животных клетках.

Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы.

Гликогеновый запас, однако, не столь ёмок в калориях на грамм, как запас триглицеридов (жиров). Он имеет скорее локальное значение. Только гликоген, запасённый в клетках печени (гепатоциты) может быть переработан в глюкозу для питания всего организма.

Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы.

Аналогично гликогену в животных организмах, в растениях такую же роль резервного полисахарида выполняет амилопектин, имеющий менее разветвлённое строение. Меньшая разветвлённость связана с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрый приток энергии, как это иногда бывает необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение).

Целлюлоза (клетчатка)

Целлюлоза – наиболее распространённый растительный полисахарид. Она обладает большой механической прочностью и выполняет роль опорного материала растений.

Наиболее чистая природная целлюлозахлопковое волокно – содержит 85-90% целлюлозы. В древесине хвойных деревьев целлюлозы содержится около 50%.

Химическое строение целлюлозы

Структурной единицей целлюлозы является D-глюкопираноза, звенья которой связаны бета(1-4)-гликозидными связями.

Биозный фрагмент целлюлозы представляет собой целлобиозу. Макромолекулярная цепь не имеет разветвлений, в ней содержится от 2500 до 12 000 глюкозных остатков, что соответствует молекулярной массе от 400 000 до 1-2 млн.

Бета-Конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюлозы имеет строго линейное строение. Этому способствует образование водородных связей внутри цепи, а также между соседними цепями.

Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений.

Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта, но она является необходимым для питания баластным веществом.

Использование целлюлозы

Значение целлюлозы очень велико. Достаточно указать, что огромное количество хлопкового волокна идёт для выработки хлопчатобумажных тканей.

Из целлюлозы получают бумагу и картон, а путём химической переработки – целый ряд разнообразных продуктов: искусственное волокно, пластические массы, лаки, этиловый спирт.

Большое практическое значение имеют эфирные производные целлюлозы: ацетаты (искусственный шёлк), ксантогенты (вискозное волокно, целлофан), нитраты (взрывчатые вещества, коллоксилин) и др.

xn—-7sbb4aandjwsmn3a8g6b.xn--p1ai

Полисахариды

Полисахариды

Полисахариды — природные высокомолекулярные несахароподобные углеводы, молекулы которых состоят из большого числа остатков молекул моносахаридов (чаще всего — гексоз).

 

 


Общая формула

6Н10О5)n

(n варьируется от 100 до нескольких тысяч)

Важнейшие представители

Целлюлоза, крахмал, гликоген

Строение целлюлозы

Целлюлоза (клетчатка) — самый распространенный полисахарид. Древесина примерно на 50% состоит из целлюлозы, а хлопок и лен представляют практически чистую целлюлозу.

Макромолекулы целлюлозы состоят из большого числа (от нескольких сотен до 10—14 тыс.) остатков β-глюкозы, связанных (β-1,4-гликозидными связями. Биозный фрагмент целлюлозы:

Структурное звено целлюлозы:

Химические свойства целлюлозы

1. Гидролиз (в кислой среде)

2. Образование сложных зфиров

(Тринитрат целлюлозы — основа бездымного пороха.)

(Триацетат целлюлозы — сырье для изготовления ацетатных волокон )

3. Горение

(C6H10O5)n + 6nO2 → 6nCO2 + 5nH2O

Строение крахмала

Крахмал — растительный полисахарид, состоящий из двух фракций: амилопектина и амилозы.

Макромолекулы амилозы имеют линейное строение и состоят из большого числа остатков α-глюкозы, связанных α-1,4-гликозидными связями. Молекулярная масса амилозы колеблется от 150 тыс. до 500 тыс.

Биозный фрагмент амилозы:

Макромолекулы амилопектина сильно разветвлены и состоят из фрагментов амилозы (около 20 моносахаридных остатков), связанных между собой α- 1,6-гликозидными связями. Молекулярная масса 106-109.

Фрагмент макромолекулы амилопектина:

Химические свойства крахмала

1. Гидролиз (кислотный или ферментативный)

2. Качественная реакция на крахмал

(C6H10O5)n + I2 → Адсорбционный комплекс амилозы с йодом синего цвета.

Гликоген

Это животный полисахарид, имеющий сходное строение с амилопектином, но отличающийся от него большей разветвленностью цепей, а также большей молекулярной массой.

Превращения крахмала в организме человека и животных

examchemistry.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *