Сера — химические и физические свойства
Сера – важнейший элемент в современной промышленности.
Особые свойства серы (антисептические и антипаразитарные) делают её незаменимым компонентном многих лекарственных препаратов.
Что такое сера и как она выглядит
Сера – химический элемент, находящийся по 16 номером в таблице Д. И. Менделеева и обозначающийся буквой S (по первой букве латинского названия Sulphur).
Молярная масса серы равна 32, 065 г/моль, атомная масса — 32,066 а. е. м. Это вещество может быть как ярко-желтого, так и коричневого цвета.
Различают порошкообразную (молотую) и жидкую серу.
Характеристика серы
Сера – вещество с переменной степенью окисления.
При взаимодействии с кислородом и галогенами, т. е. с элементами с большей электроотрицательностью, сера может проявлять положительную валентность, например, +4 и +6.
Физические свойства
Как простое вещество, сера образует несколько аллотропных модификаций:
- Ромбическая – то, что мы привыкли называть обычной серой. Она устойчива при обычных условиях, встречается чаще всего недалеко от действующих или потухших вулканов.
- Пластическая – представляет собой замкнутые или открытые цепочки соединяющейся между собой серы, получаемые обычно при её сжигании. Имеет самую большую молекулярную массу среди всех разновидностей серы.
- Моноклинная (S8) – соединение серы, которое в молекулярном виде представляет собой восьмиугольник с атомами серы в вершинах. Выглядит как множество цилиндров, похожих на иглы. При комнатной температуре быстро превращается в ромбическую.
Приблизительная молярная масса одной молекулы моноклинной серы – 256 г/моль. В России сера, в основном, бывает только двух товарных видов: гранулированная и комовая.
Сера – легкоплавкое вещество, температура плавления около 120 градусов. Нерастворима в воде и не намокает про соприкосновении с ней.
Не обладает электролитическими свойствами и теплопроводностью. Плотность серы — 2,070 г/см³.
Химические свойства
В соединениях с водородом образует серную (химическая формула h3SO4) со степенью окисления серы +6 и сернистую (h3SO3) со степенью окисления +4 кислоты, которые дают соответственно сульфаты и сульфиты.
В нормальных условиях реагируют с активными металлами и ртутью, образуя сульфиды:
Hg + S = HgS
Na + S = Na2S
Также образует сульфиды при нагревании с большинством неактивных металлов, кроме платины и золота:
Fe + S (t) = Fe2S3
Проявляет восстановительные свойства в реакции с кислородом при нагревании, образуя кислотный оксид:
S + O2 = SO2
В реакциях с водородом образует сернистый газ, летучее бесцветное вещество с неприятным запахом тухлых яиц:
h3 + S = h3S
Области применения
Широко применяется в медицине, обладает антисептическими и антипаразитарными свойствами, используется для дезинфекции помещений и избавления от паразитов.
В низких концентрациях способствует формированию новых клеток эпидермиса, из-за чего её часто используют для лечения воспалений. Помимо этого сера имеет слабительное действие, а при приеме внутрь оказывает отхаркивающий эффект.
Благодаря легковоспламеняемости и горючим свойствам, сера хорошо горит. Например, самое простое, где можно взять серу, это открыть полный спичечный коробок — сера входит в состав спичечной головки.
При трении головка касается шероховатой поверхности (например, наждачной бумаги), и спичка легко загорается.
Серная кислота (h3SO4) – важнейший продукт химической промышленности, используется в качестве электролита в свинцовых аккумуляторах, применяется для получения соляной, азотной, борной и других кислот.
Серная кислота является необходимым сульфирующим средством при получении многих лекарственных веществ и красок.
Сероводород (h3S) используется для выделения чистой серы, сульфитов и серной кислоты из растворов.
Оксиды серы (SO2 и SO3) находят применения в производстве серной и азотной кислот, а также используются в бытовой химии: входят в состав отбеливателей, дезинфицирующих средств.
Нахождение серы в природе
Чаще всего в природе находится самородная сера (S), однако встречаются и её соединения с другими элементами: FeS2 (сульфат железа (II), пирит), ZnS (сульфат цинка, цинковая обманка), CaSO4*2h3O (гипс), PbS (сульфат свинца, свинцовый блеск) и другие.
Биологическая роль серы
Сера содержится в живых организмах, особенно много её в белках ногтей, волос, копыт. Общая масса серы в человеческом организме составляет около 130 грамм. Также это вещество встречается в составе некоторых витаминов и гормонов.
Сера обладает уникальными химическими и физическими свойствами, благодаря чему является важнейшим компонентом промышленности и незаменима при создании лекарственных препаратов.
1001student.ru
Характеристика серы
Характеристика серыСера (S) располагается во 3 периоде, в VI группе, главной подгруппе, имеет порядковый номер 16.
Массовое число: A = 32
Число протонов: P = 16
Число электронов: ē = 16
Число нейтронов: N = A — Z = 32 — 16 = 16
16S 1s2 2s2 2p6 3s2 3p4 |
Валентные электроны
16S | ↑↓ | ↑↓ | ↑ | ↑ | ||||||||
3s | 3p | 3d |
16S* | ↑↓ | ↑ | ↑ | ↑ | ↑ | |||||||
3s | 3p | 3d |
16S** | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ||||||
3s | 3p | 3d |
Сера – p-элемент, неметалл.
Степени окисления
минимальная: -2
максимальная: +6
Высший оксид: SO3 – оксид серы (VI).
Проявляет кислотные свойства:
SO3 + 2NaOH ⟶ Na2SO4 + H2O
Высший гидроксид: H2SO4 – серная кислота.
Проявляет кислотные свойства:
H2SO4 + 2NaOH ⟶ Na2SO4 + 2H2O
Водородное соединение в низшей степени окисления: H2S.
gomolog.ru
Характеристика химического элемента №16 (Сера) (стр. 1 из 2)
Южно-Уральский государственный университет
Миасский машиностроительный факультет.
Кафедра Технологии производства машин.
Итоговый реферат.
«Характеристика химического элемента
№16 (Сера)»
ММФ-144
Выполнил: Лобзев Е.А.
Проверил: Мельнеченко В.Г.
Миасс 2001
План.
1.История открытия элемента.
2.Распростронение элемента в природе.
3.Физические свойства.
4.Химические свойства.
5.Получение.
6.Приминение.
История открытия элемента. Сера (англ. Sulfur, франц. Sufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с самых древнейших времен. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны «сернистые испарения», смертельное действие выделений горящей серы. Сера, вероятно, входила в состав «греческого огня», наводившего ужас на противников. Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, легкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что ее считали «принципом горючести» и обязательной составной частью металлических руд. Пресвитер Теофил (XI в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, еще в древнем Египте. В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трех принципов алхимиков, а позднее «принцип горючести» явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения ее из пиритов; последний был распространен в древней Руси. Впервые в литературе он описан у Агриколы. Происхождение лат. Sulfur неясно. Полагают, что это название заимствовано от греков. В литературе алхимического периода сера часто фигурирует под различными тайными названиями. У Руланда можно найти, например, названия Zarnec (объяснение «яйца с огнем»), Thucios (живая сера), Terra foetida, spiritus foetens, Scorith, Pater и др. Древнерусское название «сера» употребляется уже очень давно. Под ним подразумевались разные горючие и дурно пахнущие вещества, смолы, физиологические выделения (сера в ушах и пр.). По-видимому, это название происходит от санскритского сirа (светло-желтый). С ним связано слово «серый», т. е. неопределенного цвета, что, в частности, относится к смолам. Второе древнерусское название серы — жупел (сера горючая) — тоже содержит в себе понятие не только горючести, но и дурного запаха. Как объясняют филологи, нем. Schwefel имеет санскритский корень swep (спать, англо-саксонское sweblan — убивать), что, возможно, связано с ядовитыми свойствами сернистого газа.(3)
Распространение элемента в природе. Сера широко распространена в природе. Она составляет 0,05% массы земной коры. В свободном состоянии (самородная сера) в больших количествах встречается в Италии (острова Сицилия) и США. Месторождения самородной серы имеются в Поволжье, в государствах Средней Азии, в Крыму и других районах.
Сера часто встречается в виде соединений с другими элементами. Важнейшими ее природными соединениями являются сульфиды металлов: FeS2 — железный колчедан, или пирит; ZnS — цинковая обманка; PbS — свинцовый блеск; HgS — киноварь и др., атакжесоли серной кислоты (кристаллогидраты): СаSO4×2Н2O — гипс, Na2SO4× 10H2O — глауберова соль, МgSО4× 7H2O — горькая соль и др.(2)
Физические свойства. Сера — твердое хрупкое вещество желтого цвета. В воде практически нерастворима, но хорошо растворяется в сероуглероде, анилине и некоторых других растворителях. Плохо проводит теплоту и электричество. Сера образует несколько аллотропных модификаций — сера ромбическая, моноклинная, пластическая. Наиболее устойчивой модификацией является ромбическая сера, в нее самопроизвольно через некоторое время превращаются все остальные модификации.
При 444,6 °С сера кипит, образуя пары темно-бурого цвета. Если их быстро охладить, то получается тонкий порошок, состоящий из мельчайших кристаллов серы, называемый серным цветом.
Природная сера состоит из смеси четырех устойчивых изотопов:
Температура плавления, ° С 112,8 . Температура кипения, ° С 444,6
Химические свойства. Сера может отдавать свои электроны при взаимодействии с более сильными окислителями:
В этих реакциях сера является восстановителем. Нужно подчеркнуть, что оксид серы (VI) может образовываться только в присутствииPtилиV2O5и высоком давлении.
При взаимодействии с металлами сера проявляет окислительные свойства:
С большинством металлов сера реагирует при нагревании, но в реакции со ртутью взаимодействие происходит уже при комнатной температуре. Это обстоятельство используется в лабораториях для
удаления разлитой ртути, пары которой являются сильным ядом.(3)
Несколько примеров соединений серы.
Сероводород.При нагревании серы с водородом происходит обратимая реакция:
с очень малым выходом сероводорода H2S. Обычно Н2S получают действием разбавленных кислот
на сульфиды:
Эту реакцию часто проводят в аппарате Киппа.
Сероводород — типичный восстановитель. В кислороде он сгорает. Раствор сероводорода в воде представляет собой очень слабую сероводородную кислоту, которая диссоциирует ступенчато и в основном по первой ступени:
Сероводородная кислота, так же как и сероводород, — типичный восстановитель.
Сероводородная кислота окисляется не только сильными окислителями, например хлором,
но и более слабыми, например сернистой кислотой H2SO3:
или ионами трехвалентного железа:
Сульфиды. Например, Na2S — сульфид натрия, NaHS — гидросульфид натрия.
Гидросульфиды почти все хорошо растворимы в воде. Сульфиды щелочных и щелочно-земельных металлов также растворимы в воде, а остальных металлов практически нерастворимы или мало растворимы; некоторые из них не растворяются и в разбавленных кислотах. Поэтому такие сульфиды можно легко получить, пропускаясероводород через соли соответствующего металла, например:
Некоторые сульфиды имеют характерную окраску: CuS и PbS — черную, CdS — желтую, ZnS — белую, MnS — розовую, SnS — коричневую, Sb2S3— оранжевую и т. д. На различной растворимоcти сульфидов и различной окраске многих из них основан качественный анализ катионов.(4)
Оксид серы (IV).Оксид серы (IV), или сернистый газ, при обычных условиях — бесцветный газ с резким, удушливым запахом. При охлаждении до -10° С сжижается в бесцветную жидкость. В жидком виде его хранят в стальных баллонах.
SO2 образуется при сжигании серы в кислороде или при обжиге сульфидов. Он хорошо растворим в воде (40 объемов в 1 объеме воды при 20 °С).
Оксид серы (VI).SO3 — ангидрид серной кислоты — вещество с tпл= 16,8 °С и tкип= 44,8 °С. Оксид серы (VI), или триоксид серы, — это бесцветная жидкость, затвердевающая при температуре ниже 17° С в твердую кристаллическую массу. Оксид серы (VI) обладает всеми свойствами кислотных оксидов. Он является промежуточным продуктом производства серной кислоты.
Оксид серы (VI) получают окислением SO2 кислородом только в присутствии катализатора:
Необходимость использования катализатора в этой обратимой реакции обусловлена тем, что хороший выход SO3 (т. е. смещение равновесия вправо) можно получить только при понижении температуры, однако при низких температурах очень сильно падает скорость протекания реакции.
mirznanii.com
Cера — химические свойства, получение, соединения. VIа группа » HimEge.ru
Сера расположена в VIа группе Периодической системы химических элементов Д.И. Менделеева.
На внешнем энергетическом уровне атома серы содержится 6 электронов, которые имеют электронную конфигурацию 3s23p4. В соединениях с металлами и водородом сера проявляет отрицательную степень окисления элементов -2, в соединениях с кислородом и другими активными неметаллами – положительные +2, +4, +6. Сера – типичный неметалл, в зависимости от типа превращения может быть окислителем и восстановителем.
Сера встречается в свободном (самородном) состоянии и связанном виде.
Важнейшие природные соединения серы:
FeS2 — железный колчедан или пирит,
ZnS — цинковая обманка или сфалерит (вюрцит),
PbS — свинцовый блеск или галенит,
HgS — киноварь,
Sb2S3 — антимонит.
Кроме того, сера присутствует в нефти, природном угле, природных газах, в природных водах (в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды). Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.
Аллотропия — это способность одного и того же элемента существовать в разных молекулярных формах (молекулы содержат разное количество атомов одного и того же элемента, например, О2 и О3, S2 и S8, Р2 и Р4 и т.д).
Сера отличается способностью образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны S8, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество жёлтого цвета.
Открытые цепи имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую).
1) ромбическая — S8
Наиболее устойчивая модификация.
2) моноклинная — темно-желтые иглы
t°пл. = 119°C; r = 1,96 г/см3
Устойчивая при температуре более 96°С; при обычных условиях превращается в ромбическую.
3) пластическая — коричневая резиноподобная (аморфная) масса
Неустойчива, при затвердевании превращается в ромбическую
- Промышленный метод — выплавление из руды с помощью водяного пара.
- Неполное окисление сероводорода (при недостатке кислорода):
2H2S + O2 → 2S + 2H2O
- Реакция Вакенродера:
2H2S + SO2 → 3S + 2H2O
Окислительные свойства серы
(S0 + 2ē → S-2)
1) Сера реагирует со щелочными металлами без нагревания:
2Na + S → Na2S
c остальными металлами (кроме Au, Pt) — при повышенной t°:
2Al + 3S –→ Al2S3
Zn + S –→ ZnS
2) С некоторыми неметаллами сера образует бинарные соединения:
H2 + S → H2S
2P + 3S → P2S3
C + 2S → CS2
Восстановительные свойства сера проявляет в реакциях с сильными окислителями:
(S — 2ē → S+2; S — 4ē → S+4; S — 6ē → S+6)
3) c кислородом:
S + O2 –t° → S+4O2
2S + 3O2 –t°;pt → 2S+6O3
4) c галогенами (кроме йода):
S + Cl2→ S+2Cl2
S + 3F2→ SF6
Со сложными веществами:
5) c кислотами — окислителями:
S + 2H2SO4(конц) → 3S+4O2 + 2H2O
S + 6HNO3(конц) → H2S+6O4 + 6NO2 + 2H2O
Реакции диспропорционирования:
6) 3S0 + 6KOH → K2S+4O3 + 2K2S-2 + 3H2O
7) сера растворяется в концентрированном растворе сульфита натрия:
S0 + Na2S+4O3 → Na2S2O3 тиосульфат натрия
himege.ru
Характеристика химического элемента № 16 Сера – S
Открытие серы.Сера – одно из немногих веществ, которыми уже несколько тысяч лет назад оперировали первые «химики». Она стала служить человечеству задолго до того, как заняла в таблице Менделеева клетку под №16.
Название сера происходит от английского слова Sulfur. Она известна с самых древнейших времен. В доказательство этому можно привести Гомеровские описания «сернистых испарений», ведь сера входила в состав «греческого огня». Упоминания о ней встречаются еще около 2000 лет до новой эры в Египте, где она использовалась в медицине для дезинфекции и в качестве отбеливателя. Ее считали «принципом горючести» в Египте. Так же использовалась жрецами в составе священных курений при религиозных обрядах. Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в смеси пороха.
Сера получила такое распространение благодаря своим свойствам:
горючести и легкости соединения с металлами
В том, что сера – самостоятельный химический элемент, а не соединение, первым убедился великий французский химик Антуан Лоран Лавуазье, ставший первооткрывателем серы в конце 70 годов 18 века.
Лавуазье открыл природу серы в своих опытах по сжиганию веществ, в результате которых ученый наблюдал выделение газа.
S + O2 = SO2 (оксид серы 4)
Распространение в природе.
Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы – это порода с вкраплениями серы. Сера является шестнадцатым по химической распространенности элементом в земной коре. Встречается в свободном или самородном состоянии и связанном виде.
Важнейшие природные соединения серы FeS2 —железный колчедан или пирит, ZnS — цинковая обманка, PbS — свинцовый блеск, HgS —киноварь,AgS – серебряный блеск.
Часто встречается в виде минералов:
CaSO4 * 2h3O – ангидрид кальция, BaSO4 – тяжелый шпат.
Содержится в нефти и природном угле. Так же сера шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона, из-за нее вода кажется жесткой. Жизненно важный элемент высших организмов, составная часть многих белков, присутствует в растительный и животных организмах, концентрируется в волосах.
Нахождение в природе.
Сера довольно широко распространена в природе. В земной коре ее содержание составляет 0,05% от общей массы. В природе встречаются крупные залежи самородной серы, которые располагаются вблизи вулканов, например в Европе, где они расположены на юге Италии и в Сицилии еще залежи самородной серы имеются в США, а также в Средней Азии, в Японии, и Мексике. В природе сера встречается как россыпями, так и в виде кристаллических пластов, иногда образуя группы полупрозрачных желтых кристаллов, которые называются друзы.
В вулканических местностях часто наблюдается выделение из-под земли газа сероводорода H2S; Вулканические газы часто содержат также сернистый газ SO2.
На поверхности Земли находятся месторождения сульфидных соединений. Чаще всего встречеются: железный колчедан или пирит — FeS2, медный колчедан или халькопирит — CuFeS2, свинцовый блеск — PbS, киноварь — HgS, сфалерит — ZnS. Известны также месторождения сульфатов, например, сульфата кальция гипс CaSO4·2H2O и ангидрит CaSO4, сульфата магния MgSO4 или горькая соль, сульфата бария BaSO4 или барит, сульфата стронция SrSO4 целестин.
В каменном угле содержится 1,0-1,5% серы. Сера входить в состав нефти.
Сера — элемент, который необходим для живых организмов, так как является составной частью белков. Белки содержат 0,8-2,4% (по массе) химически связанной серы. Растения получают серу из сульфатов, содержащихся в почве. В морской воде присутствует около 8,7·10-2 % серы.
Физические свойства.
Сера способна образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны циклические молекулы S8,
имеющие форму короны, образующие ромбическую и моноклинную серу. Это
кристаллическая сера — хрупкое вещество желтого цвета. Кроме того,
возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета.
При обычной температуре сера представляет собой твердое вещество
желтого цвета, при понижении температуры сера светлеет, а при
температуре жидкого воздуха становится почти белой.
В процессе плавления проявляются свойства:
1. при 113 она представляет собой желтую жидкость
2. при 250 меняет цвет на красный и становится вязкой
3. при 450 закипает и выделяет желтые пары
При охлаждение серы свойства повторяются в обратном порядке.
При нормальном давлении и температурах до 98,38°Cстабильна
a-модификация серы (иначе эту модификацию называют ромбической),
образующая лимонно-желтые кристаллы. Ее кристаллическая решетка
орторомбическая. Плотность 2,07 кг/дм3. Выше 95,39°C стабильна b-модификация серы (так называемая моноклинная сера). Плотность b-S 1,96 кг/дм3.
В природе существуют аморфная и кристаллическая модификации серы,
наиболее устойчивы – ромбическая и моноклинная. Аморфная структура
образуется при резком охлаждение жидкой серы.
Химические свойства.
1.Ромбическая структура 2.Моноклинная структура
Сера обладает плохой теплопроводностью, в воде почти нерастворима, но хорошо растворяется в сероуглероде.
Сера — достаточно активный неметалл. Даже при умеренном нагревании
она окисляет многие простые вещества, но и сама довольно легко
окисляется кислородом и галогенами.
S + O2 = SO2;
S + 3F2 = SF6,
2S + Cl2 = S2Cl2
С водородом при нагревании сера образует сероводород H2S и в небольшом количестве сульфаты
H2 + S = H2S.
реакции серы с металлами:
2Na + S = Na2S,
Ca + S = CaS,
Fe + S = FeS
Концентрированная серная кислота при нагревании окисляет серу до SO2:
S + 2H2SO4 = 2H2O + 3SO2.
Сера может присоединяться к сульфитам
Na2SO3 + S = Na2S2O3
При комнатной температуре сера реагирует с фтором и хлором, проявляя восстановительные свойства:
S + 3F2 = SF6
S + Cl2 = SCl2
С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании, окисляясь:
S + 6HNO3 (конц.) = H2SO4 + 6NO2 ↑ + 2H2O
S + 2H2SO4 (конц.) = 3SO2 ↑ + 2H2O…[3]
На воздухесера горит, образуя сернистый ангидрид— бесцветный газ с резким запахом:
S + O2 = SO2
С помощью спектрального анализа установлено, что на самом деле
процесс окисления серы в двуокись представляет собой цепную реакцию и
происходит с образованием ряда промежуточных продуктов: моноокиси серы S2O2, молекулярной серы S2, свободных атомов серы S и свободных радикалов моноокиси серы SO.
При взаимодействии с металламиобразует сульфиды. 2Na + S = Na2S. При нагревании сера реагирует с углеродом, кремнием, фосфором, водородом:
C + 2S = CS2 (сероуглерод)
Сера при нагревании растворяется в щелочах — реакция диспропорционирования
3S + 6KOH = K2SO3 + 2K2S + 3H2O
1. При обычных условиях твёрдое жёлтое кристаллическое вещество.
2. Горит в кислороде:
S + O2 = SO2 (проявляет восстановительные свойства)
3. Взаимодействует с металлами и водородом:
Fe + S = FeS
H2 + S = H2S (проявляет окислительные свойства)
Сероводород – сильный восстановитель. Этим его свойством пользуются во многих химических производствах.
Хранить его растворы на воздухе нельзя, он окисляется с выделением серы:
2H2S + О2 → 2Н2О + 2S….[2]
Тонкоизмельченная сера склонна к химическому самовозгоранию, при
контакте с окислителями, а также в смеси с углем, жирами, маслами. Сера
образует взрывчатые смеси нитратами, хлоратами перхлоратами.
Самовозгорается при контакте с хлорной известью.
Получение.
серу получают, в основном, выплавляя ее из горных пород, содержащих
самородную. Так называемый геотехнологический способ позволяет получать
серу без подъема руды на поверхность. Этот способ был предложен в конце
19 века американским химиком Г. Фрашем, перед которым встала задача
извлечения на поверхность земли серы из месторождений юга США, где
песчаный грунт резко усложнял ее добычу традиционным шахтным методом.
Фраш предложил использовать для подъема серы на поверхность
перегретый водяной пар. Перегретый пар по трубе подают в подземный слой,
содержащий серу. Сера плавится (ее температура плавления немного ниже
120°С) и по трубе, расположенной внутри той, по которой под землю
закачивают водяной пар, поднимается наверх. Для того чтобы обеспечить
подъем жидкой серы, через самую тонкую внутреннюю трубу нагнетают сжатый
воздух.
По другому (термическому) методу, получившему особое распространение в
начале 20 века на Сицилии, серу выплавляют, или возгоняют, из
дробленной горной породы в специальных глиняных печах.
Существуют и другие методы выделения самородной серы из породы, например, экстракцией сероуглеродом или флотационными методами.
В связи с тем, что потребность промышленности в сере очень велика, разработаны методы ее получения из сероводорода H2S и сульфатов.
Метод окисления сероводорода до элементарной серы был впервые
разработан в Великобритании, где значительные количества серы научились
получать из остающегося после получении соды Na2CO3 по
методу французского химика Н. Леблана сульфида кальция CaS. Метод
Леблана основан на восстановлении сульфата натрия углем в присутствии
известняка CaCO3.
Na2SO4 + 2C = Na2S + 2CO2;
Na2S + CaCO3 = Na2CO3 + CaS.
Соду затем выщелачивают водой, а водную суспензию плохо растворимого сульфида кальция обрабатывают диоксидом углерода:
CaS + CO2 + H2O = CaCO3 + H2S
Образующийся сероводород H2S в смеси с воздухом пропускают
в печи над слоем катализатора. При этом за счет неполного окисления
сероводорода образуется сера:
2H2S + O2 = 2H2O +2S…[1]
Аналогичный метод используют для получения элементарной серы и из сероводорода, сопутствующего природным газам.
Так как современная техника нуждается в сере высокой чистоты,
разработаны эффективные методы рафинирования серы. При этом используют, в
частности, различия в химическом поведении серы и примесей. Так, мышьяк
и селен удаляют, обработав серу смесью азотной и серной кислот.
Использованием методов, основанных на дистилляции и ректификации, удается получить высокочистую серу с содержанием примесей 10–5 — 10–6 % по массе.
Получение в промышленности.
1) оксида серы (IV) в промышленности:
горение серы:
S + O2 = SO2
обжиг пирита:
4FeS2 + 11O2 = 2Fe2O3
в лаборатории:
Na2SO3 + H2SO4 = Na2SO4 + SO2 + H2O …[6]
2) оксида серы (VI) в промышленности: каталитическое окисление оксида серы (IV):
2SO2 + O2 = 2SO3
Важнейшей реакцией в промышленности является получение серной кислоты по схеме:
S O2 SO2 O2 SO3 H2O H2SO4
Применение.
Многие соединения серы токсичны. Особенно следует отметить
сероводород, вдыхание которого быстро вызывает притупление реакции на
его неприятный запах и может привести к тяжелым отравлениям даже с
летальным исходом.
Около половины производимой серы используется на производство серной
кислоты, около 25% расходуется для получения сульфитов, 10-15% — для
борьбы с вредителями сельскохозяйственных культур (главным образом
винограда и хлопчатника) (наибольшее значение здесь имеет раствор
медного купороса CuSO4·5H2O), около 10%
используется резиновой промышленностью для вулканизации резины. Серу
применяют при производстве красителей и пигментов, взрывчатых веществ
(она до сих пор входит в состав пороха), искусственных волокон,
люминофоров. Серу используют при производстве спичек, так как она входит
в состав, из которого изготовляют головки спичек. Серу до сих пор
содержат некоторые мази, которыми лечат заболевания кожи. Для придания
сталям особых свойств в них вводят небольшие добавки серы (хотя, как
правило, примесь серы в сталях нежелательна).
Значительную часть мировой добычи серы поглощает бумажная
промышленность (соединения серы помогают выделить целлюлозу). Для того
чтобы произвести 1 т целлюлозы, нужно затратить более100 кгсеры. Много
элементарной серы потребляет и резиновая промышленность – для
вулканизации каучуков.
В сельском хозяйстве сера применяется как в элементарном виде, так и в
различных соединениях. Она входит в состав минеральных удобрений и
препаратов для борьбы с вредителями. Наряду с фосфором, калием и другими
элементами сера необходима растениям. Серу вводят в почву вместе с
фосфоритной мукой. Имеющиеся в почве бактерии окисляют ее, образующиеся
серная и сернистая кислоты реагируют с фосфоритами, и в результате
получаются фосфорные соединения, хорошо усваиваемые растениями.
Однако основной потребитель серы – химическая промышленность.
Примерно половина добываемой в мире серы идет на производство серной
кислоты. Чтобы получить 1 т серной кислоты(H2SО4), нужно сжечь около 300 кг серы.
Так же сера расходуется при производстве взрывчатых веществ и спичек.
Чистая, освобожденная от примесей сера нужна для производства
красителей и светящихся составов.
Соединения серы находят применение в нефтехимической промышленности. В
частности, они необходимы при производстве антидетонаторов, смазочных
веществ для аппаратуры сверхвысоких давлений; в охлаждающих маслах,
ускоряющих обработку металла, содержится иногда до 18% серы.
Подсчитано, что в производстве 88 из 150 важнейших химических продуктов используют либо саму серу, либо ее соединения
chemistrykz.blogspot.com
Сера — урок. Химия, 8–9 класс.
Химический элемент
Сера — химический элемент № \(16\). Она расположена в VIА группе третьем периоде Периодической системы.
S16+16)2e)8e)6e
На внешнем слое атома серы содержатся шесть валентных электронов. До завершения внешнего слоя не хватает двух электронов. Поэтому в соединениях с металлами и водородом сера проявляет степень окисления \(–2\). При взаимодействии с более электроотрицательными элементами (кислородом, галогенами) сера образует соединения, в которых её степень окисления положительная (\(+4\) или \(+6\)).
В земной коре сера встречается в самородном виде или в виде минералов и горных пород: (пирит — FeS2, цинковая обманка — ZnS, свинцовый блеск — PbS, гипс — CaSO4⋅2h3O, глауберова соль — Na2SO4⋅10h3O).
Самородная сера
Свинцовый блеск
Сера относится к макроэлементам живых организмов. Она содержится в белках. Особенно много серы в белках волос, рогов, шерсти. Входит она также в состав некоторых витаминов и гормонов.
Простое вещество
Сера образует несколько аллотропных модификаций. Обычно мы имеем дело с кристаллической серой, которая состоит из восьмиатомных циклических молекул.
Молекулы образуют кристаллы разного строения, и поэтому существуют аллотропные видоизменения: ромбическая и моноклинная сера. Обе модификации представляют собой жёлтые легкоплавкие вещества. Температуры плавления их несколько различаются (\(+112,8\) °С и \(+119,3\) °С).
При нагревании сера плавится, превращается в лёгкую жидкость, а затем начинает темнеть и становиться вязкой. Образуется пластическая сера, состоящая из длинных линейных молекул.
В воде сера не растворяется и ею не смачивается. Поэтому порошок серы не тонет в воде, несмотря на более высокую плотность (\(2,07\) г/см³). Такое явление называется флотацией.
Подожжённая сера реагирует с кислородом, и образуется сернистый газ. Сера в этой реакции — восстановитель.
S0+O20=tS+4O2−2.
Окислительные свойства сера проявляет в реакциях с металлами и водородом.
С активными металлами и ртутью реагирует при комнатной температуре:
Hg0+S0=Hg+2S−2.
При нагревании сера вступает в реакцию с большинством металлов — железом, алюминием, цинком и другими, кроме золота и платины.
2Al0+3S0=tAl+32S−23.
В реакциях с металлами образуются сульфиды.
При повышенной температуре сера реагирует с водородом. Образуется сероводород:
h30+S0=th3+1S−2.
Применение серы
- Используется в химической промышленности для производства серной кислоты;
- находит применение в сельском хозяйстве для обеззараживания помещений;
- входит в состав некоторых мазей;
- используется в производстве спичек и бумаги;
- с её помощью каучук превращают в резину;
- входит в состав взрывчатых веществ.
www.yaklass.ru
Сера S химический элемент в Таблице Менделеева
Сера – химический элемент, располагается в периодической системе Менделеева под номером 16 и обозначается символом S (от лат. sulfur). Элементарная природы серы была установлена в 1777 году французским ученым и химиком Антуаном Лавуазье. Сера закипает при температуре в 444 градусов по Цельсию. При плавке переходит из твердого состояния в жидкое, меняя постепенно свой окрас, в зависимости от градации температуры плавления. К примеру, достигая отметки в 160 градусов Цельсия, этот химический элемент меняет свой окрас из желтого цвета в бурый, а нагреваясь до отметки в 190 градусов – цвет изменяется на темно-коричневый. Достигая температурного режима в 190 градусов, сера утрачивает вязкость структуры, понемногу становясь более жидкой. Окончательно жидкотекучим элемент становится при нагреве его до 300 градусов.
Помимо возможности переходить из твердого состояния в жидкое сера имеет ряд иных интересных особенностей. Так, она имеет отрицательную теплопроводимость и совершенно не проводит электрический ток. Абсолютно не растворяется в воде, однако отлично растворяется в жидкостях, не имеющими в своей структуре молекул воды (например, в аммиаке). Хорошо взаимодействует с растворителями и сероуглеродом, которые характеризуются органической природой. Также, к описанию сульфура можно добавить ее химическую изюминку. По своей природе, сера активна и может отлично вступать в химическую реакцию при нагреве с любым химическим элементом. Может взаимодействовать с такими веществами как:
- ртуть – при комнатной температуре, вступает с ней в реакцию;
- с металлами – создает сульфиды и является в то же время окислителем;
- кислород – нагреваясь до температурной отметки в 280 градусов Цельсия, образовывает объединения оксидов;
- фтор – в тандеме с этим веществом, сера показывает себя как восстановитель;
- фосфор или углерод – в условиях отсутствия подачи воздуха, сера показывает себя как окислитель.
Исторические сведения
Химический элемент сера в своем самородном состоянии или в виде сернистых соединений, была известна человечеству еще много тысяч лет назад. Её уникальные свойства упоминаются не только на священных страницах Библии и Торы, но в поэмах Гомера и других источниках. Благодаря своим свойствам, серу использовали при всевозможных ритуальных и религиозных обрядах. Сера была одним из немаловажных компонентов «священных» курений, которые использовали как для изгнания духов, так и для их призыва. Ее использовали чтобы «одурманивать пришедших», используя серу в соединении со ртутью, древние шаманы полагали, что в горящем состоянии она способна отталкивать и изгонять демонов, духов и прочую нечистую силу.
Сера стала неотъемлемой частицей в создании и использовании «греческого огня», применяемого в создании зажигательных смесей для военных целей. В Китае, около 8 века, серу использовали как пиротехническое средство, ее точную формулу держали под запретом, ее распространение каралось смертной казнью.
Бытовало мнение, что сера (как начало горючести) и ртуть (как символ начала металличности) являются основными составляющими всех металлов. Такая гипотеза имела место в арабской алхимии.
Кроме того, Серой длительное время лечили кожные заболевания, считая такой метод наиболее эффективным в медицине.
Применение серы
Сфера применения серы достаточна многогранна и разнообразна. В первую очередь, сера используется в химической промышленности для создания серной кислоты; в сельском хозяйстве (для создания средств, помогающих в борьбе с вредителями и болезнями растений, в основном винограда и хлопчатника). Нашла свое применение сера также в производстве резины, она используется при изготовлении спичек, входит в состав красителей и люминесцентных составов. В медицине серу используют в грязевых ваннах; так называемая бальнеотерапия (от латинского «замачивать в воде») – помогает в лечении артрита и кожных заболеваний. Научно не доказано, но также серу применяют для лечения астмы, хотя многие ученые полагают, что именно пары серы способны провоцировать появление заболеваний дыхательных путей.
Сера в продуктах питания
Серой богаты такие продукты, как например:
- крыжовник,
- виноград,
- хлебобулочные изделия,
- чеснок,
- спаржа,
- лук,
- капуста,
- постная говядина,
- куриные яйца,
- молочные продукты,
- злаковые культуры и т.д.
Недостаток серы в организме
Недостаток серы в человеческом организме (при суточной норме потребления в 4-6 мг) проявляется в виде таких заболеваний как:
- выпадение волос или полное облысение,
- болезни почек,
- различные аллергии,
- тусклость и ломкость волос,
- боли в суставах,
- запоры,
- ломкость ногтей,
- тахикардия.
Интересные и познавательные факты о сере
Сера является важнейшим элементом в организме человека, так как принимает участие в строении клеток, хрящевой ткани, нервных волокон. Также участвует в обменных процессах. Показывает себя как отличный стабилизатор работы и координации нервной системы. Сульфур уравновешивает уровень сахара в крови, что очень полезно для людей страдающих от диабета.
Сера уменьшает боли в суставах и хрящах, помогает выводить желчь. Также оказывает на организм противовоспалительный эффект, используется для регенерации тканей. Помогает укреплению мышечной ткани растущего организма.
Сама по себе сера не имеет запаха, однако при соединении с другими компонентами выделяет запах протухших яиц.
Как мы можем видеть, такая незаметная и обыденная на первый взгляд сера является незаменимым компонентом в полноценной жизни человека благодаря своему широкому спектру применения. Без серы, наша жизнь утратила свои блага, здоровье стало б не столь крепким.
www.alto-lab.ru