Химия разложение примеры – Вопрос № 5 Приведите примеры реакций разложения, соединения и замещения с участием воды. Составьте уравнения этих реакций и под формулами веществ напишите их названия.

Содержание

Реакции разложения | CHEMEGE.RU

При выполнении различных заданий ЕГЭ по химии (например, задачи 34 или задания 32 «мысленный эксперимент») могут пригодиться знания о том, какие вещества при нагревании разлагаются и как они разлагаются.

Рассмотрим термическую устойчивость основных классов неорганических веществ. Я не указываю в условиях температуру протекания процессов, так как в ЕГЭ по химии такая информация, как правило, не встречается. Если возможны различные варианты разложения веществ, я привожу наиболее вероятные, на мой взгляд, реакции.

При нагревании разлагаются оксиды тяжелых металлов:

2Ag2O = 4Ag + O2

2HgO = 2Hg + O2

4CrO3 = 2Cr2O3 + O2

2Mn2O7 = 4MnO2 + 3O2

Как правило, при нагревании разлагаются нерастворимые гидроксиды. Исключением является гидроксид лития, он растворим, но при нагревании в твердом виде разлагается на оксид и воду:

2LiOH = Li2O + H2O

Гидроксиды других щелочных металлов при нагревании не разлагаются.

Гидроксиды серебра (I) и меди (I) неустойчивы:

2AgOH = Ag2O + H2O

2CuOH = Cu2O + H2O

Гидроксиды большинства металлов при нагревании разлагаются на оксид и воду.

В инертной атмосфере (в отсутствии кислорода воздуха) гидроксиды хрома (III) марганца (II) и железа (II) распадаются на оксид и воду:

2Cr(OH)3 = Cr2O3 + 3H2O

Mn(OH)2 = MnO + H2O

Fe(OH)2 = FeO + H2O

Большинство остальных нерастворимых гидроксидов металлов также при нагревании разлагаются:

2Fe(OH)3 = Fe2O3 + 3H2O

2Al(OH)3 = Al2O3 + 3H2O

При нагревании разлагаются нерастворимые кислоты.

Например, кремниевая кислота:

H2SiO3 = H2O + SiO2

Некоторые кислоты неустойчивы и подвергаются разложению в момент образования. Большая часть молекул сернистой кислоты и угольной кислоты распадаются на оксид и воду в момент образования:

H2SO3 = H2O + SO2

H2CO3 = H2O + CO2

В ЕГЭ по химии лучше эти кислоты записывать в виде оксида и воды.

Например, при действии водного раствора углекислого газа на карбонат калия в качестве реагента мы указываем не угольную кислоту, а оксид углерода (IV) и воду, но подразумеваем угольную кислоту при этом:

K2CO3 + H2O + CO2 = 2KHCO3

Азотистая кислота на холоде или при комнатной температуре частично распадается уже в водном растворе, реакция протекает обратимо:

2HNO2 = H2O + NO2↑ + NO↑

При нагревании выше 100оС продукты распада несколько отличаются:

3HNO2 = H2O + HNO3↑ + 2NO↑

Азотная кислота под действием света или при нагревании частично обратимо разлагается:

4HNO3 = 2H2O + 4NO2 + O2

Разложение хлоридов

Хлориды щелочных, щелочноземельных металлов, магния, цинка, алюминия и хрома при нагревании не разлагаются.

Хлорид серебра (I) разлагается под действием света:

2AgCl → Ag + Cl2

Хлорид аммония при нагревании выше 340 оС разлагается:

NH4Cl → NH3 + HCl

Разложение нитратов

Нитраты щелочных металлов при нагревании разлагаются до нитрита металла и кислорода.

Например, разложение нитрата калия:

2KNO3 → 2KNO2 + O2

Видеоопыт разложения нитрата калия можно посмотреть здесь.

Нитраты магния, стронция, кальция и бария разлагаются до нитрита и кислорода при нагревании до 500 оС:

Ca(NO3)2 → Ca(NO2)2 + O2

Mg(NO3)2 → Mg(NO2)2 + O2

Ba(NO3)2 → Ba(NO2)2 + O2

Sr(NO3)2 → Sr(NO2)2 + O2

При более сильном нагревании (выше 500оС)  нитраты магния, стронция, кальция и бария разлагаются до оксида металла, оксида азота (IV) и кислорода:

2Ca(NO3)2 → 2CaО + 4NO2 + O2

2Mg(NO3)2 → 2MgО + 4NO2 + O2

2Sr(NO3)2 → 2SrО + 4NO2 + O2

2Ba(NO3)2 → 2BaО + 4NO2 + O2

Нитраты металлов, расположенных в ряду напряжений после магния и до меди (включительно) + нитрат лития разлагаются при нагревании до оксида металла, диоксида азота и кислорода:

2Cu(NO3)2 → 2CuО + 4NO2 + O2

2Pb(NO3)2 → 2PbО + 4NO2 + O2

4Al(NO3)3 → 2Al2O3 + 12NO2 + 3O2

4LiNO3 → 2Li2O + 4NO2 + O2

Нитраты серебра и ртути разлагаются при нагревании до оксида металла, диоксида азота и кислорода:

2AgNO3 → 2Ag + 2NO2 + O2

Hg(NO3)2 → Hg + 2NO2 + O2

Нитрат аммония разлагается при небольшом нагревании до 270оС оксида азота (I) и воды:

NH4NO3 → N2O + 2H2O

При более высокой температуре образуются азот и кислород:

2NH4NO3 → 2N2 + O2 + 4H2O

Разложение карбонатов и гидрокарбонатов

Карбонаты натрия и калия плавятся при нагревании.

Карбонаты лития, щелочноземельных металлов и магния разлагаются на оксид металла и углекислый газ:

Li2CO3 → Li2O + CO2

CaCO3 → CaO + CO2

MgCO3 → MgO + CO2

Карбонат аммония разлагается при 30оС на гидрокарбонат аммония и аммиак:

(NH4)2CO3 → NH4HCO3 + NH3

Гидрокарбонат аммония при дальнейшем нагревании разлагается на аммиак, углекислый газ и воду:

NH4HCO3 → NH3 + CO2 + H2O

Гидрокарбонаты натрия и калия при нагревании разлагаются на карбонаты, углекислый газ и воду:

2NaHCO3 → Na2CO3 + H2O + CO2

2KHCO3 → K2CO3 + H2O + CO2

Гидрокарбонат кальция при нагревании до 100оС разлагается на карбонат, углекислый газ и воду:

Ca(HCO3)2 → CaCO3 + H2O + CO2

При нагревании до 1200оС образуются оксиды:

Ca(HCO3)2 → CaO + H2O + 2CO2

Разложение сульфатов

Сульфаты щелочных металлов при нагревании не разлагаются.

Сульфаты алюминия, щелочноземельных металлов, меди, железа и магния разлагаются до оксида металла, диоксида серы и кислорода:

2MgSO4 → 2MgO + 2SO2 + O2

2CuSO4 → 2CuO + 2SO2 + O2

2BaSO4 → 2BaO + 2SO2 + O2

2Al2(SO4)3 → 2Al2O3 + 6SO2 + 3O2

2Fe2(SO4)3 → 2Fe2O3 + 6SO2 + 3O2

Сульфаты серебра и ртути разлагаются до металла, диоксида серы и кислорода:

Ag2SO4 → 2Ag + SO2 + O2

2HgSO4 → 2Hg + 2SO2 + O2

Разложение фосфатов, гидрофосфатов и дигидрофосфатов

Эти реакции, скорее всего, в ЕГЭ по химии не встретятся! Гидрофосфаты щелочных и щелочноземельных металлов разлагаются до пирофосфатов:

2Na2HPO4 →  H2O + Na4P2O7

2K2HPO4 →  H2O + K4P2O7

2CaHPO4 →  H2O + Ca2P2O7

Ортофосфаты при нагревании не разлагаются (кроме фосфата аммония).

Разложение сульфитов

Сульфиты щелочных металлов разлагаются до сульфидов и сульфатов:

4Na2SO3 →  Na2S + 3Na2SO4

Разложение солей аммония

Некоторые соли аммония, не содержащие анионы кислот-сильных окислителей, обратимо разлагаются при нагревании без изменения степени окисления. Это хлорид, бромид, йодид, дигидрофосфат аммония:

NH4Cl →  NH3 + HCl

NH4Br →  NH3 + HBr

NH4l →  NH3 + Hl

NH4H2PO4 →  NH3 + H3PO4

Cоли аммония, образованные кислотами-окислителями, при нагревании также разлагаются. При этом протекает окислительно-восстановительная реакция. Это дихромат аммония, нитрат и нитрит аммония:

NH4NO3 → N2O + 2H2O

NH4NO2 → N2 + 2H2O

Видеоопыт разложения нитрита аммония можно посмотреть здесь.

(NH4)2Cr2O7 → N2 + Cr2O3 + 4H2O

Разложение перманганата калия

2KMnO4 → K2MnO4 + MnO2 + O2

Разложение хлората и перхлората калия

Хлорат калия при нагревании разлагается до перхлората и хлорида:

4KClO3 → 3KClO4 + KCl

При нагревании в присутствии катализатора (оксид марганца (IV)) образуется хлорид калия и кислород:

2KClO3 → 2KCl + 3O2

Перхлорат калия при нагревании разлагается до хлорида и кислорода:

KClO4 → KCl + 2O2

Поделиться ссылкой:

chemege.ru

ЕГЭ. Реакции разложения

Реакции разложения

1) термическое разложение нерастворимых оснований (а также LiOH и Ca(OH)2):

Ca(OH)2 → CaO + H2O

2LiOH → Li2O + H2O

 

Mg(OH)2 → MgO + H2O

Fe(OH)2 → FeO + H2O

Cu(OH)2 → CuO + H2O;

 

2) термическое разложение нерастворимых карбонатов:

CaCO3 → CaO + CO2

FeCO3 → FeO + CO2

MgCO3 → MgO + CO2;

 

3) термическое разложение гидрокарбонатов:

Ca(HCO3)2 → CaCO3 + CO2 + H2O                        

Mg(HCO3)2 → MgCO3 + CO2 + H2O

2NaHCO3 → Na2CO3 + CO2 + H2O;

 

4) термическое разложение некоторых кислот:

H2CO3 → CO2 + H2O

H2SO3 → SO2 + H2O

H2SiO3 → SiO

2 + H2O

4HNO3 → 4NO2 + O2 + 2H2O

 

5) термическое разложение нитратов:

MNO3 → MNO2 + O2  M – металл, находящийся в ряду напряжений металлов левее Mg, исключая Li.
MNO3 → MO + NO2 + O2 M – металл, находящийся в ряду напряжений металлов от Mg до Cu (Mg и Cu включительно), а также Li.
MNO3 → M + NO2 + O2 M – металл, находящийся в ряду напряжений металлов правее Cu.

 

6) термическое разложение солей аммония:

NH4Cl → NH3 + HCl                                   

(NH4)3PO4 → H3PO4 + 3NH3                     

(NH4)2CO

3 → 2NH3 + CO2+ H2O

NH4HCO3 → NH3 + CO2+ H2O

 

Соли аммония азотной и азотистой кислот разлагаются с изменением степени окисления:

NH4NO3 →  N2O + H2O
NH4NO2 →  N2 + H2O

 

7) некоторые примеры термического разложения с изменением степени окисления (разложение нитратов также идет с изменением степени окисления):

2H2O2 → 2H2O + O2

2KMnO4 → K2MnO4 + MnO2 + O2

2HgO → 2Hg + O2

 

8) термическое разложение солей кислот хлора:

2KClO3 → 2KCl + 3O2 (t, kt = MnO2)

 

9) термическое разложение гидроксокомплексов:

K2[Zn(OH)4] → K2ZnO2 + 2H2O (t)
Na[Al(OH)4] →  NaAlO2 + 2H2O (t)

chemrise.ru

Что такое реакция разложения в химии? Примеры реакции разложения

Реакции разложения играют большую роль в жизни планеты. Ведь именно они способствуют уничтожению отходов жизнедеятельности всех биологических организмов. Кроме того, этот процесс ежедневно помогает человеческому телу усваивать различные сложные соединения путем расщепления их на простые (катаболизм). Помимо всего перечисленного, данная реакция способствует образованию простых органических и неорганических веществ из сложных. Давайте узнаем больше об этом процессе, а также рассмотрим практические примеры химической реакции разложения.

Что называется реакциями в химии, какие виды их бывают и от чего они зависят

Прежде чем изучить информацию о разложении, стоит узнать о химических процессах в целом. Под этим названием подразумевается способность молекул одних веществ взаимодействовать с другими и образовывать таким способом новые соединения.

химическая реакция разложения примеры

К примеру, если между собою провзаимодействуют кислород и две молекулы водорода, в результате получится две молекулы оксида гидрогена, который мы все знаем под названием вода. Данный процесс можно записать с помощью такого химического уравнения: 2Н2↑ + О2↑ → 2Н2О.

Хотя существуют разные критерии, по которым различают химические реакции (тепловой эффект, катализаторы, наличие/отсутствие границ раздела фаз, изменение степеней окисления реагентов, обратимость/необратимость), чаще всего их классифицируют по типу превращения взаимодействующих веществ.

Таким образом, выделяется четыре вида химических процессов.

  • Соединение.
  • Разложение.
  • Обмен.
  • Замещение.

Все вышеперечисленные реакции графически записываются с помощью уравнений. Общая их схема выглядит таким образом: А → Б.

В левой части этой формулы находятся исходные реагенты, а в правой – вещества, образующиеся вследствие реакции. Как правило, для ее начала необходимо воздействие температурой, электричеством или использование катализирующих добавок. Их наличие также должно указываться в химическом уравнении.

Для этого вида химического процесса характерно образование двух и больше новых соединений из молекул одного вещества.

Говоря более простым языком, реакцию разложения можно сравнить с домиком из конструктора. Решив построить машинку и кораблик, ребенок разбирает начальное строение и из его деталей сооружает желаемое. При этом структура самих элементов конструктора не меняется, так же как это происходит с атомами вещества, участвующего в расщеплении.

Как выглядит уравнение рассматриваемой реакции

Несмотря на то, что на разъединение сложного вещества на более простые составляющие способны сотни соединений, все подобные процессы происходят по одному принципу. Изобразить его можно с помощью схематической формулы: АБВ → А+Б+В.

В ней АБВ – это начальное соединение, подвергшееся расщеплению. А, Б и В – это вещества, образованные из атомов АБВ в процессе реакции разложения.

Виды реакций расщепления

Как уже было сказано выше, чтобы начать какой-то химический процесс, часто необходимо оказать определенное воздействие на реагенты. В зависимости от типа подобной стимуляции, выделяют несколько видов разложения:

  • Биорасщепление (биологическое разложение). Его суть — в распаде более сложных соединений на простые под воздействием живых организмов (микроорганизмов). Иллюстрацией данного процесса может быть гниение или разложение мусора. что такое реакция разложения
  • Термолизом называется расщепление веществ под воздействием высоких температур. У этого вида есть подвид – пиролиз. При реакции разложения такого вида для ее проведения вещества не только подогревают, но и лишают доступа кислорода и других окислителей к ним.
  • Электролизом именуется расщепление соединений с помощью электрического тока.
  • Радиолиз – распад вещества под воздействием ионизирующего излучения. Кстати, этот процесс активно используется в лучевой терапии.
  • Сольволиз – данную реакцию можно считать рубежной между разложением и обменом (АБ + ВГ → АГ + БВ ). Хотя она и приводит к расщеплению сложных соединений на простые под влиянием растворителя, но при этом высвобожденные атомы исходного реагента взаимодействуют не только между собою, но и с катализатором. В зависимости от его сущности выделяются три подвида сольволиза: алкоголиз (спирты — ROH), гидролиз (вода — Н2О) и аммонолиз (аммиак — NH3).

Реакция разложения перманганата калия (KMnO4)

Разобравшись с теорией, стоит рассмотреть практические примеры процесса расщепления веществ.

перманганата калия реакция разложения

Первым из них станет распад KMnO4 (в простонародье именуется марганцовкой) вследствие нагревания. Уравнение реакции разложения перманганата калия выглядит таким образом: 2KMnO4 (t 200°С) → K2MnO4 + MnO2 + O2↑.

реакция разложения алканов

Из представленной химической формулы видно, что для активации процесса необходимо нагреть исходный реагент до 200 градусов по Цельсию. Для лучшего протекания реакции марганцовку помещают в вакуумный сосуд. Из этого можно сделать вывод, что данный процесс является пиролизом.

В лабораториях и на производстве он проводится для получения чистого и контролируемого кислорода.

Термолиз хлората калия (KClO3)

Реакция разложения бертолетовой соли — это еще один пример классического термолиза в чистом виде.

реакция разложения метана

Проходит упоминаемый процесс в два этапа и выглядит таким образом:

  • 2 KClO3(t 400 °С) → 3KClO4 + KCl.
  • KClO4 (t от 550 °С) → KCl + 2О2

Также термолиз хлората калия можно провести и при более низких температурах (до 200 °С) в один этап, но для этого нужно, чтобы в реакции приняли участие катализирующие вещества – оксиды различных металлов (купрум, ферум, манган и т. п.).

Уравнение такого рода будет выглядеть таким образом: 2KClO3(t 150 °С , MnO2) → KCl + 2О2.

Как и перманганат калия, бертолетова соль используется в лабораториях и промышленности для получения чистого кислорода.

Электролиз и радиолиз воды (Н20)

Еще одним интересным практическим примером рассматриваемой реакции будет разложение воды. Его можно произвести двумя способами:

реакция разложения
  • Под воздействием на оксид гидрогена электрического тока: Н2О → Н2↑ + О2↑. Рассматриваемый способ получения кислорода используют подводники на своих субмаринах. Также в будущем его планируют употреблять для получения водорода в больших количествах. Главным препятствием для этого сегодня являются огромные энергетические затраты, необходимые для стимуляции реакции. Когда будет найден способ их минимизировать, электролиз воды станет основным способом производства не только водорода, но и кислорода.
  • Расщепить воду можно и при воздействии на нее альфа-излучением: Н2О → Н2О+. В результате этого молекула оксида гидрогена теряет один электрон, ионизируясь. В таком виде Н2О+снова вступает в реакцию с другими нейтральными молекулами воды, образуя высокореактивный гидроксид-радикал: Н2О+ Н2О+→ Н2О + ОН. Потерянный электрон, в свою очередь, также параллельно реагирует с нейтральными молекулами оксида гидрогена, способствуя их распаду на радикалы Н и ОН: Н2О + е→ Н + ОН.

Расщепление алканов: метан

Рассматривая различные способы разъединения сложных веществ, стоит уделить особое внимание реакции разложения алканов.

Под этим названием скрываются предельные углеводороды с общей формулой СХН2Х+2.В молекулах рассматриваемых веществвсе атомы карбона соединены одинарными связями.

Представители этого ряда встречаются в природе во всех трех агрегатных состояниях (газ, жидкость, твердое тело).

Все алканы (реакция разложения представителей этого ряда — ниже) легче воды и не растворяются в ней. При этом они сами являются отличными растворителями для других соединений.

Среди основных химических свойств таких веществ (горение, замещение, галогенирование, дегидрирование) — и способность расщепляться. Однако данный процесс может происходить как полностью, так и частично.

Вышеупомянутое свойство можно рассмотреть на примере реакции разложения метана (первый член алканового ряда). Этот термолиз происходит при 1000 °С: СН4↑ → С+2Н2.

Однако если проводить реакцию разложения метана при более высокой температуре (1500 °С), а потом резко снизить ее, этот газ расщепится не полностью, образуя этилен и водород: 2СН4↑ → C2H4↑ + 3H2↑.

Разложение этана

Второй член рассматриваемого алканового ряда — это С2Н4(этан). Реакция разложения его происходит также под воздействием высокой температуры (50 °С) и при полном отсутствии кислорода или других окислителей. Выглядит она следующим образом: C2H6↑ → C2H4↑ + H2. реакция разложения этана

Представленное выше уравнение реакции разложения этана до водорода и этилена нельзя считать пиролизом в чистом виде. Дело в том, что данный процесс происходит с присутствием катализатора (например, металла никеля Ni или водяного пара), а это противоречит определению пиролиза. Поэтому о представленном выше примере расщепления корректно говорить как о процессе разложения, происходящем при пиролизе.

Стоит отметить, что рассмотренная реакция в промышленности широко используется для получения самого производимого органического соединение в мире – газа этилена. Однако из-за взрывоопасности C2H6чаще этот простейший алкен синтезируют из других веществ.

Рассмотрев определения, уравнение, виды и различные примеры реакции разложения, можно сделать вывод, что она играет очень большую роль не только для человеческого организма и природы, но и для промышленности. Также с ее помощью в лабораториях удается синтезировать многие полезные вещества, что помогает ученым проводить важных химические исследования.

fb.ru

Реакция разложения: примеры и уравнение

Образование 27 июля 2017

Часто от приличных на вид людей можно услышать о вреде для здоровья какого-то продукта или средства. Причем главным аргументом в пользу такого утверждения будет фраза: «Это химия!». Однако так говорить могут лишь те, кто в школе явно прогуливал уроки по данному предмету. Дело в том, что человеческий, да и любой биологический организм, сам по себе состоит из множества органических и неорганических веществ. При этом поддерживать его жизнеспособность помогают различные процессы, непрерывно происходящие внутри него. Одним из главных среди них — является химическая реакция разложения. Давайте узнаем больше о ней и особенностях ее протекания с органическими и неорганическими веществами.

Что за процесс называется химической реакцией

Прежде всего, стоит узнать значение понятия «химическая реакция». Это словосочетание означает превращение одного и более исходных веществ (называются реагентами) в другие. В процессе подобной метаморфозы ядра атомов взаимодействующих соединений не поддаются изменениям, однако происходит перераспределение электронов. Таким образом, после превращения на выходе образуются новые атомные соединения.

Химические реакции имеют качественное отличие от физических и ядерных.

  • В результате первых исходные реагенты никогда не меняют свой состав, хотя и способны образовывать смеси или переходить из одного агрегатного состояния в другое. В отличие от них, процессы химические сопровождаются образованием новых соединений, с совершенно иными свойствами.
  • Результатом вторых является изменения изотопного состава и числа атомов. Таким образом, на выходе из одних элементов, образовываются другие. Однако для химических процессов, столь глубокие метаморфозы не характерны. Поскольку изменения, произошедшие из-за них, не влияют на внутреннюю структуру атомов.

Условия протекания химических реакций

Во многих случаях, для успешного протекания процессов такого рода, необходим просто физический контакт реагентов друг с другом или их смешивание. Но часто для начала химической реакции, ей необходимы катализаторы. В этой роли могут выступать как различные вещества, так и определенные внешние условия.

  • Воздействие температуры. Для того чтобы запустить отдельные химические процессы, необходимо нагревать реагенты. К примеру, чтобы начать реакцию разложения карбоната кальция, это температуру этого соединений необходимо повысить до 900-1200 °C.
  • Электромагнитные волны. Наиболее эффективно стимулирующей протекание любых процессов является воздействие на реагенты световыми волнами. Такие реакции носят название «фотохимические». Классическим примером такой реакции является фотосинтез.
  • Ионизирующее излучение.
  • Воздействие электрического тока.
  • Разного рода механическое влияние на реагирующие вещества.

Какие виды химических реакций существуют

Классификация подобных процессов в основном производится по шести признакам.

  • По наличию границы разделения фаз: гомо-/гетерогенные реакции.
  • По выделению/поглощению тепла: экзотермически и эндотермические процессы.
  • По наличию/отсутствию катализаторов: каталитические и некаталитические реакции.
  • По направлению протекания: обратимые и необратимые процессы. В зависимости от данной категории находится тип знака между левой и правой частями химического уравнения. При необратимых — это две стрелки направленные в противоположные стороны, при обратимых — только одна, направленная слева на право.
  • По изменению степени окисления. По этому принципу выделяют окислительно-восстановительную реакцию.
  • Разложение (расщепление), соединение, замещение и обмен – это виды химических процессов по типу метаморфоз реагентов.

Реакция разложения (расщепления): что это

Под данным термином подразумевается процесс, в результате которого одно сложное вещество разделяется на два и более простых. В большинстве случаев катализатором для этого выступает высокая температура. По этой причине данный процесс еще называют реакцией термического разложения.

В качестве примера можно привести один из классических способов получения чистого кислорода (О2) в промышленности. Это происходит в следствии нагревании KMnO4 (более известен всем под бытовым названием «марганцовка»).

В результате расщепления образуется не только кислород, но и манганат калия (K2MnO4) , а также диоксид марганца (MnO2).

Уравнение реакции разложения

Любое химическое уравнение состоит из двух частей: левой и правой. В первой из них записываются реагирующие соединения, а во второй – продукты реакции. Между ними обычно ставится направленная вправо стрелка. Иногда она бывает двухсторонней, если речь идет об обратимом процессе. В отдельных случаях ее допустимо заменить знаком равенства (=).

Рассматриваемый процесс, как и остальные виды химических процессов, имеет собственную формулу. Схематически уравнение реакции разложения выглядит таким образом: AB (t) → A+B.

Стоит помнить, что преимущественное большинство таких процессов происходит под воздействием тепла. Чтобы сообщить об этом, над стрелкой или рядом с ней часто ставится либо литера t, либо треугольник. Однако, иногда вместо тепла, в роли катализаторов выступают различные вещества, излучения.

В рассмотренной выше формуле AB — то исходное сложное соединения, A, B – это новые вещества, образованные в результате реакции разложения.

Примеры практические такого процесса встречаются очень часто. Можно проиллюстрировать данную формулу, с помощью уравнения процесса, описанного в предыдущем пункте: 2KMnO4 (t) → K2MnO4 + MnO2 + O2↑.

Виды реакций разложения

В зависимости от типа катализатора (который способствует расщеплению сложного вещества на более простые) выделяют несколько видов разложения.

    • Биодеградация – распад веществ вследствие деятельности живых организмов (микроорганизмы, грибы, водоросли). Более простым языком данный процесс можно назвать гниением. Именно из-за него портятся продукты. В одной стороны это препятствует их долгому хранению, с другой – помогает природе утилизировать все лишнее, восстанавливая таким образом экосистемы.
    • Радиолиз – распад соединений при помощи воздействия на их молекулы ионизирующим излучением.
    • Термолиз – повышение температуры для того, чтобы запустить реакцию разложения (примеры подобных процессов можно найти в пунктах 8-9).

      Этот вид расщепления имеет подвид – пиролиз. От обычного термолиза он отличается тем, что помимо воздействия высокой температуры на молекулы вещества, также их лишают возможности взаимодействовать с кислородом (О2).

    • Сольволиз – обменное разложения между растворенным веществом и непосредственно самим растворителем. В зависимости от типа последнего, выделяются такие виды этого процесса: гидролиз (вода), алколиз (спирты), аммонолиз (амиак).
    • Электролиз – разложение молекул с помощью воздействия на них электрического тока (пример в следующем пункте).

Расщепление Н2О

Разобравшись с теорией, касающейся реакции разложения, примеры практические ее проведения стоит рассмотреть. Поскольку Н2О сегодня является одним из наиболее доступных веществ для проведения химических опытов, стоит начать с нее.

Данная реакция разложения воды именуется еще электролизом и выглядит таким образом: 2Н2О (электрический ток) → 2Н2↑ + О2↑.
Расшифровывается данное уравнение так: под воздействием на молекулы воды электрического тока, они расщепляют и образуют два газа – кислород и водород.

Стоит отметить, что этот метод активно используется на подводных лодках для получения кислорода. В современном мире он заменил более дорогой способ получения этого жизненно важного вещества из пероксида натрия (Na

2O2), с помощью его взаимодействия с углекислым газом: Na2O2 + CO2↑ → Na2CO3 + O2↑.

В перспективе реакция разложения воды может иметь огромное значение для будущего планеты. Поскольку таким образом можно добывать не только кислород, но и водород, использующийся как ракетное топливо. Разработки в этой области уже ведутся многие годы, однако основной проблемой является необходимость снизить количество энергозатрат на расщепление молекул воды.

Расщепление Н2О2

Среди других примеров реакции разложения стоит обратить внимание на образование воды и кислорода из пероксида водорода (перекись).

Выглядит она таким образом: Н2О2 (t) → 2Н2О + О2↑.

Данный процесс также является термическим, поскольку для его начала, необходимо, чтобы исходное веществ было нагрето до температуры в 150 °C.

Именно по этой причине, перекись водорода (которую большинство использует для обработки ран) не превращается в воду, стоя в домашних аптечках.

Однако стоит помнить, что реакция разложения пероксида водорода может происходить и при обычной комнатной температуре, если вещество контактирует с такими соединениями, как каустическая сода (NaOH) или диоксид марганца (MnO2). Также в роли катализаторов могут выступать платина (Pt) и купрум (Cu).

Реакция термического разложения CaCO3

Еще одним интересным примером может служить расщепление карбоната кальция. Данный процесс можно записать с помощью такого уравнения: CaCO3(t) → CaO + CO2↑.

Продуктом этой реакции буде негашеная известь (оксид кальция) и углекислый газ.

Представленный выше процесс активно используется в промышленности для получения углекислого газа. Подобные реакции производятся в специализированных шахтах, поскольку расщепление карбоната кальция происходит лишь при температуре от 900 °C.


Источник: fb.ru

monateka.com

Реакции разложения

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Успех в обучении зависит от желания ребенка учиться. Для того чтобы повысить мотивацию к изучению химии применяю различные технологии в обучении, которые позволяют включить обучающихся в активный познавательный процесс.

Цели урока:

  • Закрепить и расширить знания учащихся о химических реакциях, их признаках и условиях протекания;
  • Познакомить с реакциями разложения и начать формировать умение составлять уравнения химических реакций;
  • Продолжить отрабатывать умение учащихся расставлять коэффициенты;
  • Продолжить отрабатывать умение учащихся решать задачи по уравнениям химических реакций;
  • Продолжить формировать умения наблюдать, сравнивать;
  • Формировать химическую культуру, умения выслушать других при работе в классе, в группе.

Оборудование:

  1. Для демонстрационных опытов: тигельные щипцы, лучинка, спиртовка, KNO3 кристаллический, древесный уголь, HNO3 (конц.), Н2О2, MnO2., лабораторный штатив с лапкой;
  2. Компьютер, проектор, презентация “Реакции разложения”.

Ход урока

I. Организационный момент.

II. Мотивационный момент.

Самое интересное в окружающем нас мире – это то, что он очень сложно устроен, и к тому же постоянно изменяется. Каждую секунду в нем происходит неисчислимое множество химических реакций, в результате которых одни вещества превращаются в другие. Человек сделал вдох – и в организме начались реакции окисления органических веществ. Он сделал выдох – и в воздух попал углекислый газ, который затем поглотится растениями и в них превратится в углеводы. Некоторые реакции мы можем наблюдать непосредственно, например ржавление железных предметов, свертывание крови, сгорание автомобильного топлива. Однако подавляющее большинство химических процессов остаются невидимыми, но именно они определяют свойства окружающего мира. Чтобы управлять превращениями веществ, необходимо как следует разобраться в природе подобных реакций. Наша задача, изучив свойства веществ, научиться использовать полученные знания во благо  человечества.

III. Актуализация знаний.

  1. Что мы знаем о химических реакциях? (Cлайд 2)
  2. Какие условия необходимы для возникновения химической реакции? (Слайд 3)
  3. Каковы признаки протекания химической реакции? (Слайд 4)
  4. Приведите примеры химических реакций.

Вывод: Химических реакций много. Они протекают постоянно. Что нужно сделать, чтобы не запутаться в этом многообразии химических реакций?

Научиться классифицировать химические реакции.

Введение понятия реакции разложения.

1. Просмотр мультимедиа “Электролиз воды”(цифровая база видео по химии). Приложение 2

Затем в ходе беседы оформить запись:

вода → водород + кислород

2О 2Н2 + О2

2. Демонстрационные опыты.

а) Разложение калийной селитры. В пробирку помещают KNO3, пробирка закрепляется в штативе и подогревается – селитра быстро плавится, превращается в густую жидкость. Бросить в расплав раскаленный уголек, уголек в пробирке еще более раскаляется, начинает подпрыгивать, взаимодействуя с кислородом.

2KNO3 2KNO2 + O2(Слайд 5)

б) Разложение гидроксида меди(II). Подогреть пробирку со свежеполученным осадком Cu(OH)2 – он почернеет из-за образовавшегося оксида меди(II).

Cu(OH)2 CuO + H2O (Слайд 6)

в) Разложение пероксида водорода с помощью катализатора (MnO2, сырой моркови, картофеля).

H2O2 2H2O + O2 (Слайд 7)

г) Разложение оксида ртуть (II). Опыт Дж. Пристли

2HgO 2Hg + O2 ↑ (Слайд 8)

Обсуждаются вопросы:

  • Что объединяет все эти реакции? (Слайд 9)
  • В чем их отличие?
  • Как, одним словом мы можем назвать процессы, которые протекают? (Слайд 9)
  • Какие условия необходимы для осуществления данных реакций? (Слайд 9)

Вывод:

1. Идет процесс разложения веществ (реакция разложения). Во всех реакциях вступает в реакцию одно вещество, а образуются два или более новых веществ: как простых, так и сложных. Попытайтесь сформулировать определение реакции разложения.

2. Как правило, почти все реакции разложения относятся к эндотермическими реакциям, т.к. для протекания требуется определенные условия, нагревание, электрический ток, присутствие других веществ, ускоряющих реакция – катализаторов. (Слайд 10)

Катализаторы в автомобилях. (Слайд 11)

  • На дороги ежедневно выезжают миллионы автомобилей, и каждый из них – источник загрязнения воздуха. Особенно это чувствуется в крупных городах, где выхлопные газы автомобилей могут создавать большие проблемы.
  • В современных автомашинах присутствует каталитический преобразователь или автомобильный катализатор. Задачей автомобильного катализатора является снижение количества вредных веществ в выхлопных газах. Среди них:
  • окись углерода (СО) – ядовитый газ без цвета и запаха
  • углеводороды, также известные как летучие органические соединения – один из главных компонентов смога, образуется за счёт неполного сгорания топлива
  • оксиды азота (NO и NO2 ) – также являются компонентом смога, а также кислотных дождей, оказывают влияние на слизистую человека.

Катализаторы в природе распространены повсеместно. Достаточно сказать, что все превращения веществ в живых организмах происходят с участием природных катализаторов – ферментов и поэтому не требуют высокой температуры. Это очень важно – иначе живые ткани, проводя химические реакции, могли бы свариться, Без особых “биологических” катализаторов – ферментов – не получится ни вкусный хлеб, ни аппетитный сыр, ни квашеная капуста. Разрезанное яблоко темнеет на воздухе, оттого что фермент полифенолоксидаза ускоряет окисление находящихся в клетках плода полифенолов – органических веществ. Когда ранку заливают перекисью водорода, пероксид водорода “вскипает” – бурно разлагается на воду и кислород под влиянием фермента каталазы, находящегося в крови. Каталаза нужна организму для уничтожения пероксида водорода, который образуется в процессе клеточного дыхания.

В пищеварительных соках содержится десятки ферментов: липазы, разлагающие жиры на глицерин и органические кислоты; протеазы, разлагающие белки, и др.

Катализаторы применяются и в химической промышленности при синтезе разнообразных веществ, в том числе таких важных продуктов химии, как аммиак NH3 и серная кислота H2SO4.

Катализаторы – вещества из разряда самых необходимых, хотя порой мы об этом мало задумываемся.

Химические реакции, в результате которых теплота поглощается, называются эндотермическими. (Слайд 12)

Вещества, которые изменяют скорость химической реакции, но не расходуются в результате реакции, называются катализаторами. (Слайд 12)

IV. Закрепление.

Выполните задания.

(Слайд 13)

  • Расставьте коэффициенты, преобразовав схемы в уравнения реакций. Определите реакцию разложения вашего варианта. Дайте объяснение.
Вариант 1

CuO + H2 → Cu + H2O

CO + O2 → CO2

AI + CI2 → AICI3

CaCO3 → CaO + CO2

 Вариант 2

HCI + AI → AICI3 + H2

Na2O + H2O → NaOH

KCIO3 → KCI + O2

Na + H2 → NaH

  • Задача. Определите количество вещества и массу одного из продуктов реакции, если в результате реакции разложилось 2 моль вещества.

V. Задание на дом § 27, упр. 1, 2 стр. 155 (Слайд 14).

VI. Используемая литература: 

  1. Габриелян О.С. «Химия».8 класс. Учебник.
  2. О.С. Габриелян, Н.П. Воскобойникова, А.В.Яшукова «Химия», 8 класс. Настольная книга учителя. М.: Дрофа, 2002.
  3. О.С.Габриелян, Т.В.Смирнова. Изучаем химию в 8 классе.
  4. Л.Ю. Аликберова “Занимательная химия: Книга для учащихся, учителей и родителей”, М.: АСТ – ПРЕСС, 1999.
  5. Энциклопедия для детей. Том 17. Химия. М.: Аванта +, 2000.
  6. Материалы Интернета.

urok.1sept.ru

Реакция разложения: примеры и уравнение

Часто от приличных на вид людей можно услышать о вреде для здоровья какого-то продукта или средства. Причем главным аргументом в пользу такого утверждения будет фраза: «Это химия!». Однако так говорить могут лишь те, кто в школе явно прогуливал уроки по данному предмету. Дело в том, что человеческий, да и любой биологический организм, сам по себе состоит из множества органических и неорганических веществ. При этом поддерживать его жизнеспособность помогают различные процессы, непрерывно происходящие внутри него. Одним из главных среди них — является химическая реакция разложения. Давайте узнаем больше о ней и особенностях ее протекания с органическими и неорганическими веществами.

Что за процесс называется химической реакцией

Прежде всего, стоит узнать значение понятия «химическая реакция». Это словосочетание означает превращение одного и более исходных веществ (называются реагентами) в другие. В процессе подобной метаморфозы ядра атомов взаимодействующих соединений не поддаются изменениям, однако происходит перераспределение электронов. Таким образом, после превращения на выходе образуются новые атомные соединения.

реакция разложения примеры

Химические реакции имеют качественное отличие от физических и ядерных.

  • В результате первых исходные реагенты никогда не меняют свой состав, хотя и способны образовывать смеси или переходить из одного агрегатного состояния в другое. В отличие от них, процессы химические сопровождаются образованием новых соединений, с совершенно иными свойствами.
  • Результатом вторых является изменения изотопного состава и числа атомов. Таким образом, на выходе из одних элементов, образовываются другие. Однако для химических процессов, столь глубокие метаморфозы не характерны. Поскольку изменения, произошедшие из-за них, не влияют на внутреннюю структуру атомов.

Условия протекания химических реакций

Во многих случаях, для успешного протекания процессов такого рода, необходим просто физический контакт реагентов друг с другом или их смешивание. Но часто для начала химической реакции, ей необходимы катализаторы. В этой роли могут выступать как различные вещества, так и определенные внешние условия.

реакция термического разложения
  • Воздействие температуры. Для того чтобы запустить отдельные химические процессы, необходимо нагревать реагенты. К примеру, чтобы начать реакцию разложения карбоната кальция, это температуру этого соединений необходимо повысить до 900-1200 °C.
  • Электромагнитные волны. Наиболее эффективно стимулирующей протекание любых процессов является воздействие на реагенты световыми волнами. Такие реакции носят название «фотохимические». Классическим примером такой реакции является фотосинтез.
  • Ионизирующее излучение.
  • Воздействие электрического тока.
  • Разного рода механическое влияние на реагирующие вещества.

Какие виды химических реакций существуют

Классификация подобных процессов в основном производится по шести признакам.

  • По наличию границы разделения фаз: гомо-/гетерогенные реакции.
  • По выделению/поглощению тепла: экзотермически и эндотермические процессы.
  • По наличию/отсутствию катализаторов: каталитические и некаталитические реакции.
  • По направлению протекания: обратимые и необратимые процессы. В зависимости от данной категории находится тип знака между левой и правой частями химического уравнения. При необратимых — это две стрелки направленные в противоположные стороны, при обратимых — только одна, направленная слева на право.
  • По изменению степени окисления. По этому принципу выделяют окислительно-восстановительную реакцию.
  • Разложение (расщепление), соединение, замещение и обмен – это виды химических процессов по типу метаморфоз реагентов.

Под данным термином подразумевается процесс, в результате которого одно сложное вещество разделяется на два и более простых. В большинстве случаев катализатором для этого выступает высокая температура. По этой причине данный процесс еще называют реакцией термического разложения.

В качестве примера можно привести один из классических способов получения чистого кислорода (О2) в промышленности. Это происходит в следствии нагревании KMnO4 (более известен всем под бытовым названием «марганцовка»).

реакция разложения карбоната кальция

В результате расщепления образуется не только кислород, но и манганат калия (K2MnO4) , а также диоксид марганца (MnO2).

Уравнение реакции разложения

Любое химическое уравнение состоит из двух частей: левой и правой. В первой из них записываются реагирующие соединения, а во второй – продукты реакции. Между ними обычно ставится направленная вправо стрелка. Иногда она бывает двухсторонней, если речь идет об обратимом процессе. В отдельных случаях ее допустимо заменить знаком равенства (=).

реакция разложения уравнение

Рассматриваемый процесс, как и остальные виды химических процессов, имеет собственную формулу. Схематически уравнение реакции разложения выглядит таким образом: AB (t) → A+B.

Стоит помнить, что преимущественное большинство таких процессов происходит под воздействием тепла. Чтобы сообщить об этом, над стрелкой или рядом с ней часто ставится либо литера t, либо треугольник. Однако, иногда вместо тепла, в роли катализаторов выступают различные вещества, излучения.

В рассмотренной выше формуле AB — то исходное сложное соединения, A, B – это новые вещества, образованные в результате реакции разложения.

Примеры практические такого процесса встречаются очень часто. Можно проиллюстрировать данную формулу, с помощью уравнения процесса, описанного в предыдущем пункте: 2KMnO4 (t) → K2MnO4 + MnO2 + O2↑.

Виды реакций разложения

В зависимости от типа катализатора (который способствует расщеплению сложного вещества на более простые) выделяют несколько видов разложения.

    • Биодеградация – распад веществ вследствие деятельности живых организмов (микроорганизмы, грибы, водоросли). Более простым языком данный процесс можно назвать гниением. Именно из-за него портятся продукты. В одной стороны это препятствует их долгому хранению, с другой – помогает природе утилизировать все лишнее, восстанавливая таким образом экосистемы.
    • Радиолиз – распад соединений при помощи воздействия на их молекулы ионизирующим излучением.
    • Термолиз – повышение температуры для того, чтобы запустить реакцию разложения (примеры подобных процессов можно найти в пунктах 8-9).

      Этот вид расщепления имеет подвид – пиролиз. От обычного термолиза он отличается тем, что помимо воздействия высокой температуры на молекулы вещества, также их лишают возможности взаимодействовать с кислородом (О2).

    • Сольволиз – обменное разложения между растворенным веществом и непосредственно самим растворителем. В зависимости от типа последнего, выделяются такие виды этого процесса: гидролиз (вода), алколиз (спирты), аммонолиз (амиак).
    • Электролиз – разложение молекул с помощью воздействия на них электрического тока (пример в следующем пункте).химическая реакция разложения

Расщепление Н2О

Разобравшись с теорией, касающейся реакции разложения, примеры практические ее проведения стоит рассмотреть. Поскольку Н2О сегодня является одним из наиболее доступных веществ для проведения химических опытов, стоит начать с нее.

реакция разложения воды

Данная реакция разложения воды именуется еще электролизом и выглядит таким образом: 2Н2О (электрический ток) → 2Н2↑ + О2↑.
Расшифровывается данное уравнение так: под воздействием на молекулы воды электрического тока, они расщепляют и образуют два газа – кислород и водород.

Стоит отметить, что этот метод активно используется на подводных лодках для получения кислорода. В современном мире он заменил более дорогой способ получения этого жизненно важного вещества из пероксида натрия (Na2O2), с помощью его взаимодействия с углекислым газом: Na2O2 + CO2↑ → Na2CO3 + O2↑.

В перспективе реакция разложения воды может иметь огромное значение для будущего планеты. Поскольку таким образом можно добывать не только кислород, но и водород, использующийся как ракетное топливо. Разработки в этой области уже ведутся многие годы, однако основной проблемой является необходимость снизить количество энергозатрат на расщепление молекул воды.

Расщепление Н2О2

Среди других примеров реакции разложения стоит обратить внимание на образование воды и кислорода из пероксида водорода (перекись).

Выглядит она таким образом: Н2О2 (t) → 2Н2О + О2↑.

реакция разложения пероксида водорода

Данный процесс также является термическим, поскольку для его начала, необходимо, чтобы исходное веществ было нагрето до температуры в 150 °C.

Именно по этой причине, перекись водорода (которую большинство использует для обработки ран) не превращается в воду, стоя в домашних аптечках.

Однако стоит помнить, что реакция разложения пероксида водорода может происходить и при обычной комнатной температуре, если вещество контактирует с такими соединениями, как каустическая сода (NaOH) или диоксид марганца (MnO2). Также в роли катализаторов могут выступать платина (Pt) и купрум (Cu).

Реакция термического разложения CaCO3

Еще одним интересным примером может служить расщепление карбоната кальция. Данный процесс можно записать с помощью такого уравнения: CaCO3(t) → CaO + CO2↑.

Продуктом этой реакции буде негашеная известь (оксид кальция) и углекислый газ.

Представленный выше процесс активно используется в промышленности для получения углекислого газа. Подобные реакции производятся в специализированных шахтах, поскольку расщепление карбоната кальция происходит лишь при температуре от 900 °C.

fb.ru

люди, помогие мне с химией, пожалуйста, мне надо формулы разложения выучить, а у меня уже от них голова кругом…

Это большая тема, выучи хотя бы некоторые основы. Вопрос задан некорректно: нет таких формул разложения. Возможно, ты имела в виду формулы реакций разложения? Реакции разложения. Химические реакции разложения, по Менделееву, «составляют случаи, обратные соединению, то есть такие, при которых одно вещество даёт два, или, вообще, данное число веществ — большее их число.

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества

А = В + С + D

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества. Примером реакции разложение может служить химическая реакция разложения мела (или известняка под воздействием температуры) : СаСО3=СаО+СО2. Для проведения реакции разложения, как правило, требуется нагревание. Такие процессы — эндотермические, т. е. протекают с поглощением теплоты. Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот

to

CuSO4 5h3O = CuSO4 + 5h3O,

to

Cu(OH)2 = CuO + h3O,

to

h3SiO3 = SiO2 + h3O.

К реакциям разложения окислительно-восстановительного характера относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления

to

2SO3 = 2SO2 + O2,

to

4HNO3 = 2h3O + 4NO2O + O2O,

2AgNO3 = 2Ag + 2NO2 + O2,

(Nh5) 2Cr2O7 = Cr2O3 + N2 + 4h3O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии, в отличие от реакций разложения в неорганической химии, имеют свою специфику. Их можно рассматривать как процессы, обратные присоединению, поскольку в результате чаще всего образуются кратные связи или циклы.

Реакции разложения в органической химии носят название крекинга

С18h48 = С9h28 + С9h30

или дегидрирования C4h20 = C4H6 + 2h3.

В реакциях двух других типов число реагентов равно числу продуктов.

otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *