Рубрика: Разное

Синус тангенс котангенс косинус правила – определения, формулы, примеры, угол поворота

Синус тангенс котангенс косинус правила – определения, формулы, примеры, угол поворота

определения, формулы, примеры, угол поворота

Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии. 

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии. 

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) — отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cosα) — отношение прилежащего катета к гипотенузе.

Тангенс угла (tg α) — отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) — отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию. 

Синус, косинус, тангенс и котангенс. Определения

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса — вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координа

zaochnik.com

Нахождение значений синуса, косинуса, тангенса и котангенса

Для того, чтобы определить значение угла α, необходимо воспользоваться подходящей функции из тригонометрии. Во время решения задач постоянно возникает необходимость в том, чтобы узнать значение углов. Для некоторых углов можно найти точные значения, для других сложно определить точную цифру и можно вывести только приблизительное значение.

В этой статье мы подробно поговорим о функциях из тригонометрии. Мы не только расскажем о свойствах синуса, тангенса и других функций, но и узнаем, как правильно вычислять значения для каждого отдельного случая.

Рассмотрим подробно каждый случай.

Определение 1

Приближенное число для каждой из известных функций можно найти по определению. Для одних можно указать точные значения, для других – только приблизительные.

Соотношения сторон и углов фигуры используются для того, чтобы определить значения для 30°, 45°, 60°. Если угол выходит за пределы 90°, то перед вычислением значения следует воспользоваться специальной формулой для того, чтобы привести угол к нужному виду.

Если известно значение синуса для α, можно быстро узнать значение косинуса для этого же угла. Это легко выполнить с помощью основных тождеств, которые представлены в геометрии.

В некоторых случаях для того, чтобы узнать sin или cos угла, можно использовать подходящую тригонометрическую формулу. Например, по известному значению синуса 45°, мы сможем определить значение синуса 30°, воспользовавшись правилом из тригонометрии.

Если для примера не подходит ни одно из приведенных выше решений, можно найти приближенное значение. В этом вам помогут таблицы основных тригонометрических функций, которые легко можно найти.

Если взять за основу определения, возможно определить значения для определенного угла α. Также можно вычислить значения тангенса и котангенса для определенного случая. Можно найти значений основных функций из тригонометрии для частных вариантов. Это углы 0°, 90°, 180°, 270°, 360°.

Разобьем эти углы на четыре группы: 360·z градусов (2π·z рад), 

zaochnik.com

Тригонометрические функции произвольных углов. Теоремы синусов и косинусов

Тригонометрические функции (синус, косинус, тангенс, котангенс) однозначно определяют острый угол. Это значит, что если нам известно значение хотя бы одной из этих функций, то мы можем найти и сам острый угол, и значение оставшихся трех тригонометрических функций (см. рис. 1).

Рис. 1. Взаимосвязь тригонометрических функций

Взаимосвязь тригонометрических функций:

Например, глядя на определения тангенса и котангенса, легко заметить, что:

Потому что , и наоборот.

Можно переписать в эквивалентном виде:

Если мы знаем, что , то сразу скажем: . Нам даже не надо искать само значение угла.

Кроме того, несложно заметить, что:

И аналогично:

Мы уже почти научились по значению одной тригонометрической функции угла находить остальные. Нужно только связать между собой синус и косинус.

Вспомним, что для прямоугольного треугольника верна теорема Пифагора:

Чтобы перейти к формулам для синуса и косинуса, разделим обе части этого равенства на . Получим:

Откуда, по определению:

Можно получить и другие формулы, связывающие тригонометрические функции одного угла. Например, если мы хотим связать тангенс и косинус, то, взяв формулу

, поделим обе части на , получим:

Откуда:

Аналогично можно получить формулу:

Полученные нами формулы называются основными тригонометрическими тождествами. С их помощью можно, зная значение одной из тригонометрических функций острого угла, найти значения трех остальных. С примером решения такой задачи можно ознакомиться ниже.


 

Вычисление значений тригонометрических функций

Предположим, что нам известно значение синуса острого угла:

Найдем значения остальных тригонометрических функций этого угла.

Зная синус, несложно найти косинус, используя формулу:

Подставляем, получаем:

Поскольку косинус острого угла, по определению, – это отношение длин двух сторон, то он может принимать только положительные значения. Значит,

Теперь найти тангенс и котангенс не составит проблем:

Можно было действовать и по-другому, например найти котангенс через синус, используя формулу:

Потренируйтесь самостоятельно находить значения остальных тригонометрических функций острого угла по известному тангенсу или котангенсу.


Возникает вопрос: зачем нужно рассматривать целых четыре функции, если можно использовать одну, а все остальные при необходимости выражать через эту одну?

Конечно, можно. Вопрос только в удобстве. Если какая-то конструкция часто используется, то ее удобно обозначить отдельно, а также вывести ее свойства, чтобы использовать их при решении конкретных задач.

К примеру, длину можно было бы измерять только в метрах. Но расстояние между городами или размеры телефона в них измерять не очень удобно. Не говоря уже про размеры бактерий или расстояния между планетами. Поэтому люди используют разные единицы измерения для одной и той же величины (миллиметры, километры, дюймы, мили, световые года и т. д.) в зависимости от удобства при решении той или иной задачи (см. рис. 2).

Рис. 2. Использование различных единиц измерения

Такая же ситуация с тригонометрическими функциями – оказалось, что эти  соотношения используются настолько часто, что удобнее ввести и изучать их отдельно, чем выражать через одно.

Более того, можно ввести и другие тригонометрические функции, но они не прижились именно из-за того, что редко встречаются при решении практических задач. Подробнее о них ниже.

vetkaДругие тригонометрические функции

Наблюдательный человек заметит, что при определении тригонометрических функций мы перебрали не все комбинации (см. рис. 3): можно гипотенузу разделить на каждый из катетов.

Рис. 3. Взаимосвязь тригонометрических функций

Взаимосвязь тригонометрических функций:

Действительно, можно ввести еще две функции – секанс и косеканс:

Несложно заметить, что мы получили функции, обратные синусу и косинусу.

В наше время эти функции практически не используют. Слишком просто их заменить синусом и косинусом. Кстати, по этой причине в некоторой литературе не выписываются свойства для котангенса – считается, что его проще выражать через тангенс.

На самом деле, никакой принципиальности в том, чтобы использовать именно эти, а не другие функции, нет. Просто при решении различных задач чаще встречались именно выражения, содержащие синусы, косинусы, тангенсы и котангенсы, поэтому им дали отдельные названия и их подробно изучают.

Какие значения могут принимать тригонометрические функции? Рассмотрим . Поскольку мы определяли синус для острых углов прямоугольных треугольников, то угол  может принимать значение от  до . Формально, не включая эти значения. Но угол может сколь угодно близко к ним приближаться.

Зафиксируем гипотенузу  и уменьшим угол  почти до нуля (см. рис. 4).

Рис. 4. Уменьшенный почти до  угол  при зафиксированной гипотенузе

Почти до нуля уменьшится и катет . А вместе с ним и :

Поэтому можем определить:

Если начать увеличивать  (см. рис. 5), то будет увеличиваться и катет , а вместе с ним будет увеличиваться и значение синуса.

Рис. 5. Увеличенный почти до  угол

Чем ближе к  будет угол, тем ближе катет  будет к гипотенузе . Значит:

Поэтому можем определить:

interneturok.ru

Внеклассный урок — Синус, косинус, тангенс

Синус, косинус, тангенс, котангенс острого угла. Тригонометрические функции.

 

Синус острого угла α прямоугольного треугольника – это отношение противолежащего катета к гипотенузе.
Обозначается так: sin α.

Косинус острого угла α прямоугольного треугольника – это отношение прилежащего катета к гипотенузе.
Обозначается так: cos α.


Тангенс
острого угла α – это отношение противолежащего катета к прилежащему катету.
Обозначается так: tg α.

Котангенс острого угла α – это отношение прилежащего катета к противолежащему.
Обозначается так: ctg α.

 

Синус, косинус, тангенс и котангенс угла зависят только от величины угла.

 

Правила:

Катет b, противолежащий углу α, равен произведению гипотенузы на sin α:

b = c · sin α

Катет a, прилежащий к углу α, равен произведению гипотенузы на cos α:

a = c · cos α

Катет b, противоположный углу α, равен произведению второго катета на tg α:

b = a · tg α

Катет a, прилежащий к углу α, равен произведению второго катета на ctg α:

a = b · ctg α

 

Основные тригонометрические тождества в прямоугольном треугольнике:

(α – острый угол, противолежащий катету b и прилежащий к катету a. Сторона с – гипотенуза. β – второй острый угол).

                              b
                  sin α = —
                              c

 

          sin2 α + cos2 α = 1

 

 

α + β = 90˚

 

                               a
                  cos α = —
                               c

                               1
           1 + tg2 α = ——
                            cos2 α

 

cos α = sin β

 

                             b
                  tg α = —
                             a

                                  1
           1 + ctg2 α =  ——
                                sin2 α

 

sin α = cos β

 

                               a
                  ctg α = —
                               b

                      1            1
            1  + ——  =  ——
                    tg2 α      sin2 α

 

tg α = ctg β

                            sin α
                  tg α = ——
                            cos α

 

 

 

 


При возрастании острого угла
sin α и tg α возрастают, а cos α убывает.


Для любого острого угла α:

sin (90° – α) = cos α

cos (90° – α) = sin α

Пример-пояснение:

Пусть в прямоугольном треугольнике АВС
АВ = 6,
ВС = 3,
угол А = 30º.

Выясним синус угла А и косинус угла В.

 

Решение.

1) Сначала находим величину угла В. Тут все просто: так как в прямоугольном треугольнике сумма острых углов равна 90º, то угол В = 60º:

В = 90º – 30º = 60º.

2) Вычислим sin A. Мы знаем, что синус равен отношению противолежащего катета к гипотенузе. Для угла А противолежащим катетом является сторона ВС. Итак:

               BC      3      1
sin A = —— = — = —
              AB      6       2

3) Теперь вычислим cos B. Мы знаем, что косинус равен отношению прилежащего катета к гипотенузе. Для угла В прилежащим катетом является все та же сторона ВС. Это значит, что нам снова надо разделить ВС на АВ – то есть совершить те же действия, что и при вычислении синуса угла А:

              BC       3      1
cos B = —— = — = —
              AB      6       2

 В итоге получается:
sin A = cos B = 1/2.

Или:

sin 30º = cos 60º = 1/2.

Из этого следует, что в прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла – и наоборот. Именно это и означают наши две формулы:
sin (90° – α) = cos α
cos (90° – α) = sin α

Убедимся в этом еще раз:

1) Пусть α = 60º. Подставив значение α в формулу синуса, получим:
    sin (90º – 60º) = cos 60º.
    sin 30º = cos 60º.

2) Пусть α = 30º. Подставив значение α в формулу косинуса, получим:
    cos (90° – 30º) = sin 30º.
    cos 60° = sin 30º.

 

(Подробнее о тригонометрии — см.раздел Алгебра)


raal100.narod.ru

Тригонометричні функції — Вікіпедія

Матеріал з Вікіпедії — вільної енциклопедії.

Тригонометри́чні фу́нкції — функції кута. Вони можуть бути визначені як відношення двох сторін та кута трикутника або як відношення координат точок кола. Відіграють важливу роль при дослідженні періодичних функцій та багатьох об’єктів. Наприклад, при дослідженні рядів, диференційних рівнянь.

Наведемо шість базових тригонометричних функцій. Останні чотири визначаються через перші дві. Іншими словами, вони є означеннями, а не самостійними сутностями.

  • синус (sin α)
  • косинус (cos α)
  • тангенс (tg α = sin α / cos α)
  • котангенс (ctg α = cos α / sin α)
  • секанс (sec α = 1 / cos α)
  • косеканс (cosec α = 1 / sin α)

Геометричне визначення[ред. | ред. код]

Визначення кутів за допомогою прямокутного трикутника. Визначення тригонометричних функцій на одиничному колі.

Тригонометричні функції можна визначити розглянувши прямокутний трикутник.
Косинусом кута називається відношення довжини прилеглого катета до довжини гіпотенузи:

cos⁡α=ACAB=bc,   cos⁡β=BCAB=ac .{\displaystyle \cos \alpha ={\frac {AC}{AB}}={\frac {b}{c}},~~~\cos \beta ={\frac {BC}{AB}}={\frac {a}{c}}~.}

Синусом кута називається відношення довжини протилежного катета до довжини гіпотенузи:

sin⁡α=BCAB=ac,   sin⁡β=ACAB=bc .{\displaystyle \sin \alpha ={\frac {BC}{AB}}={\frac {a}{c}},~~~\sin \beta ={\frac {AC}{AB}}={\frac {b}{c}}~.}

Тангенсом кута називається відношення довжини протилежного катета до довжини прилеглого катета:

tg α=BCAC=ab,   tg β=ACBC=ba .{\displaystyle {\mbox{tg}}~\alpha ={\frac {BC}{AC}}={\frac {a}{b}},~~~{\mbox{tg}}~\beta ={\frac {AC}{BC}}={\frac {b}{a}}~.}

Котангенсом кута називається відношення довжини прилеглого катета до довжини протилежного катета:

ctg α=ACBC=ba,   ctg β=BCAC=ab .{\displaystyle {\mbox{ctg}}~\alpha ={\frac {AC}{BC}}={\frac {b}{a}},~~~{\mbox{ctg}}~\beta ={\frac {BC}{AC}}={\frac {a}{b}}~.}

Аналогічним чином можна визначити тригонометричні функції на колі з одиничним радіусом.

\mbox{ctg}~ \alpha=\frac{AC}{BC}=\frac{b}{a},~~~\mbox{ctg}~ \beta=\frac{BC}{AC}=\frac{a}{b}~. Один період функцій sin(x) та cos(x)

sinx{\displaystyle \sin \,x} та cosx{\displaystyle \cos \,x} це періодичні функції із періодом  2π,{\displaystyle \ 2\pi ,}
tgx{\displaystyle \operatorname {tg} \,x} та ctgx{\displaystyle \operatorname {ctg} \,x} мають період  π.{\displaystyle \ \pi .}

Співвідношення, наведені нижче, дозволяють виразити значення тригонометричних функцій від довільного дійсного арґументу через значення функцій для аргументу із інтервалу [0,π2]{\displaystyle [0,{\pi \over 2}]}

sin⁡x=cos⁡(π2−x){\displaystyle \sin x=\cos \left({\pi \over 2}-x\right)}
cos⁡x=sin⁡(π2−x){\displaystyle \cos x=\sin \left({\pi \over 2}-x\right)}
tg⁡x=ctg⁡(π2−x){\displaystyle \operatorname {tg} x=\operatorname {ctg} \left({\pi \over 2}-x\right)}
ctg⁡x=tg⁡(π2−x){\displaystyle \operatorname {ctg} x=\operatorname {tg} \left({\pi \over 2}-x\right)}

Основні співвідношення[ред. | ред. код]

Trigonometric functions.svg

Наступне співвідношення випливає із теореми Піфагора:

 sin2⁡x+cos2⁡x=1{\displaystyle ~\sin ^{2}x+\cos ^{2}x=1}

Теореми додавання та формули для кратних кутів[ред. | ред. код]

Формули для функцій суми кутів[ред. | ред. код]

Із основного співвідношення

sin⁡(α+β)=sin⁡αcos⁡β+cos⁡αsin⁡β{\displaystyle \sin {\left(\alpha +\beta \right)}=\sin \alpha \cos \beta +\cos \alpha \sin \beta }

отримуємо

sin⁡(α±β)=sin⁡αcos⁡β±cos⁡αsin⁡β,{\displaystyle \sin {\left(\alpha \pm \beta \right)}=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta ,}
cos⁡(α±β)=cos⁡αcos⁡β∓sin⁡αsin⁡β,{\displaystyle \cos {\left(\alpha \pm \beta \right)}=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta ,}
tg⁡(α±β)=tg⁡α±tg⁡β1∓tg⁡αtg⁡β,   ctg⁡(α±β)=ctg⁡αctg⁡β∓1ctg⁡β±ctg⁡α{\displaystyle \operatorname {tg} {\left(\alpha \pm \beta \right)}={{\operatorname {tg} \alpha \pm \operatorname {tg} \beta } \over {1\mp \operatorname {tg} \alpha \operatorname {tg} \beta }},~~~\operatorname {ctg} {\left(\alpha \pm \beta \right)}={{\operatorname {ctg} \alpha \operatorname {ctg} \beta \mp 1} \over {\operatorname {ctg} \beta \pm \operatorname {ctg} \alpha }}}

Формули для функцій подвійних кутів[ред. | ред. код]

sin⁡2α=2sin⁡αcos⁡α{\displaystyle \sin {2\alpha }=2\sin \alpha \cos \alpha }
cos⁡2α=cos2⁡α−sin2⁡α=2cos2⁡α−1=1−2sin2⁡α{\displaystyle \cos {2\alpha }=\cos ^{2}\alpha -\sin ^{2}\alpha =2\cos ^{2}\alpha -1=1-2\sin ^{2}\alpha }
tg⁡2α=2tg⁡α1−tg2⁡α ,   ctg⁡2α=ctg2⁡α−12ctg⁡α=12(ctg⁡α−tg⁡α){\displaystyle \operatorname {tg} {2\alpha }={{2\operatorname {tg} \alpha } \over {1-\operatorname {tg} ^{2}\alpha }}~,~~~\operatorname {ctg} {2\alpha }={{\operatorname {ctg} ^{2}\alpha -1} \over {2\operatorname {ctg} \alpha }}={1 \over 2}{\left(\operatorname {ctg} \alpha -\operatorname {tg} \alpha \right)}}

Формули для функцій потрійних кутів[ред. | ред. код]

sin⁡3α=3sin⁡α−4sin3⁡α ,   cos⁡3α=4cos3⁡α−3cos⁡α{\displaystyle \sin {3\alpha }=3\sin \alpha -4\sin ^{3}\alpha ~,~~~\cos {3\alpha }=4\cos ^{3}\alpha -3\cos \alpha }

Формули для функцій половинних кутів[ред. | ред. код]

sin⁡α2=1−cos⁡α2 ,   cos⁡α2=1+cos⁡α2{\displaystyle \sin {\alpha \over 2}={\sqrt {{1-\cos \alpha } \over 2}}~,~~~\cos {\alpha \over 2}={\sqrt {{1+\cos \alpha } \over 2}}}
tg⁡α2=sin⁡α1+cos⁡α=1−cos⁡αsin⁡α ,   ctg⁡α2=sin⁡α1−cos⁡α=1+cos⁡αsin⁡α{\displaystyle \operatorname {tg} {\alpha \over 2}={\sin \alpha \over {1+\cos \alpha }}={{1-\cos \alpha } \over \sin \alpha }~,~~~\operatorname {ctg} {\alpha \over 2}={\sin \alpha \over {1-\cos \alpha }}={{1+\cos \alpha } \over \sin \alpha }}

Формули для суми функцій кута[ред. | ред. код]

asin⁡A+bcos⁡B=rsin⁡(A+B)=rcos⁡(π2−A−B), r=a2+b2, tgB=ba{\displaystyle a\sin A+b\cos B=r\sin {\left(A+B\right)}=r\cos \left({\pi \over 2}-A-B\right),~{r={\sqrt {a^{2}+b^{2}}}},~{tgB={b \over a}}}
sin⁡A±sin⁡B=2sin⁡A±B2cos⁡A∓B2{\displaystyle \sin A\pm \sin B=2\sin {{A\pm B} \over 2}\cos {{A\mp B} \over 2}}
cos⁡A+cos⁡B=2cos⁡A+B2cos⁡A−B2{\displaystyle \cos A+\cos B=2\cos {{A+B} \over 2}\cos {{A-B} \over 2}}
cos⁡A−cos⁡B=−2sin⁡A+B2sin⁡A−B2{\displaystyle \cos A-\cos B=-2\sin {{A+B} \over 2}\sin {{A-B} \over 2}}
tg⁡A±tg⁡B=sin⁡A±Bcos⁡Acos⁡B ,  ctg⁡A±ctg⁡B=sin⁡B±Asin⁡Asin⁡B{\displaystyle \operatorname {tg} A\pm \operatorname {tg} B={\sin {A\pm B} \over {\cos A\cos B}}~,~~\operatorname {ctg} A\pm \operatorname {ctg} B={\sin {B\pm A} \over {\sin A\sin B}}}

Загальні формули для функцій кратних кутів[ред. | ред. код]

Якщо n є цілим додатнім числом, то

sin⁡nA=(n1)cosn−1⁡Asin⁡A−(n3)cosn−3⁡Asin3⁡A+(n5)cosn−5⁡Asin5⁡A∓⋯{\displaystyle \sin {nA}={n \choose 1}\cos ^{n-1}A\sin A-{n \choose 3}\cos ^{n-3}A\sin ^{3}A+{n \choose 5}\cos ^{n-5}A\sin ^{5}A\mp \cdots }
cos⁡nA=cosn⁡A−(n2)cosn−2⁡Asin2⁡A+(n4)cosn−4⁡Asin4⁡A∓⋯{\displaystyle \cos {nA}=\cos ^{n}A-{n \choose 2}\cos ^{n-2}A\sin ^{2}A+{n \choose 4}\cos ^{n-4}A\sin ^{4}A\mp \cdots }

Загальні формули для степенів функцій[ред. | ред. код]

Якщо n є цілим непарним числом, то

sinn⁡x=(−1)n−122n−1[sin⁡nx−(n1)sin⁡(n−2)x+(n2)sin⁡(n−4)x−(n3)sin⁡(n−6)x+⋯+(−1)n−12(nn−12)sin⁡x]{\displaystyle \sin ^{n}x={{(-1)^{{n-1} \over 2}} \over {2^{n-1}}}\left[\sin {nx}-{n \choose 1}\sin {(n-2)x}+{n \choose 2}\sin {(n-4)x}-{n \choose 3}\sin {(n-6)x}+\cdots +(-1)^{{n-1} \over 2}{n \choose {{n-1} \over 2}}\sin x\right]}

cosn⁡x=(12)n−1[cos⁡nx+(n1)cos⁡(n−2)x+(n2)cos⁡(n−4)x+(n3)cos⁡(n−6)x+⋯+(nn−12)cos⁡x]{\displaystyle \cos ^{n}x={\left({1 \over 2}\right)}^{n-1}\left[\cos {nx}+{n \choose 1}\cos {(n-2)x}+{n \choose 2}\cos {(n-4)x}+{n \choose 3}\cos {(n-6)x}+\cdots +{n \choose {{n-1} \over 2}}\cos x\right]}


Якщо n є цілим парним числом, то

sinn⁡x=(−1)n22n−1[cos⁡nx−(n1)cos⁡(n−2)x+(n2)cos⁡(n−4)x−(n3)cos⁡(n−6)x+⋯+(−1)n−22(nn−22)cos⁡2x]+12n(nn2){\displaystyle \sin ^{n}x={{{\left(-1\right)}^{n \over 2}} \over {2^{n-1}}}\left[\cos {nx}-{n \choose 1}\cos {(n-2)x}+{n \choose 2}\cos {(n-4)x}-{n \choose 3}\cos {(n-6)x}+\cdots +{\left(-1\right)}^{{n-2} \over 2}{n \choose {{n-2} \over 2}}\cos {2x}\right]+{1 \over 2^{n}}{n \choose {n \over 2}}}
cosn⁡x=(12)n−1[cos⁡nx+(n1)cos⁡(n−2)x+(n2)cos⁡(n−4)x+(n3)cos⁡(n−6)x+⋯+(nn−22)cos⁡2x]+12n(nn2){\displaystyle \cos ^{n}x={\left({1 \over 2}\right)}^{n-1}\left[\cos {nx}+{n \choose 1}\cos {(n-2)x}+{n \choose 2}\cos {(n-4)x}+{n \choose 3}\cos {(n-6)x}+\cdots +{n \choose {{n-2} \over 2}}\cos {2x}\right]+{1 \over 2^{n}}{n \choose {n \over 2}}}

Розклади в ряд Тейлора[ред. | ред. код]

Існують такі розклади в ряд Тейлора тригонометричних функцій:

sin⁡x=x−x33!+x55!−x77!+⋯=∑n=0∞(−1)nx2n+1(2n+1)!{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}}
cos⁡x=1−x22!+x44!−x66!+⋯=∑n=0∞(−1)nx2n(2n)!{\displaystyle \cos x=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}}
tg⁡x=∑n=0∞U2n+1x2n+1(2n+1)!=∑n=1∞(−1)n−1

uk.wikipedia.org

Синус, косинус и тангенс угла — урок. Геометрия, 9 класс.

В системе координат построим полуокружность радиуса \(1\) с центром в начале координат.

 

Vienibas_pusr.png

 

Как уже известно, в прямоугольном треугольнике синус острого угла определяется как отношение противолежащего катета к гипотенузе, а косинус острого угла определяется как отношение прилежащего катета к гипотенузе.

 

В треугольнике \(AOX\):

sinα=AXAO;cosα=OXAO.

Так как радиус полуокружности \(R = AO = 1\), то sinα=AX;cosα=OX.

Длина отрезка \(AX\) равна величине координаты \(y\) точки \(A\), а длина отрезка \(OX\) равна величине координаты \(x\) точки \(A\):

 Acosα;sinα.

Следовательно, для углов 0°≤α≤180° видно, что −1≤cosα≤1;0≤sinα≤1.

 

В прямоугольном треугольнике тангенс острого угла равен отношению противолежащего катета к прилежащему катету, а значит,  

tgα=AXOX=sinαcosα.

Используя единичную полуокружность и рассмотренную информацию, определим синус, косинус и тангенс для 0°;90°;180°.

 

sin0°=0;cos0°=1;tg0°=0;sin90°=1;cos90°=0;tg90° не существует;sin180°=0;cos180°=−1;tg180°=0.

 

Рассмотрим оба острых угла в треугольнике \(AOX\). Если вместе они образуют 90°, то оба выразим через α.

 

Vienibas_pusr2.png

 

Если sinα=AXAO;cosα=OXAO, то sin90°−α=OXAO;cos90°−α=AXAO.

 

Видим, что справедливы равенства:

cos90°−α=sinα;sin90°−α=cosα.

 

Рассмотрим тупой угол, который также выразим через α.

 

Vienibas_pusr1.png

 

Справедливы следующие равенства:

sin180°−α=sinα;cos180°−α=−cosα.

Эти формулы называются формулами приведения:

 

cos90°−α=sinα;sin90°−α=cosα.

 

sin180°−α=sinα;cos180°−α=−cosα.

Если в треугольнике \(AOX\) применить теорему Пифагора, получаем AX2+OX2=1. Заменив отрезки соответственно синусом и косинусом, мы напишем  

Главное тригонометрическое тождество

sin2α+cos2α=1.

Это тождество позволяет вычислить величину синуса угла, если дан косинус

(как уже отмечено, синус для углов 0°≤α≤180° только 0 или положительный):

 

sin2α+cos2α=1;sin2α=1−cos2α;sinα=1−cos2α 

 

— или величину косинуса угла, если дан синус:

 

sin2α+cos2α=1;cos2α=1−sin2α;cosα=±1−sin2α.

 

Для острых углов косинус положительный, а для тупых углов берём отрицательное значение.

www.yaklass.ru

Синус, косинус, тангенс, котангенс угла

Рассмотрим прямоугольный треугольник ABC.

Прямоугольный треугольник ABC

Синус острого угла прямоугольного треугольника

Отношение противолежащего катета к гипотенузе называют синусом острого угла прямоугольного треугольника.

\sin \alpha = \frac{a}{c}

Косинус острого угла прямоугольного треугольника

Отношение близлежащего катета к гипотенузе называют косинусом острого угла прямоугольного треугольника.

\cos \alpha = \frac{b}{c}

Тангенс острого угла прямоугольного треугольника

Отношение противолежащего катета к близлежащему катету называют тангенсом острого угла прямоугольного треугольника.

tg \alpha = \frac{a}{b}

Котангенс острого угла прямоугольного треугольника

Отношение близлежащего катета к противолежащему катету называют котангенсом острого угла прямоугольного треугольника.

ctg \alpha = \frac{b}{a}

Синус произвольного угла

Ордината точки на единичной окружности, которой соответствует угол \alpha называют синусом произвольного угла поворота \alpha.

\sin \alpha=y

Единичная окружность с ординатой точки и углом \alpha

Косинус произвольного угла

Абсцисса точки на единичной окружности, которой соответствует угол \alpha называют косинусом произвольного угла поворота \alpha.

\cos \alpha=x

Единичная окружность с абсциссой точки и углом \alpha

Тангенс произвольного угла

Отношение синуса произвольного угла поворота \alpha к его косинусу называют тангенсом произвольного угла поворота \alpha.

tg \alpha = y_{A}

tg \alpha = \frac{\sin \alpha}{\cos \alpha}

Единичная окружность с линией тангенсов и углом \alpha

Котангенс произвольного угла

Отношение косинуса произвольного угла поворота \alpha к его синусу называют котангенсом произвольного угла поворота \alpha.

ctg \alpha =x_{A}

ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

Единичная окружность с линией котангенсов и углом \alpha

Пример нахождения произвольного угла

Если \alpha — некоторый угол AOM, где M — точка единичной окружности, то

\sin \alpha=y_{M}, \cos \alpha=x_{M}, tg \alpha=\frac{y_{M}}{x_{M}}, ctg \alpha=\frac{x_{M}}{y_{M}}.

Например, если \angle AOM = -\frac{\pi}{4}, то: ордината точки M равна -\frac{\sqrt{2}}{2}, абсцисса равна \frac{\sqrt{2}}{2} и потому

\sin \left (-\frac{\pi}{4} \right )=-\frac{\sqrt{2}}{2};

\cos \left (\frac{\pi}{4} \right )=\frac{\sqrt{2}}{2};

tg \left (-\frac{\pi}{4} \right )=-1;

ctg \left (-\frac{\pi}{4} \right )=-1.

Таблица значений синусов косинусов тангенсов котангенсов

Значения основных часто встречающихся углов приведены в таблице:

 0^{\circ} (0)30^{\circ}\left(\frac{\pi}{6}\right)45^{\circ}\left(\frac{\pi}{4}\right)60^{\circ}\left(\frac{\pi}{3}\right)90^{\circ}\left(\frac{\pi}{2}\right)180^{\circ}\left(\pi\right)270^{\circ}\left(\frac{3\pi}{2}\right)360^{\circ}\left(2\pi\right)
\sin\alpha0\frac12\frac{\sqrt 2}{2}\frac{\sqrt 3}{2}10−10
\cos\alpha1\frac{\sqrt 3}{2}\frac{\sqrt 2}{2}\frac120−101
tg \alpha0\frac{\sqrt 3}{3}1\sqrt300
ctg \alpha\sqrt31\frac{\sqrt 3}{3}00

academyege.ru

Классификация кислородсодержащих органических веществ: Классификация кислородсодержащих органических соединений — Документ

Классификация кислородсодержащих органических веществ: Классификация кислородсодержащих органических соединений — Документ

Классификация кислородсодержащих органических соединений — Документ

Кислородсодержащие органические соединения

  1. Классификация кислородсодержащих органических соединений

  2. Спирты.

А) Классификация. Определение.

Б) Изомерия и номенклатура

В) Получение спиртов

Г) Физические и химические свойства. Качественные реакции спиртов.

Д) Применение. Влияние на окружающую среду и здоровье человека.

Классификация кислородсодержащих органических соединений

  1. Спирты – это кислородсодержащие органические соединения, содержащие в своем составе гидроксильную группу.

  2. Альдегиды характеризуются наличием альдегидной группы:

  3. Кетоны содержат карбоксильную группу, связанную с двумя радикалами.

  4. Карбоновые кислоты отличает от других кислородсодержащих органических соединений карбоксильная группа.

  5. Эфиры: а) простые R-O-R` б) сложные

Химические свойства этих соединений определяются наличием в их молекулах различных функциональных групп.

Класс соединений

Функциональная группа

Название функциональной группы

Спирты

R-ОН

гидроксильная

Альдегиды

альдегидная

Кетоны

карбонильная

Карбоновые кислоты

карбоксильная

СПИРТЫ

Спирты– это кислородсодержащие производные углеводородов, в которых гидроксигруппа присоединяется к углеводородному радикалу.

Спирты классифицируются:

а) первичные спирты – ОН-группа в таких соединениях связана с первичным атомом углерода

б) вторичные спирты – гидроксигруппа связана с вторичным атомом углерода

в) третичные спирты – гидроксигруппа в третичных спиртах связана с третичным углеродным атомом.

а) одноатомные спирты содержат в молекуле одну ОН-группу, все представленные выше соединения являются одноатомными.

б) двухатомные – в состав таких спиртов входит две гидроксигруппы, например этиленгликоль (входит в состав незамерзающих растворов – антифризов)

в) трехатомные – содержат три ОН-группы, например глицерин.

а) насыщенные СН3-СН2-ОН (этанол)

б) ненасыщенные СН2=СН-СН2-ОН (2-пропен-1-ол)

в) ароматические (фенол)

Предельные одноатомные спирты.

Общая формула – СnH2n+2O или CnH2n+1OH

Изомерия и номенклатура.

Для предельных одноатомных спиртов характеры два типа структурной изомерии:

1) изомерия углеродного скелета

2) изомерия положения гидроксильной группы

Такие спирты можно называть, используются два типа номенклатуры, рассмотрим каждый тип по отдельности.

Рациональная (карбинольная) номенклатура.

По рациональной номенклатуре название спирта строится от первого члена ряда спиртов – метилового спирта, который называется карбинол. Название других спиртов образуется перечислением радикалов, замещающих атом водорода в метаноле, по их старшинству с прибавлением слова-основы карбинол.

Номенклатура ИЮПАК

Согласно номенклатуре ИЮПАК:

— в качестве главной цепи выбирают ту, в которой содержится наибольшее число гидроксигрупп и радикалов.

— нумерацию цепи начинают с того конца, ближе к которому находится старший заместитель – в нашем случае ОН-группа.

— название спирта строится от названия соответствующего алкана, с которым связана гидроксигруппа. Чтобы показать, что соединение относится к классу спиртов добавляется окончание –ол.

— т.к. спиртам характерна изомерия положения гидроксигруппы, то она обозначается цифрой.

-если в молекуле несколько гидроксигрупп, то их число обозначается греческими приставками (ди-, три-) Эта приставка ставится перед окончанием –ол цифрой показывается их расположение.

Например, спирты состава С4Н9ОН имеют следующее строение и названия по номенклатуре ИЮПАК.

  1. соединения с нормальной цепью

  1. соединения с разветвленной цепью

Таким способом называют и более сложные соединения:

В органической химии часто используют и тривиальные названия:

метиловый спирт (древесный) – СН3ОН (метанол)

этиловый спирт (винный) С2Н5ОН (этанол)

первичный пропиловый спирт СН3СН2СН2ОН (пропанол)

Получение

Существует много способов получения спиртов, рассмотрим основные.

Гидратация алкенов

Алкены присоединяют воду в присутствии сильных минеральных кислот (H2SO4 или H3PO4), реакция протекает в соответствии с правилом Марковникова.

Следует напомнить, что это промышленный способ получения спиртов и протекает реакция при повышенных температуре, давлении и использовании катализатора (например, этанол получают в присутствии силикагеля, обработанного H3PO4 и нагревании до 300С).

Эту реакцию и ее механизм мы подробно изучили в I модуле.

Следующий промышленный способ получения спиртов – гидрирование СО.

Смесь оксида углерода (II) с водородом подвергается нагреванию. При использовании разных катализаторов продукты отличаются по составу, это иллюстрирует схема представленная ниже.

Гидролиз галогенпроизводных алканов.

Гидролиз осуществляется действием воды или водным раствором щелочей, при нагревании. Легче всего реакция проходит для первичных галогенпроизводных.

Восстановление карбонильных соединений

Альдегиды, кетоны, карбоновые кислоты и их производные (сложные эфиры) легко восстанавливаются до спиртов.

Восстановителем альдегидов и кетонов служит молекулярный водород, катализатором – никель, платина или палладий. Для восстановления эфиров используется атомарный водород, который получается при непосредственном взаимодействии натрия со спиртом.

Из уравнений видно, что из альдегидов и карбоновых кислот получаются первичные спирты, кетоны являются исходными веществами для вторичных спиртов. Так получают спирты в лабораторных условиях. Однако получить третичные спирты таким способом нельзя. Их получают способом, представленным ниже.

Взаимодействие реактивов Гриньяра с карбонильными соединениями.

Синтезы на основе реактивов Гриньяра являются надежным лабораторным способом получения спиртов.

При использовании в качестве карбонильного соединения муравьиного альдегида продуктом реакции будет первичный спирт.

Другие альдегиды приводят к образованию вторичных спиртов.

Из кетонов в таких синтезах получаются третичные спирты.

Чтобы понять, как осуществляются подобные превращения, необходимо рассмотреть электронные эффекты в реагирующих молекулах: за счет высокой электроотрицательности атома кислорода, электронная плотность смещается в сторону кислорода от углеродного атома карбонильной группы (-М-эффект). В молекуле реактива Гриньяра частично отрицательный заряд оказывается на атоме углерода, положительный – на магнии за счет положительного индуктивного эффекта (+I-эффект).

Ферментативный способ

Это сбраживание сахаристых веществ. Этанол получают брожением в присутствии дрожжей. Сущность брожения заключается том, что получаемая из крахмала глюкоза под действием ферментов распадается на спирт и СО2. результат этого процесса выражается схемой:

Физические свойства

Низкомолекулярные спирты (С13) являются жидкостями с характерными запахом и вкусом и смешиваются с водой в любых соотношениях.

Температуры кипения спиртов не превышают 100С, однако они выше чем температуры кипения эфиров или углеводородов, с такой же молекулярной массой.

Причиной этого являются межмолекулярные водородные связи, возникающие между водородными и кислородными атомами гидроксильных групп различных молекул спирта (происходит с участием неподеленных пар электронов кислорода).

Хорошая растворимость спиртов в воде объясняется образованием водородных связей между молекулами спирта и воды.

Спирты с С11 и выше – твердые вещества.

Химические свойства спиртов.

Химические свойства спиртов обусловлены присутствием гидроксигруппы. Поэтому для спиртов характерны реакции:

1) с разрывом связи –СО-Н

2) с разрывом связи С-ОН

3) реакции окисления

  1. Кислотно-основные свойства спиртов.

Спирты являются амфотерными соединениями. Они способны выступать в роли как кислот, так и оснований.

Они проявляют кислотные свойства при взаимодействии со щелочными металлами и щелочами. Водород гидроксила замещается на металл с образованием алкоголятов (которые легко разлагаются водой).

2C2H5OH + 2Na = 2C2H5ONa + H2

этилат натрия

Спирты более слабые кислоты, чем вода. Их кислотные свойства в убывают в следующем порядке: СН3ОН  СН3СН2ОН  (СН3)2СНОН  (СН3)3СОН. Т.е. разветвление углеродного скелета снижает кислотные свойства.

Свойства оснований спирт проявляют по отношению к кислотам. Сильнее минеральные кислоты протонируют атом кислорода ОН-группы:

Спирты – нуклеофильные реагенты.

Реакции с карбонильными соединениями.

Спирты легко реагируют с карбоновыми кислотами, с образованием сложного эфира, такая реакция называется реакцией этерификации. Эта реакция обратима. Молекула воды образуется за счет отщепления ОН-группы от карбоновой кислоты и протона от молекулы спирта. Катализатором служит сильная минеральная кислота.

метиловый эфир уксусной кислоты

Реакции с неорганическими кислотами.

Взаимодействие спиртов с неорганическими кислотами также приводит к образованию сложных эфиров (но уже неорганических кислот).

серноэтиловый эфир

Нуклеофильное замещение гидроксигруппы.

Дегидратация спиртов .

Дегидратация спиртов протекает под действием сильных минеральных кислот (серной, ортофосфорной), при нагревании.

Отщепление может проходить внутримолекулярно. Рассмотрим механизм на примере бутанола-2: сначала происходит протонирование молекулы спирта водородом кислоты, затем отщепление воды от оксониевого иона с образованием алкил-катиона и быстрое отщепление протона с образованием алкена.

В случае отщепления Н2О применяется правило Марковникова. Это дает возможность переходить от одних спиртов к другим. Например, возможен переход от изобутилового спирта к трет-бутиловому (напишите самостоятельно)

Межмолекулярная дегидратация.

В случае межмолекулярной дегидратации продуктами реакции являются простые эфиры. Реакция протекает в тех же условиях, но отличается температурным режимом.

Окисление

Окислению подвергаются все спирт, но легче всего первичные.

Первичные спирты окисляются до альдегидов и далее до карбоновых кислот (на этой реакции основан метаболизм в организме).

Вторичные спирты в таких реакциях дают кетоны, третичные окисляются с расщеплением С-С-связи и образованием смеси кетонов и кислот.

Качественные реакции на спирты.

Как было сказано ранее, спирты могут реагировать с разрывом связей

–С –ОН и СО – Н. В качественном анализе используются и те и другие реакции.

1. Ксантогеновая проба – это наиболее чувствительная реакция на спиртовую группу. Спирт смешивают с сероуглеродом, добавляют кусочек КОН, слегка нагревают и приливают раствор CuSO4 голубого цвета. При положительной реакции возникает коричневая окраска ксантогената меди.

2 Проба Льюиса .

В реакции используется смесь концентрированной соляной кислоты и хлорида цинка. Эта реакция используется как аналитический метод установления типа спирта: является ли он первичным, вторичным или третичным.

Третичные спирты реагируют почти мгновенно с выделением тепла и образованием маслянистого слоя галогеналкана.

Вторичные реагируют в течение 5 мин (также образуется маслянистый слой).

Первичные спирты при комнатной температуре не реагируют, но вступают в реакцию при нагревании.

Применение спиртов.

Метанол применяют для производства формальдегида, уксусной кислоты, растворителя в производстве лаков и красок, служит полупродуктом для синтеза красителей, фармацевтических препаратов, душистых веществ. Сильный яд.

Этанол – сильный антисептик (в хирургии для мытья рук хирурга и инструментов) и хороший растворитель. Используется для производства дивинила (компонент каучука), хлороформа, этилового эфира (используется в медицине). Некоторое количество спирта идет на употребление в пищевой промышленности (изготовление пропитки, ликеров).

н-Пропанол применяют для производства пестицидов, лекарств, растворителя для восков, смол различной природы.

Влияние на здоровье человека. Механизм действия спиртов.

Одноатомные спирты – наркотики. Их токсичность возрастает с увеличением числа атомов углерода.

Метиловый спирт – сильный нервный и сосудистый яд, снижает насыщаемость крови кислородом. Метанол принятый внутрь взывает опьянение и тяжелое отравление сопровождаемое потерей зрения.

Метанол в пищеварительном тракте окисляется в токсичнее продукт – формальдегид и муравьиную кислоту, которые в небольших количествах взывают тяжелые отравления организма и смерть:

Этиловый спирт – наркотик, взывает паралич нервной системы.

Попадая в организм человека, спирт действует сначала возбуждающе, а затем угнетающе на ЦНС, притупляет чувствительность, ослабляет функцию головного мозга, значительно ухудшает реакцию.

Главной причиной поражения организма этанолом является образование ацетальдегида, который оказывает токсическое воздействие и взаимодействует со многими метаболитами. Ацетальдегид образуется в результате действия фермента алкогольдегидрогеназы (содержится в печени).

Пропиловый спирт действует на организм аналогично этиловому, но сильнее последнего.

Краткий конспект подготовки к ЗНО по химии №36 Повторение кислородсодержащих органических соединений

Органические соединения подразделяют по составу на:
1. углеводороды – вещества, состоящие только из углерода и водорода;
2. кислородсодержащие органические соединения, в состав которых входят атомы углерода, водорода и кислорода;
3. азотсодержащие органические соединения – содержат, кроме атомов углерода, водорода (и иногда кислорода) еще и атом азота.
Однако при этом в одну группу кислородсодержащих соединений попадают вещества с очень разными свойствами, такие, например, как уксусная кислота, сахар и целлюлоза.

 

Классификация по строению


Наиболее полезна для химиков классификация органических веществ по их строению. Внутри этой классификации существуют признаки, позволяющие наиболее полно охарактеризовать вещества.
1. Первый признак классификации органического соединения по строению – тип скелета молекулы.
Скелет – это последовательность связанных атомов углерода в молекуле, основа структуры органического соединения.
Кроме атомов углерода, в состав скелета могут входить и другие атомы, например,  если они связаны, по меньшей мере, с двумя атомами углерода.
Например, в диметиловом эфире  атом кислорода включен в скелет молекулы, а в этаноле  – нет. Молекулы, в скелет которых, кроме атомов углерода, входят атомы других элементов, называются гетероатомными («гетеро-» о – лат. «разный»).
Скелет молекулы может быть неразветвленным – все атомы углерода соединены последовательно – и разветвленным. Цепь из атомов углерода может быть замкнутой. Такую замкнутую группу атомов называют циклом. Поэтому скелет молекулы бывает или ациклическим, (т.е. не циклическим) или циклическим. В скелете различают первичный, вторичный, третичный, четвертичный атомы углерода.
Первичным называют атом углерода, связанный только с одним другим атомом углерода, вторичным – с двумя, третичным – с тремя, а четвертичным – с четырьмя другими атомами углерода.


2. Второй признак классификации – наличие (или отсутствие) в молекуле кратных связей и бензольных колец. Органические вещества, содержащие только простые (одинарные) связи, называют предельными или насыщенными. Вещества, которые содержат не только простые, но и кратные (двойные или тройные) связи между атомами углерода, называют непредельными или ненасыщенными. На один атом углерода в их молекулах приходится меньшее число атомов водорода, чем у предельных соединений. Если вещество содержит бензольное кольцо, то его принято называть ароматическим соединением. Вещества, в состав которых не входят ароматические группировки, называют алифатическими. Иногда можно встретить устаревшее название алифатических соединений – соединения жирного ряда.


3. Третий признак классификации – наличие (или отсутствие) функциональных групп. Производные углеводородов образуются при замещении атома водорода на какой-либо другой атом  или группировку атомов ( — гидроксогруппа, — аминогруппа и т.п.). Такие атом или группировка атомов во многом определяют свойства вещества, и поэтому многие из них называют функциональными группами. По числу функциональных групп в молекуле вещества делят на монофункциональные, полифункциональные (несколько одинаковых групп) и гетеро функциональные (разные функциональные группы).
Вещества, обладающие одинаковыми функциональными группами и (или) одинаковым набором кратных связей, имеют сходные свойства, поэтому их относят к одному классу органических соединений. Например, вещества, содержащие  — группу, относятся к классу спиртов.  – метиловый спирт,  – этиловый спирт и т.д.
Вещества, содержащие кратные связи, тоже образуют классы близких по свойствам соединений. Соединения с двойной связью, называются алкенами, с тройной связью – алкинами. Предельные углеводороды, или алканы – это соединения, не содержащие ни кратных связей, ни функциональных групп. Они также составляют отдельный класс органических веществ. Ароматические углеводороды называют аренами.
Ряды веществ с похожими свойствами, состав которых отличается на одну или несколько групп , называют гомологическими рядами. Члены гомологических рядов по отношению друг к другу – гомологи. По сути, гомологические ряды составляют классы органических соединений.

Кислородсодержащие органические вещества: основные свойства

 

В состав кислородсодержащих соединений могут входить гидроксильная, карбонильная и карбоксильная группы. Им соответствуют класс соединений – спирты, альдегиды, кетоны, карбоновые кислоты.

Спирты

Подействуем на этилен водой. В качестве катализатора применим серную кислоту. Она катализирует как присоединение, так и отнятие воды. В результате разрыва двойной связи один атом углерода присоединит атом водорода, а другой – гидроксильную группу молекулы воды. Так получаются соединения класса спиртов.

Простейшим спиртом является метиловый Ch4–OH. Этиловый спирт – следующий гомолог ряда спиртов.

Если в состав молекулы спирта входит одна гидроксильная группа, такой спирт называют одноатомным. Есть и такие спирты, которые содержат две или более гидроксильных групп. Такие спирты называют многоатомными. Примером многоатомного спирта является широко известный глицерин.

Альдегиды

Под действием слабого окислителя гидроксильная группа может превращаться в карбонильную. В результате образуется новый класс соединений – альдегиды. Например, этиловый спирт окисляется таким слабым окислителем, как оксид меди(II). Реакция происходит при нагревании. Продуктом реакции является уксусный альдегид.  

Это качественная реакция на спирты. Она производится так. Медную проволоку прокаливают до образования оксидной плёнки и опускают в раскалённом состоянии в спирт. Спирт окисляется, а медь восстанавливается. Медная проволока становится блестящей, при этом чувствуется запах уксусного альдегида.

Подобно спиртам, альдегиды способны окисляться слабыми окислителями. Такая реакция происходит при окислении альдегида аммиачным раствором оксида серебра. Выпадающее в осадок серебро образует тончайший зеркальный слой на стенках пробирки. Этот процесс называют реакцией серебряного зеркала. Он используется для качественного определения альдегидов.

Карбоновые кислоты

В процессе окисления альдегидов карбонильная группа присоединяет атом кислорода. Так возникает карбоксильная группа. Образуется новый класс органических соединений – карбоновые кислоты. В нашем случае из уксусного альдегида получилась уксусная кислота. Как видим, функциональные группы могут превращаться друг в друга.

Многие карбоновые кислоты являются слабыми электролитами. При диссоциации под воздействием молекул воды от карбоксильной группы молекулы органической кислоты отщепляется водород:

Ch4COOH ó Ch4COO- + H+

Уксусная кислота, как и другие органические кислоты, вступает в реакцию с основаниями, основными оксидами, металлами.

Альдегиды, спирты и кислоты имеют большое значение в нашей жизни. Их применяют для синтеза различных веществ. Спирты используют для получения синтетических каучуков, душистых веществ, лекарств, красителей, в качестве растворителей.

Органические кислоты широко распространены в природе и играют большую роль в биохимических реакциях. В химической промышленности органические кислоты применяют в кожевенном производстве, при ситцепечатании.

Спирты являются и ядовитыми веществами. Особенно ядовит метанол. При попадании в организм он вызывает слепоту и даже гибель человека. Этиловый спирт отрицательно действует на жизненно важные центры в коре головного мозга, кровеносные сосуды, на психику, разрушая личность человека.

Опасными для человека могут быть и кислоты – концентрированная уксусная кислота, щавелевая и т.д.

Нужна помощь в учебе?



Предыдущая тема: Углеводороды: характеристика и группы
Следующая тема:&nbsp&nbsp&nbspБелки: азотсодержащие органические вещества

Классификация кислородсодержащих органических соединений

1. Спирты – это кислородсодержащие органические соединения, содержащие в своем составе гидроксильную группу.

2. Альдегиды характеризуются наличием альдегидной группы:

3. Кетоны содержат карбоксильную группу, связанную с двумя радикалами.

4. Карбоновые кислоты отличает от других кислородсодержащих органических соединений карбоксильная группа.

5. Эфиры: а) простые R-O-R` б) сложные

 

Химические свойства этих соединений определяются наличием в их молекулах различных функциональных групп.

 

Класс соединений Функциональная группа Название функциональной группы
Спирты R-ОН гидроксильная
Альдегиды альдегидная
Кетоны карбонильная
Карбоновые кислоты карбоксильная

 

СПИРТЫ

Спирты– это кислородсодержащие производные углеводородов, в которых гидроксигруппа присоединяется к углеводородному радикалу.

Спирты классифицируются:

Ø по характеру углеродного атома, связанного с гидроксигруппой

а) первичные спирты – ОН-группа в таких соединениях связана с первичным атомом углерода

б) вторичные спирты – гидроксигруппа связана с вторичным атомом углерода

в) третичные спирты – гидроксигруппа в третичных спиртах связана с третичным углеродным атомом.

 

Ø по числу гидроксигрупп в молекуле спирта

а) одноатомные спирты содержат в молекуле одну ОН-группу, все представленные выше соединения являются одноатомными.

б) двухатомные – в состав таких спиртов входит две гидроксигруппы, например этиленгликоль (входит в состав незамерзающих растворов – антифризов)

в) трехатомные – содержат три ОН-группы, например глицерин.

 

Ø по строению радикала, связанного с функциональной группой

а) насыщенные СН3-СН2-ОН (этанол)

б) ненасыщенные СН2=СН-СН2-ОН (2-пропен-1-ол)

в) ароматические (фенол)

 


Узнать еще:

Кислородсодержащие органические соединения

Пользователи также искали:

кислородсодержащие органические соединения 9 класс, кислородсодержащие органические соединения конспект, кислородсодержащие органические соединения контрольная работа, кислородсодержащие органические соединения презентация, кислородсодержащие органические соединения реферат, кислородсодержащие органические соединения таблица, кислородсодержащие органические соединения тест, кислородсодержащие органические соединения вариант 1, органические, кислородсодержащие, Кислородсодержащие, соединения, Кислородсодержащие органические соединения, работа, презентация, вариант, реферат, таблица, тест, конспект, контрольная, класс, кислородсодержащие органические соединения тест, кислородсодержащие органические соединения конспект, кислородсодержащие органические соединения контрольная работа, кислородсодержащие органические соединения презентация, кислородсодержащие органические соединения 9 класс, кислородсодержащие органические соединения вариант 1, кислородсодержащие органические соединения таблица, кислородсодержащие органические соединения реферат, кислородсодержащие органические соединения класс, кислородсодержащие органические соединения вариант, кислородсодержащие органические соединения,

. ..

ЕГЭ по химии, подготовка к ЕГЭ по химии 2021 в Москве, сложность, оценки, задачи, шкала перевода баллов — Учёба.ру

Что требуется

Из предложенного перечня веществ необходимо выбрать те, между которыми возможно протекание окислительно-восстановительной реакции (ОВР), записать уравнение этой реакции и подобрать в ней коэффициенты методом электронного баланса, а также указать окислитель и восстановитель.

Особенности

Это одно из самых сложных заданий ЕГЭ по предмету, поскольку оно проверяет знание всей химии элементов, а также умение определять степени окисления элементов. По этим данным нужно определить вещества, которые могут быть только окислителями (элементы в составе этих веществ могут только понижать степень окисления), только восстановителями (элементы в составе этих веществ могут только повышать степень окисления) или же проявлять окислительно-восстановительную двойственность (элементы в составе этих веществ могут и понижать, и повышать степень окисления).

Также в задании необходимо уметь самостоятельно (без каких-либо указаний или подсказок) записывать продукты широкого круга окислительно-восстановительных реакций. Кроме того, нужно уметь грамотно оформить электронный баланс, после чего перенести полученные в балансе коэффициенты в уравнение реакции и дополнить его коэффициентами перед веществами, в которых элементы не изменяли степеней окисления.

Советы

Окислительно-восстановительные реакции основаны на принципе взаимодействия веществ противоположной окислительно-восстановительной природы. Согласно этому принципу любой восстановитель может взаимодействовать практически с любым окислителем. В задаче № 30 окислители и восстановители часто подобраны таким образом, что между ними точно будет протекать реакция.

Для нахождения пары окислитель/восстановитель нужно, прежде всего, обращать внимание на вещества, содержащие элементы в минимальной и максимальной степени окисления. Тогда вещество с минимальной степенью окисления будет являться типичным восстановителем, а вещество с максимальной степенью окисления с большой долей вероятности окажется сильным окислителем.

Если в списке только одно вещество (вещество 1) содержит элемент в максимальной или минимальной степени окисления, нужно найти ему в пару вещество, в котором элемент находится в промежуточной степени окисления и может проявлять свойства и окислителя, и восстановителя (вещество 2). Тогда вещество 1 определит окислительно-восстановительную активность вещества 2.

Когда пара окислитель/восстановитель определена, нужно обязательно проверить, в какой среде (кислой, нейтральной или щелочной) может протекать эта реакция. Если нет особенных правил, связанных со средой протекания выбранной реакции, то в качестве среды следует выбрать водный раствор того вещества (кислоты или щелочи), которое есть в предложенном списке реагентов.

Чтобы верно записать продукты окислительно-восстановительной реакции, нужно знать теоретические сведения о химии того или иного вещества и специфику его свойств. Однако запоминать все реакции наизусть — дело утомительное, да и не очень полезное. Для того чтобы упростить задачу, можно выявить некоторые общие закономерности в протекании ОВР и научиться предсказывать продукты реакций. Для этого нужно следовать трем простым правилам:

1. Процессы окисления и восстановления — это две стороны единого процесса: процесса передачи электрона. Если какой-либо элемент (восстановитель) отдает электроны, то в этой же реакции обязательно должен быть какой-то элемент (окислитель), который принимает эти электроны.

2. Если в реакции участвует простое вещество, эта реакция — всегда окислительно-восстановительная.

3. При взаимодействии сильных окислителей с различными восстановителями обычно образуется один и тот же основной продукт окисления. Многие окислители при взаимодействии с различными восстановителями также часто восстанавливаются до какого-то одного продукта, соответствующего их наиболее устойчивой степени окисления.

Глава 9 — Органические соединения кислорода — Химия

Глава 9 — Органические соединения кислорода

Вступительное эссе

9.1 Введение в соединения, содержащие кислород

9.2 Спирты и фенолы
Классификация спиртов
Свойства спиртов
Гликоли
Фенолы

9.3 эфира
Свойства эфиров

9,4 Альдегиды и кетоны
Свойства альдегидов и кетонов
Альдегиды
Кетоны
Точки кипения и растворимость
Альдегиды и кетоны в природе

9,5 Карбоновые кислоты и сложные эфиры
Свойства карбоновых кислот и сложных эфиров
Карбоновые кислоты
Сложные эфиры
Точки кипения, точки плавления и растворимость
Обычно используемые карбоновые кислоты и сложные эфиры

9.6 Реакции кислородсодержащих соединений
Спирты
Реакции обезвоживания (устранения)
Реакции окисления
Альдегиды и кетоны
Реакции окисления
Реакция восстановления
Реакции присоединения со спиртами (полуацетали и гемикетали)
Реакции с образованием ацеталей или кетов
Карбоновые кислоты

9. 8 источников

Вступительное эссе

Автор фото: А. Савин

Вернуться к началу


9.1 Введение в составы, содержащие кислород

В этой главе вы познакомитесь с основными органическими функциональными группами, содержащими кислород. Сюда входят спирты, фенолы, простые эфиры, альдегиды, кетоны, карбоновые кислоты и сложные эфиры. На рисунке 9.1 представлены основные органические функциональные группы для этих соединений и суффикс ИЮПАК, который используется для обозначения этих соединений.Хотя вам не нужно официально называть полные структуры, вы должны иметь возможность идентифицировать функциональные группы, содержащиеся в соединениях, на основе их названий IUPAC. Например, спирт представляет собой органическое соединение с гидроксильной (-ОН) функциональной группой на алифатическом атоме углерода. Поскольку -ОН является функциональной группой всех спиртов, мы часто представляем спирты общей формулой ROH, где R представляет собой алкильную группу. В рекомендациях по номенклатуре ИЮПАК суффикс «-ол» используется для обозначения простых соединений, содержащих спирты.Примером является этанол (CH 3 CH 2 OH).

Рис. 9.1 Общие органические функциональные группы, содержащие кислород. Суффиксы ИЮПАК, используемые для наименования простых органических молекул, отмечены в таблице

Вернуться к началу


9.2 Спирты и фенолы
Классификация спиртов

Некоторые свойства и реакционная способность спиртов зависят от числа атомов углерода, присоединенных к конкретному атому углерода, который присоединен к группе -ОН.На этом основании спирты можно разделить на три класса.

  • Первичный (1 °) спирт — это спирт, в котором атом углерода (красный) с группой ОН присоединен к одному, другому атому углерода (синему). Его общая формула — RCH 2 OH.
  • Вторичный (2 °) спирт — это спирт, в котором атом углерода (красный) с группой ОН присоединен к двум другим атомам углерода (синим цветом). Его общая формула: R 2 CHOH.
  • Третичный (3 °) спирт — это спирт, в котором атом углерода (красный) с группой ОН присоединен к трем другим атомам углерода (синим цветом).Его общая формула: R 3 COH.
Свойства спиртов

Спирты можно рассматривать как производные воды (H 2 O; также обозначается как HOH).

Как и связь H – O – H в воде, связь R – O – H изогнута, а часть -OH в молекулах спирта полярна. Эта взаимосвязь особенно очевидна для небольших молекул и отражается в физических и химических свойствах спиртов с низкой молярной массой. Замена атома водорода алкана на группу ОН позволяет молекулам связываться посредством водородных связей (рис.9.2).

Рисунок 9.2 Межмолекулярная водородная связь в метаноле. Группы ОН в молекулах спирта делают возможным образование водородных связей.


Напомним, что физические свойства в значительной степени определяются типом межмолекулярных сил. В таблице 9.1 перечислены молярные массы и точки кипения некоторых распространенных соединений. Из таблицы видно, что вещества с одинаковой молярной массой могут иметь совершенно разные точки кипения.

Таблица 9.1 Сравнение молярной массы и температуры кипения

Алканы неполярны и поэтому связаны только через относительно слабые лондонские дисперсионные силы (LDF). Температуры кипения алканов с одним-четырьмя атомами углерода настолько низки, что все эти молекулы являются газами при комнатной температуре. Напротив, если мы проанализируем соединения, которые содержат функциональную группу спирта, даже метанол (только с одним атомом углерода) будет жидкостью при комнатной температуре. Поскольку спирты обладают способностью образовывать водородные связи, их точки кипения значительно выше по сравнению с углеводородами сопоставимой молярной массы.Температура кипения — это грубая мера количества энергии, необходимой для отделения молекулы жидкости от ближайших соседей. Если молекулы взаимодействуют посредством водородных связей, для разрушения этого межмолекулярного притяжения необходимо подавать относительно большое количество энергии. Только тогда молекула может перейти из жидкости в газообразное состояние.

Другая интересная тенденция очевидна в таблице 9.1: поскольку молекулы спирта содержат больше атомов углерода, они также имеют более высокие температуры кипения.Это связано с тем, что молекулы могут иметь более одного типа межмолекулярных взаимодействий. Помимо водородных связей, молекулы спирта также имеют LDF, которые возникают между неполярными частями молекул. Как мы видели с алканами, чем больше углеродная цепь, тем больше LDF присутствует в молекуле. Как и в случае с алканами, повышенное количество ЛДФ в спиртосодержащих молекулах также вызывает повышение температуры кипения.

Помимо образования водородных связей между собой, спирты могут также вступать в водородные связи с молекулами воды (Рисунок 9.3). Таким образом, в то время как углеводороды нерастворимы в воде, небольшие спирты с одним-тремя атомами углерода полностью растворимы. Однако с увеличением длины цепи растворимость спиртов в воде снижается; молекулы становятся больше похожими на углеводороды и менее на воду. Спирт 1-деканол (CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 OH), содержащий 10 атомов углерода практически не растворяется в воде.Мы часто обнаруживаем, что граница растворимости в семействе органических соединений находится у четырех или пяти атомов углерода.

Рисунок 9.3 Водородная связь между молекулами метанола и молекулами воды. Водородная связь между ОН метанола и молекулами воды определяет растворимость метанола в воде.

Вернуться к началу


Гликоли

Молекулы, содержащие две функциональные группы спирта, часто называют гликолями .Этиленгликоль, один из простейших гликолей, имеет два основных коммерческих применения. Он используется в качестве сырья при производстве полиэфирных волокон и составов антифризов. Добавление двух или более групп -ОН к углеводороду существенно увеличивает температуру кипения и растворимость спирта. Например, для этиленгликоля точка кипения составляет 197,3 o ° C, по сравнению с этанолом, который имеет точку кипения 78 o ° C. Таким образом, этиленгликоль является полезным охлаждающим веществом для автомобильных двигателей.

Рисунок 9.4 Свойства этиленгликоля. Этиленгликоль часто используется в качестве охлаждающего агента в смесях антифризов из-за его низкой температуры замерзания и высокой температуры кипения.


Этиленгликоль ядовит для людей и других животных, с ним следует обращаться осторожно и утилизировать надлежащим образом. Как прозрачная жидкость со сладким вкусом, она может привести к случайному проглатыванию, особенно домашними животными, или может быть преднамеренно использована в качестве орудия убийства. Этиленгликоль трудно обнаружить в организме, и он вызывает симптомы, в том числе интоксикацию, тяжелую диарею и рвоту, которые можно спутать с другими болезнями или заболеваниями.Его метаболизм производит оксалат кальция, который кристаллизуется в головном мозге, сердце, легких и почках, повреждая их; в зависимости от уровня воздействия, накопление яда в организме может длиться недели или месяцы, прежде чем вызвать смерть, но смерть от острой почечной недостаточности может наступить в течение 72 часов, если человек не получит надлежащего лечения от отравления. Некоторые смеси антифризов на основе этиленгликоля содержат горький агент, такой как денатоний, для предотвращения случайного или преднамеренного употребления.Типичные смеси антифризов также содержат флуоресцентный зеленый краситель, который упрощает обнаружение и удаление пролитого антифриза.


Фенолы

Соединения, в которых группа -ОН присоединена непосредственно к ароматическому кольцу, называются фенолами и в химических уравнениях могут называться АРОН. Фенолы отличаются от спиртов тем, что в воде они обладают слабой кислотностью. Подобно реакциям кислотно-щелочной нейтрализации двойного вытеснения, они реагируют с водным гидроксидом натрия (NaOH) с образованием соли и воды.

ArOH (водн.) + NaOH (водн.) → ArONa (водн.) + H 2 O

Простейшее фенолсодержащее соединение, C 6 H 5 OH, само называется фенолом. (Более старое название, подчеркивающее легкую кислотность, было , карболовая кислота ). Фенол — это белое кристаллическое соединение, имеющее характерный («больничный запах») запах.

Рисунок 9.5 (Слева) Структура фенола. (справа) Примерно два грамма фенола в стеклянном флаконе.Фото В. Оэлена.
Для вашего здоровья: фенолы и мы

Фенолы широко используются как антисептики (вещества, убивающие микроорганизмы на живых тканях) и как дезинфицирующие средства (вещества, предназначенные для уничтожения микроорганизмов на неодушевленных предметах, таких как мебель или полы). Первым широко применяемым антисептиком был фенол. Джозеф Листер использовал его для антисептической хирургии в 1867 году. Фенол, однако, токсичен для людей и может вызвать серьезные ожоги при нанесении на кожу.В кровотоке это системный яд , что означает, что он проникает во все части тела и поражает их. Его серьезные побочные эффекты привели к поискам более безопасных антисептиков, ряд из которых был найден.

Рис. 9.6 Операция 1753 г. перед применением антисептиков. Картина написана Гаспаре Траверси.


В настоящее время фенол используется только в очень малых концентрациях в некоторых безрецептурных медицинских продуктах, таких как хлорасептик для горла.

Рис. 9.7 Фенол все еще используется в низких концентрациях в некоторых медицинских препаратах, таких как хлоразептик.


Более сложные соединения, содержащие фенольные функциональные группы, обычно встречаются в природе, особенно в виде растительных натуральных продуктов. Например, одними из основных метаболитов, обнаруженных в зеленом чае, являются полифенольные катехиновые соединения, представленные на рисунке 9.8А эпигаллокатехингаллатом (ЭКГК) и эпикатехином. Было показано, что употребление зеленого чая обладает химиопрофилактическими свойствами на лабораторных животных.Считается, что биологическая активность катехинов как антиоксидантных агентов способствует этой активности и другим преимуществам для здоровья, связанным с потреблением чая. Некоторые из биологически активных компонентов марихуаны, такие как тетрагидроканнабинол (THC) и каннабидиол (CBD), также являются фенольными соединениями (рис. 9B).

Рис. 9.8 Натуральные продукты растительного происхождения, содержащие фенольные функциональные группы. (A) Зеленый чай содержит соединения катехина, такие как галлат эпигаллокатехина (ECGC), и эпикатехины, которые, как считается, обеспечивают некоторые из противораковых преимуществ для здоровья, присущих зеленому чаю.(B) Марихуана содержит множество биологически активных фенольных соединений, включая галлюциногенный компонент марихуаны, тетрагидроканнабинол (THC) и метаболит каннабидиол (CBD). Каннабидиол не обладает психоактивными свойствами и в настоящее время изучается в качестве потенциального лекарственного средства для лечения синдромов рефракционной эпилепсии.


Упражнения по обзору концепции
  1. Почему этанол (CH 3 CH 2 OH) более растворим в воде, чем 1-гексанол (CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 OH) ?

  2. Почему 1-бутанол (CH 3 CH 2 CH 2 CH 2 OH) имеет более низкую точку кипения, чем 1-гексанол (CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 OH)?

Ответы
  1. Этанол имеет группу -ОН и только 2 атома углерода; 1-гексанол имеет одну группу -ОН для 6 атомов углерода и, таким образом, больше похож на (неполярный) углеводород, чем на этанол.

  2. 1-гексанол имеет более длинную углеродную цепь, чем у 1-бутанола, и, следовательно, больше LDF, которые способствуют более высокой температуре кипения.

Упражнения

Ответьте на следующие упражнения, не обращаясь к таблицам в тексте.

  1. Расположите эти спирты в порядке увеличения температуры кипения: 1-бутанол (CH 3 CH 2 CH 2 CH 2 OH), 1-гептанол (CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 OH) и пропанол-1 (CH 3 CH 2 CH 2 OH).

  2. Что имеет более высокую точку кипения — бутан (CH 3 CH 2 CH 2 CH 3 ) или пропанол-1 (CH 3 CH 2 CH 2 OH)?

  3. Расположите эти спирты в порядке увеличения растворимости в воде: 1-бутанол (CH 3 CH 2 CH 2 CH 2 OH), метанол (CH 3 OH) и 1-октанол (CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 OH).

  4. Расположите эти соединения в порядке увеличения растворимости в воде: 1-бутанол (CH 3 CH 2 CH 2 CH 2 OH), этанол (CH 3 CH 2 OH) и пентан. (Канал 3 Канал 2 Канал 2 Канал 2 Канал 3 ).

Ответы на нечетные вопросы
  1. 1-пропанол <1-бутанол <1-гептанол

  1. 1-октанол <1-бутанол <метанол

Вернуться к началу


9.3 эфира

Эфиры — это класс органических соединений, которые содержат кислород между двумя алкильными группами. Они имеют формулу R-O-R ’, где R’s представляют собой алкильные группы. эти соединения используются в красителях, парфюмерии, маслах, восках и в промышленности.

Свойства эфиров

Связи C — O в простых эфирах полярны, и, следовательно, эфиры имеют суммарный дипольный момент. Слабая полярность эфиров не оказывает заметного влияния на их температуры кипения, сравнимые с таковыми у алкенов сопоставимой молекулярной массы.Эфиры имеют гораздо более низкие температуры кипения по сравнению с изомерными спиртами. Это связано с тем, что молекулы спиртов связаны водородными связями, в то время как молекулы эфира не могут образовывать водородные связи с другими молекулами эфира. Например, диэтиловый эфир (CH 3 CH 2 OCH 2 CH 3 ) имеет точку кипения 34,6 o ° C, тогда как н-бутанол (CH 3 CH 2 CH 2 CH 2 OH), четырехуглеродный спирт, имеет пионт кипения 117.7 o C.

Эфиры могут образовывать водородные связи с водой, однако, поскольку вода содержит частично положительные атомы водорода, необходимые для образования водородных связей. Таким образом, простые эфиры, содержащие до 3 атомов углерода, растворимы в воде из-за образования Н-связей с молекулами воды.

Растворимость простых эфиров снижается с увеличением числа атомов углерода. Относительное увеличение углеводородной части молекулы снижает тенденцию образования водородной связи с водой.Эфиры в значительной степени растворимы в более неполярных органических растворителях и фактически могут использоваться в качестве растворителя для растворения неполярных и умеренно полярных молекул. Кроме того, эфиры очень неактивны. Фактически, за исключением алканов, циклоалканов и фторуглеродов, простые эфиры, вероятно, являются наименее химически активным обычным классом органических соединений. Таким образом, простые эфиры меньшего размера, такие как диэтиловый эфир (CH 3 CH 2 OCH 2 CH 3 ), широко используются химиками-органиками в качестве растворителей для различных органических реакций. Инертность эфиров по отношению к спиртам, несомненно, связана с отсутствием реакционной связи О – Н.


Для вашего здоровья — Ethers and Us

В середине 1800-х — начале 1900-х годов диэтиловый эфир использовался в качестве анестетика во время хирургических операций, в значительной степени заменяя хлороформ из-за снижения токсичности. Общий анестетик действует на мозг, вызывая бессознательное состояние и общую нечувствительность к ощущениям или боли.Диэтиловый эфир (CH 3 CH 2 OCH 2 CH 3 ) был первым широко используемым анестетиком общего назначения.

Рис. 9.9 Уильям Мортон, стоматолог из Бостона, ввел диэтиловый эфир в хирургическую практику в 1846 году. На этой картине изображена операция в Бостоне в 1846 году, в которой диэтиловый эфир использовался в качестве анестетика. Вдыхание паров эфира вызывает потерю сознания, подавляя активность центральной нервной системы. Источник: Картина Уильяма Мортона Эрнеста Борд.


Диэтиловый эфир относительно безопасен, поскольку существует довольно большой разрыв между дозой, обеспечивающей эффективный уровень анестезии, и смертельной дозой. Однако, поскольку он легко воспламеняется и имеет дополнительный недостаток, вызывающий тошноту, его заменили более новыми ингаляционными анестетиками, включая фторсодержащие соединения галотан и галогенированные эфиры, десфлуран, изофлуран и севофлуран. Галогенированные простые эфиры, изофлуран, десфлуран и севофлуран демонстрируют меньшие побочные эффекты по сравнению с диэтиловым эфиром.К сожалению, безопасность этих соединений для персонала операционной была поставлена ​​под сомнение. Например, женщины, работающие в операционных, подвергшихся воздействию галотана, чаще страдают выкидышами, чем женщины в общей популяции.


Простые эфиры также являются общими функциональными группами, обнаруженными в натуральных продуктах, и могут обладать уникальной биологической активностью. Фактически, было обнаружено, что некоторые очень большие соединения, содержащие несколько простых эфиров, называемые полиэфирами , вызывают нейротоксическое отравление моллюсками.В этом примере динофлаггелат Karina brevis , который является возбудителем цветения водорослей красного прилива, производит класс высокотоксичных полиэфиров, называемых бреватоксинами. Бреватоксин А изображен на рисунке 9.10. Симптомы этого отравления включают рвоту и тошноту, а также различные неврологические симптомы, такие как невнятная речь.

Рис. 9.10 Нейротоксическое отравление моллюсками. Динофлаггелат, Karina brevis , показанный в верхнем левом углу, является возбудителем вредоносного цветения водорослей красного прилива.Цветение морских водорослей может быть довольно обширным, как показано на фотографии красного прилива (вверху справа), происходящего недалеко от Сан-Диего, Калифорния. K. brevis производит класс полиэфиров, называемых бреватоксинами. Бреватоксин А показан в качестве примера. Моллюски и мышцы, питающиеся фильтром, загрязняются динофлаггелатом и могут вызвать нейротоксическое отравление моллюсками при употреблении в пищу. Красные приливы могут иметь серьезные экономические издержки, поскольку промыслы и промысел моллюсков должны быть закрыты до тех пор, пока уровни токсинов в коммерческих продуктах не вернутся к приемлемым уровням.

Вернуться к началу


9,4 Альдегиды и кетоны

Альдегиды и кетоны характеризуются наличием карбонильной группы (C = O), и их реакционную способность обычно можно понять, признав, что карбонильный углерод содержит частичный положительный заряд (δ +), а карбонильный кислород содержит частичный отрицательный заряд. (δ−). Альдегиды обычно более реакционноспособны, чем кетоны.

Карбонильная группа

A карбонильная группа представляет собой химически органическую функциональную группу, состоящую из атома углерода, связанного двойной связью с атомом кислорода -> [ C = O ] Простейшими карбонильными группами являются альдегиды и кетоны, обычно присоединенные к другому углеродному соединению.Эти структуры можно найти во многих ароматических соединениях, влияющих на запах и вкус.

Прежде чем углубляться в подробности, обязательно поймите, что сама сущность C = O известна как « c арбонильная группа », в то время как члены этой группы называются « карбонильные соединения . «.

Как обсуждалось ранее, мы понимаем, что у кислорода есть две неподеленные пары электронов. Эти электроны делают кислород более электроотрицательным, чем углерод.Тогда углерод является частично положительным (или электрофильным = «любящим электроны»), а кислород частично отрицательным ( нуклеофильным = «любящим ядро ​​или протон»). Поляризуемость обозначается дельтой в нижнем регистре и положительным или отрицательным верхним индексом в зависимости от атома. Например, углерод будет иметь δ + , а кислород δ .


Свойства альдегидов и кетонов
Альдегиды

В альдегидах к карбонильной группе присоединен атом водорода вместе с

  • второй атом водорода
  • или, чаще, углеводородная группа, которая может быть алкильной группой или группой, содержащей бензольное кольцо.

В этом разделе мы игнорируем те, которые содержат бензольные кольца. Ниже приведены некоторые примеры альдегидов

Обратите внимание, что все они имеют один и тот же конец молекулы. Отличается только сложность другой присоединенной углеродной группы. Когда вы пишете формулы для них, альдегидная группа (карбонильная группа с присоединенным атомом водорода) всегда записывается как -CHO — никогда как COH. Его легко спутать с алкоголем.Этаналь, например, записывается как CH 3 CHO; метанал как HCHO.

Кетоны

В кетонах к карбонильной группе присоединены две углеродные группы. Опять же, это могут быть либо алкильные группы, либо группы, содержащие бензольные кольца. Обратите внимание, что к карбонильной группе кетонов никогда не присоединен атом водорода.

Пропанон обычно обозначается как CH 3 COCH 3 .

Точки кипения и растворимость

Метаналь, также известный как формальдегид (HCHO), представляет собой газ при комнатной температуре (точка кипения -21 ° C), а этаналь, также известный как ацетальдегид, имеет точку кипения + 21 ° C. Это означает, что этаналь кипит при температуре, близкой к комнатной. Более крупные альдегиды и кетоны являются жидкостями, температура кипения которых повышается по мере увеличения размера молекул. Величина точки кипения определяется силой межмолекулярных сил.В этих молекулах есть две основные межмолекулярные силы:

  • Лондонские силы дисперсии : Эти притяжения становятся сильнее, когда молекулы становятся длиннее и имеют больше электронов. Это увеличивает размеры устанавливаемых временных диполей. Вот почему температуры кипения увеличиваются с увеличением числа атомов углерода в цепях — независимо от того, говорите ли вы об альдегидах или кетонах.
  • Диполь-дипольные притяжения : И альдегиды, и кетоны являются полярными молекулами из-за наличия двойной связи углерод-кислород.Помимо дисперсионных сил, между постоянными диполями на соседних молекулах также будет существовать притяжение. Это означает, что точки кипения будут выше, чем у углеводородов аналогичного размера, которые обладают только дисперсионными силами. Интересно сравнить три молекулы одинакового размера. Они имеют одинаковую длину и одинаковое (хотя и не одинаковое) количество электронов.

Поляризация карбонильных групп также влияет на температуру кипения альдегидов и кетонов, которая выше, чем у углеводородов аналогичного размера.Однако, поскольку они не могут образовывать водородные связи, их температуры кипения обычно ниже, чем у спиртов аналогичного размера. В таблице 9.2 приведены некоторые примеры соединений одинаковой массы, но содержащих разные типы функциональных групп. Обратите внимание, что соединения с более сильными межмолекулярными силами имеют более высокие температуры кипения.

Алканы <Альдегиды <Кетоны <Спирты

Таблица 9.2 Сравнение точек кипения и межмолекулярных сил

Из-за полярности карбонильной группы атом кислорода альдегида или кетона вступает в водородную связь с молекулой воды.

Растворимость альдегидов и кетонов примерно такая же, как у спиртов и простых эфиров. Формальдегид (HCHO), ацетальдегид (CH 3 CHO) и ацетон ((CH 3 ) 2 CO) растворимы в воде. По мере увеличения длины углеродной цепи растворимость в воде уменьшается. Граница растворимости находится примерно при четырех атомах углерода на атом кислорода. Все альдегиды и кетоны растворимы в органических растворителях и, как правило, менее плотны, чем вода.

Вернуться к началу


Альдегиды и кетоны в природе

Подобно другим кислородсодержащим функциональным группам, обсуждавшимся до сих пор, альдегиды и кетоны также широко распространены в природе и часто сочетаются с другими функциональными группами. Примеры встречающихся в природе молекул, которые содержат функциональную группу альдегида или кетона, показаны на следующих двух рисунках. Соединения на рисунке 9.11 обнаруживаются в основном в растениях или микроорганизмах, а также в соединениях на рисунке 9.12 имеют животное происхождение. Многие из этих молекулярных структур хиральны и имеют отчетливую стереохимию.

Когда хиральные соединения встречаются в природе, они обычно являются энантиомерно чистыми, хотя разные источники могут давать разные энантиомеры. Например, карвон обнаружен как его левовращающий (R) -энантиомер в масле мяты курчавой, тогда как семена тмина содержат правовращающий (S) -энантиомер. В этом случае изменение стереохимии вызывает резкое изменение воспринимаемого запаха.Альдегиды и кетоны известны своим сладким, а иногда и резким запахом. Запах ванильного экстракта исходит от молекулы ванилина. Точно так же бензальдегид придает сильный запах миндаля. Благодаря приятным ароматам молекулы, содержащие альдегиды и кетоны, часто встречаются в парфюмерии. Однако не все ароматы приятны. В частности, 2-гептанон является частью резкого аромата голубого сыра, а (R) -Muscone является частью мускусного запаха гималайской кабарги.Наконец, кетоны присутствуют во многих важных гормонах, таких как прогестерон (женский половой гормон) и тестостерон (мужской половой гормон). Обратите внимание, как тонкие различия в структуре могут вызвать резкие изменения в биологической активности. Функциональность кетонов также проявляется в противовоспалительном стероиде кортизоне.

Рис. 9.11 Примеры молекул, содержащих альдегид и кетон, выделенных из растительных источников.


Рисунок 9.12 Примеры молекул, содержащих альдегид и кетон, выделенных из животных источников.


Для вашего здоровья: кетоны в крови, моче и дыхании

Кетоны образуются в организме человека как побочный продукт липидного обмена. Два общих метаболита, продуцируемых в организме человека, — это кетонсодержащая ацетоуксусная кислота и метаболит спирта, β-гидроксибутират. Ацетон также производится как продукт распада ацетоуксусной кислоты. Затем ацетон может выводиться из организма с мочой или в виде летучего продукта через легкие.

Обычно кетоны не попадают в кровоток в заметных количествах. Например, нормальная концентрация ацетона в организме человека составляет менее 1 мг / 100 мл крови. Вместо этого кетоны, которые вырабатываются во время метаболизма липидов внутри клеток, обычно полностью окисляются и расщепляются на углекислый газ и воду. Это потому, что глюкоза является основным источником энергии для тела, особенно для мозга. Глюкоза в контролируемых количествах попадает в кровоток печенью, где она перемещается по всему телу, обеспечивая энергию.Для мозга это основной источник энергии, поскольку гематоэнцефалический барьер блокирует транспорт больших липидных молекул. Однако во время голодания, когда глюкоза недоступна или при определенных болезненных состояниях, когда метаболизм глюкозы нарушен, например, при неконтролируемом сахарном диабете, концентрации кетонов в крови повышаются до более высоких уровней, чтобы обеспечить мозг альтернативным источником энергии. Однако, поскольку ацетоуксусная кислота и β-гидроксибутират содержат функциональные группы карбоновых кислот, добавление этих молекул в кровь вызывает закисление, которое, если его не контролировать, может вызвать опасное состояние, называемое кетоацидозом.Кетоацидоз может быть опасным для жизни событием. Кетоны легко обнаружить, так как ацетон выводится с мочой. В тяжелых случаях запах ацетона также может ощущаться в дыхании.

Вернуться к началу


9,5 Карбоновые кислоты и сложные эфиры

Карбоновые кислоты можно легко распознать, поскольку они имеют карбонильный углерод, который также непосредственно связан с функциональной группой спирта. Таким образом, карбонильный углерод также присоединен непосредственно к спирту.В сложноэфирной функциональной группе карбонильный углерод также непосредственно присоединен как часть простой эфирной функциональной группы.

Свойства карбоновых кислот и сложных эфиров
Карбоновые кислоты

Карбоновые кислоты — это органические соединения, которые включают карбоксильную функциональную группу, CO 2 H. Название карбоксил происходит от того факта, что карбонильная и гидроксильная группы присоединены к одному и тому же атому углерода.

Карбоновые кислоты названы так потому, что они могут отдавать водород для образования карбоксилатного иона.Факторы, влияющие на кислотность карбоновых кислот, будут рассмотрены позже.

Сложные эфиры

Сложный эфир представляет собой органическое соединение, которое является производным карбоновой кислоты, в которой атом водорода гидроксильной группы заменен на алкильную группу. Структура является продуктом карбоновой кислоты (R-часть) и спирта (R’-часть). Общая формула сложного эфира показана ниже.

Группа R может быть водородной или углеродной цепью.Группа R ‘должна быть углеродной цепью, поскольку атом водорода сделает молекулу карбоновой кислотой. Шаги по названию сложных эфиров вместе с двумя примерами показаны ниже.

Точки кипения, точки плавления и растворимость

Карбоновые кислоты могут образовывать димеры водородных связей, температура кипения которых выше, чем у спиртов аналогичного размера (таблица 9.3).

Таблица 9.3 Сравнение точек кипения соединений аналогичного размера

Мелкие сложные эфиры имеют температуры кипения ниже, чем у альдегидов и кетонов с аналогичной массой (Таблица 9.3). Сложные эфиры, как и альдегиды и кетоны, являются полярными молекулами. однако их диполь-дипольные взаимодействия слабее, чем у альдегидов и кетонов, и они не могут образовывать водородные связи. Таким образом, их температуры кипения выше, чем у простых эфиров, и ниже, чем у альдегидов и кетонов аналогичного размера.

Карбоновые кислоты с низким молекулярным весом обычно жидкие при комнатной температуре, тогда как более крупные молекулы образуют воскообразные твердые вещества. Карбоновые кислоты с длиной углеродной цепи от 12 до 20 атомов углерода обычно называют жирными кислотами, поскольку они обычно содержатся в жирах и маслах.По сравнению с другими кислородсодержащими молекулами, карбоновые кислоты с короткой цепью обычно растворимы в воде из-за их способности образовывать водородные связи. По мере увеличения длины углеродной цепи растворимость карбоновой кислоты в воде снижается. Сложные эфиры также могут связываться водородом с водой, хотя и не так эффективно, как карбоновые кислоты, и поэтому они немного менее растворимы в воде, чем карбоновые кислоты аналогичного размера.

Карбоновые кислоты обычно имеют неприятный, резкий и даже прогорклый запах.Например, запах уксуса возникает из-за этановой кислоты (также известной как уксусная кислота). Запах тренажерных залов и немытых носков в значительной степени вызван бутановой кислотой, а гексановая кислота отвечает за сильный запах сыра лимбургер. Из-за своей кислой природы карбоновые кислоты также имеют кислый вкус, как это отмечается для уксуса и лимонной кислоты, содержащихся во многих фруктах. С другой стороны, сложные эфиры обладают приятным ароматом и ответственны за аромат многих фруктов и цветов. Сложные эфиры также могут иметь фруктовый привкус.

Практические задачи:
  1. Какое соединение имеет более высокую точку кипения — CH 3 CH 2 CH 2 OCH 2 CH 3 или CH 3 CH 2 CH 2 COOH? Объяснять.

  2. Какое соединение имеет более высокую точку кипения — CH 3 CH 2 CH 2 CH 2 CH 2 OH или CH 3 CH 2 CH 2 COOH? Объяснять.

  3. Какое соединение более растворимо в воде — CH 3 COOH или CH 3 CH 2 CH 2 CH 3 ? Объяснять.

  4. Какое соединение более растворимо в воде — CH 3 CH 2 COOH или CH 3 CH 2 CH 2 CH 2 CH 2 COOH? Объяснять.

Ответы
  1. CH 3 CH 2 CH 2 COOH из-за водородной связи (Нет межмолекулярной водородной связи с CH 3 CH 2 CH 2 OCH 2 CH 3 .)

  1. CH 3 COOH, потому что он участвует в водородной связи с водой (Нет межмолекулярной водородной связи с CH 3 CH 2 CH 2 CH 3 .)


Обычно используемые карбоновые кислоты и сложные эфиры

Карбоновые кислоты и сложные эфиры широко распространены в природе и используются для множества целей. Например, муравьи из семейства Formicidae используют простейшую карбоновую кислоту, муравьиную кислоту, как в качестве химической защиты, так и в качестве атаки для подчинения добычи (рис.9.13А). Разбавленный раствор уксусной кислоты (5%) содержится в уксусе и отвечает за кислый и острый вкус. Уксусная кислота также придает хлебу на закваске острый вкус и отвечает за кислый привкус вина. Лимонная кислота содержится во многих фруктах и ​​является причиной их кислого вкуса. Другие карбоновые кислоты, такие как ПАБК и гликолевая кислота, используются в косметической промышленности. ПАБК, вырабатываемая растениями, грибами и бактериями, является обычным компонентом пищи и по структуре связана с витамином фолиевой кислоты.В 1943 году ПАБК был запатентован как одно из первых соединений, используемых при производстве солнцезащитного крема. Однако с середины 1980-х его использование перестало быть популярным из-за опасений, что он может увеличить клеточное УФ-повреждение, а также способствовать развитию аллергии. Гликолевая кислота является наименьшей из кислот класса α-гидроксикислот, и она нашла применение как в пищевой, так и в косметической промышленности. В пищевой промышленности он используется в качестве консерванта, а в индустрии ухода за кожей он чаще всего используется в качестве химического пилинга для уменьшения рубцов на лице от прыщей.

Рис. 9.13 Источники и использование обычных карбоновых кислот. (A) Муравьиная кислота — это защитный токсин, используемый муравьями семейства Formicidae. Фото Мухаммада Махди Карима (B) Уксус — это 5% раствор уксусной кислоты. На фотографии слева показаны различные сорта уксуса на рынке во Франции. Фото Жоржа Сегена (C) Лимонная кислота — обычный компонент фруктов, придающий им кислый вкус. Фотография лимонов, сделанная Андре Карватом (D) Пара-аминобензойная кислота (ПАБК) — карбоновая кислота, обычно встречающаяся в растениях и пищевых культурах, включая цельное зерно.Он был запатентован в 1943 году для использования в солнцезащитных средствах. Однако из-за проблем с безопасностью и аллергической реакции использование ПАБК для этой цели было прекращено. Фотография солнцезащитного крема предоставлена ​​HYanWong (E) Гликолевая кислота обычно используется в косметике в качестве химического пилинга, используемого для уменьшения рубцов от прыщей. На фото слева — до лечения, а справа — после нескольких процедур с гликолевой кислотой. Исследование гликолей предоставлено Джайшри Шарад.


Сложные эфиры легко синтезируются и в большом количестве от природы способствуют вкусовым качествам и ароматам многих фруктов и цветов.Например, сложный эфир, метилсалицилат, также известен как масло грушанки (рис. 9.14). Фруктовый аромат ананасов, груш и клубники обусловлен сложными эфирами, а также сладким ароматом рома.

Рис. 9.14. Фруктовые и приятные ароматы сложных эфиров можно найти в (A) масле грушанки, (B) аромате ананасов и (C) сладости рома. Фотография (A) Gaultheria procumbens , производителя масла грушанки предоставлена: LGPL (B) фото ананаса предоставлено: David Monniaux, и (C) Фотография рома предоставлена: Summerbl4ck


Сложные эфиры также составляют основную часть животных жиров и растительных масел в виде триглицеридов.Образование липидов и жиров будет более подробно описано в главе 11.

Вернуться к началу


9.6 Реакции кислородсодержащих соединений
Спирты

Функциональные группы спирта могут участвовать в нескольких различных типах реакций. В этом разделе мы обсудим два основных типа реакций. Первые — это реакции дегидратации, а вторые — реакции окисления.Спирты также могут участвовать в реакциях присоединения и замещения с другими функциональными группами, такими как альдегиды, кетоны и карбоновые кислоты. Эти типы реакций будут обсуждаться более подробно в разделах, посвященных альдегидам, кетонам и карбоновым кислотам.

Реакции обезвоживания (устранения)

В главе 8 мы узнали, что спирты могут образовываться в результате гидратации алкенов во время реакций присоединения. Мы также узнали, что может иметь место и обратная реакция.Спирты могут быть удалены или удалены из молекул в процессе дегидратации (или удаления воды). Результатом реакции элиминирования является образование алкена и молекулы воды.

Реакции элиминирования, которые происходят с более сложными молекулами, могут привести к более чем одному возможному продукту. В этих случаях алкен образуется в более замещенном положении (у углерода, который имеет больше атомов углерода и меньше атомов водорода).Например, в реакции ниже спирт не является симметричным. Таким образом, есть два возможных продукта реакции элиминирования, вариант 1 и вариант 2. В варианте 1 алкен образуется с углеродом, который имеет наименьшее количество присоединенных атомов водорода, тогда как в варианте 2 алкен образуется с углеродом, имеющим большинство атомов водорода присоединены. Таким образом, вариант 1 будет основным продуктом реакции, а вариант 2 — второстепенным.


Реакции отщепления спирта с использованием небольших 1 o спиртов также можно использовать для получения простых эфиров.Для получения простого эфира, а не алкена, температура реакции должна быть снижена, и реакция должна проводиться с избытком спирта в реакционной смеси. Например:

2 CH 3 CH 2 -OH + H 2 SO 4 130 ºC
CH 3 CH 2 -O-CH 2 CH 3 + H 2 O
CH 3 CH 2 -OH + H 2 SO 4 150 ºC
CH 2 = CH 2 + H 2 O

В этой реакции необходимо использовать избыток спирта и поддерживать температуру около 413 К.Если спирт не используется в избытке или температура выше, спирт предпочтительно подвергнется дегидратации с образованием алкена. Дегидратация вторичных и третичных спиртов для получения соответствующих простых эфиров неэффективна, поскольку в этих реакциях слишком легко образуются алкены.


Реакции окисления

Некоторые спирты также могут подвергаться реакциям окисления. Помните, что в окислительно-восстановительных реакциях окисляемый компонент реакции теряет электроны (LEO), в то время как молекула, получающая электроны, восстанавливается (GER).В органических реакциях поток электронов обычно следует за потоком атомов водорода. Таким образом, молекула, теряющая водород, обычно также теряет электроны и является окисленным компонентом. Молекула, набирающая электроны, сокращается. Для спиртов могут быть окислены как первичные, так и вторичные спирты. С другой стороны, третичные спирты не окисляются. Во многих реакциях окисления окислитель показан над стрелкой реакции как [O]. Окислитель может быть металлом или другой органической молекулой.В реакции окислителем является молекула, которая восстанавливается или принимает электроны.

В реакциях окисления спирта водород из спирта и водород, связанный с углеродом, к которому присоединен спирт, вместе со своими электронами удаляются из молекулы окислителем. Удаление атомов водорода и их электронов приводит к образованию карбонильной функциональной группы. В случае первичного спирта результатом является образование альдегида.В случае вторичного спирта результатом является образование кетона. Обратите внимание, что для третичного спирта углерод, присоединенный к спиртовой функциональной группе, не имеет присоединенного к нему атома водорода. Таким образом, он не может подвергаться окислению. Когда третичный спирт подвергается воздействию окислителя, реакции не происходит.

Обратите внимание, что для первичного спирта, который подвергается окислению, он все еще сохраняет атом водорода, который присоединен к карбонильному углероду во вновь образованном альдегиде.Эта молекула может подвергаться вторичной реакции окисления с окислителем и водой, чтобы добавить еще один атом кислорода и удалить карбонильный атом водорода. Это приводит к образованию карбоновой кислоты.


Для вашего здоровья: физиологические эффекты спиртов

Метанол довольно ядовит для человека. Проглатывание всего 15 мл метанола может вызвать слепоту, а 30 мл (1 унцию) — смерть. Однако обычная смертельная доза составляет от 100 до 150 мл.Основная причина токсичности метанола заключается в том, что у нас есть ферменты печени, которые катализируют его окисление до формальдегида, простейшего члена семейства альдегидов:

Формальдегид быстро вступает в реакцию с компонентами клеток, коагулируя белки почти так же, как при варке яйца. Это свойство формальдегида объясняет большую часть токсичности метанола.

Органические и биохимические уравнения часто записываются, показывая только органические реагенты и продукты.Таким образом, мы сосредотачиваем внимание на органическом исходном материале и продукте, а не на балансировании сложных уравнений.

Этанол окисляется в печени до ацетальдегида:

Ацетальдегид, в свою очередь, окисляется до уксусной кислоты (HC 2 H 3 O 2 ), нормальной составляющей клеток, которая затем окисляется до диоксида углерода и воды. Даже в этом случае этанол потенциально токсичен для человека. Быстрое употребление 1 pt (около 500 мл) чистого этанола убило бы большинство людей, а от острого отравления этанолом ежегодно умирает несколько сотен человек — часто тех, кто участвует в каком-то соревновании по выпивке.Этанол свободно проникает в мозг, где он угнетает центр контроля дыхания, что приводит к отказу дыхательных мышц в легких и, как следствие, к удушью. Считается, что этанол действует на мембраны нервных клеток, вызывая ухудшение речи, мышления, познания и суждения.

Медицинский спирт обычно представляет собой 70% -ный водный раствор изопропилового спирта. Он имеет высокое давление пара, а его быстрое испарение с кожи производит охлаждающий эффект. При проглатывании он токсичен, но, по сравнению с метанолом, хуже всасывается через кожу.


Напишите уравнение окисления каждого спирта. Используйте [O] над стрелкой, чтобы указать окислитель. Если реакции не происходит, напишите «нет реакции» после стрелки.

  1. Канал 3 Канал 2 Канал 2 Канал 2 Канал 2 OH
Решение

Первый шаг — определить класс каждого алкоголя как первичный, вторичный или третичный.

  1. Этот спирт имеет группу ОН на атоме углерода, который присоединен только к одному другому атому углерода , так что это первичный спирт. При окислении сначала образуется альдегид, а при дальнейшем окислении образуется карбоновая кислота.

  2. Этот спирт имеет группу ОН на атоме углерода, который присоединен к трем другим атомам углерода, поэтому это третичный спирт. Никакой реакции не происходит.

  3. Этот спирт имеет группу ОН на атоме углерода, который присоединен к двум другим атомам углерода, поэтому это вторичный спирт; окисление дает кетон.

Напишите уравнение окисления каждого спирта. Используйте [O] над стрелкой, чтобы указать окислитель. Если реакции не происходит, напишите «нет реакции» после стрелки.


Вернуться к началу

Альдегиды и кетоны

В этом разделе мы обсудим первичные реакции альдегидов и кетонов. К ним относятся реакции окисления и восстановления, а также реакции сочетания со спиртами.

Реакции окисления

Как показано выше в разделе, посвященном спиртам, альдегиды могут подвергаться окислению с образованием коарбоновой кислоты. Это связано с тем, что карбонильный атом углерода все еще сохраняет атом водорода, который можно удалить и заменить атомом кислорода. Кетоны, с другой стороны, не содержат атом водорода, связанный с карбонильным атомом углерода. Таким образом, они не могут подвергаться дальнейшему окислению. Как отмечалось выше, кетоны, которые подвергаются действию окислителя, не вступают в реакцию.

Реакция восстановления

Реакции восстановления с альдегидами и кетонами превращают эти соединения в первичные спирты в случае альдегидов и вторичные спирты в случае кетонов. По сути, это реакции, обратные реакциям окисления спирта.

Например, с альдегидом этанал получается первичный спирт, этанол:

Обратите внимание, что это упрощенное уравнение, где [H] означает «водород из восстановителя».В общих чертах, восстановление альдегида приводит к первичному спирту.

Восстановление кетона, такого как пропанон, даст вам вторичный спирт, такой как 2-пропанол:

Восстановление кетона приводит к вторичному спирту.


Реакции присоединения со спиртами

Альдегиды и кетоны могут реагировать со спиртовыми функциональными группами в реакциях присоединения (комбинации).Эти типы реакций обычны по своей природе и очень важны в процессе циклизации молекул сахара. Мы вернемся к этому вопросу в главе 11 во введении к основным макромолекулам тела.

Когда к альдегиду добавляется спирт, получается полуацеталь ; когда к кетону добавляют спирт, получается полукеталь .

В приведенной выше реакции B: относится к основанию, которое присутствует в растворе и может действовать как акцептор протонов.В этой реакции обычное основание активирует спирт в реакции (кислород спирта показан красным). Кислород спирта тогда заряжается отрицательно, потому что он переносит лишние электроны от водорода. Теперь он может действовать как нуклеофил и атаковать карбонильный углерод альдегида или кетона. Когда кислород спирта образует связь с карбонильным углеродом альдегида или кетона, это замещает одну из двойных связей карбонильной группы. Оксиен из карбонила затем вытягивает водород из обычной кислоты, присутствующей в растворе.На этой диаграмме обычная кислота обозначена как H-A. При этом образуется спирт на месте карбонильной группы альдегида или кетона. Исходная спиртовая группа теперь выглядит как эфирная функциональная группа. Таким образом, вы можете распознать полуацетали и гемикетали в природных продуктах как атом углерода, который одновременно связан как со спиртовой, так и с простой эфирной функциональной группой. Если этот углерод также имеет водородную связь с ним, он происходит из альдегида и называется полуацеталем .Если центральный углерод связан с двумя другими атомами углерода (обозначенными выше R 1 и R 3 ) в дополнение к атомам кислорода, молекула происходит от кетона и называется гемикеталом .

Приставка « hemi» (половина) используется в каждом термине, потому что, как мы вскоре увидим, может произойти второе добавление нуклеофила спирта, что приведет к образованию видов, называемых ацеталей и кеталей .

Образование полуацеталей и полукеталей в биологических системах является обычным явлением и часто происходит спонтанно (без присутствия катализатора или фермента), особенно в случае простых молекул сахара.Из-за спонтанности реакций они также очень обратимы: полуацетали и гемикетали легко превращаются обратно в альдегиды и кетоны плюс спирт. Механизм обратного превращения полуацеталя в альдегид показан ниже:

Практические проблемы:


Реакции с образованием ацеталей или кеталов

Когда полуацеталь (или гемикеталь) подвергается нуклеофильной атаке со стороны второй молекулы спирта, результат называется ацеталем (или кеталем ).

В то время как образование полуацеталя из альдегида и спирта (шаг 1 выше) является нуклеофильным присоединением, образование ацеталя из полуацеталя (шаг 2 выше) представляет собой реакцию нуклеофильного замещения с исходным карбонилом кислород (показан синим) выходит в виде молекулы воды. Поскольку вода покидает молекулу во второй реакции (стадия 2), эта реакция также известна как реакция дегидратации . Реакция замещения, происходящая на второй стадии, не происходит спонтанно и не является легко обратимой.Внутри биологических систем для образования ацеталя или кеталя потребуется фермент. Обратите внимание, что и ацеталь, и кеталь выглядят как центральный углерод, связанный с двумя функциональными группами простого эфира. Если этот центральный углерод также связан с водородом, тогда это ацталь, а если он связан с двумя атомами углерода, это кеталь. Обратная реакция будет включать разложение ацеталя или кеталя с использованием гидролиза или проникновения воды в молекулу.

Практические проблемы:


Вернуться к началу

Карбоновые кислоты
Кислотность карбоновых кислот

Согласно определению кислоты как «вещества, которое отдает протоны (ионы водорода) другим вещам», карбоновые кислоты являются кислыми, потому что водород в группе -COOH может быть передан другим молекулам.В растворе в воде ион водорода передается от группы -COOH к молекуле воды. Например, с этановой кислотой (как показано ниже) вы получаете этаноат-ион, образованный вместе с ионом гидроксония, H 3 O + .

CH 3 COOH + H 2 O ⇌ CH 3 COO + H 3 O +

Эта реакция обратима, и в случае этановой кислоты (уксусной кислоты) не более 1% кислоты прореагировало с образованием ионов за один раз.

Таким образом, карбоновые кислоты являются слабыми кислотами.

Карбоновые кислоты и образование солей

Из-за своей кислотной природы карбоновые кислоты могут реагировать с более химически активными металлами с образованием ионных связей и образованием солей. Реакции такие же, как и с кислотами, такими как соляная кислота, за исключением того, что они, как правило, довольно медленнее.

2CH 3 COOH (водн.) + Mg (s) → (CH 3 COO) 2 Mg + H 2

В приведенной выше реакции разбавленная этановая кислота реагирует с магнием.Магний реагирует с образованием бесцветного раствора этаноата магния и выделяется газообразный водород. Если вы используете магниевую ленту, реакция будет менее интенсивной, чем такая же реакция с соляной кислотой, но с порошком магния обе протекают так быстро, что вы, вероятно, не заметите большой разницы.

Пример проблемы:

Напишите уравнение для каждой реакции.

  1. ионизация пропионовой кислоты (CH 2 CH 2 COOH) в воде (H 2 O)
  2. нейтрализация пропионовой кислоты водным гидроксидом натрия (NaOH)
Решение:
  1. Пропионовая кислота ионизируется в воде с образованием пропионат-иона и иона гидроксония (H 3 O + ).

    CH 3 CH 2 COOH (водн.) + H 2 O (ℓ) → CH 3 CH 2 COO (водн.) + H 3 O + (водн.)

  2. Пропионовая кислота реагирует с NaOH (водн.) С образованием пропионата натрия и воды.

    CH 3 CH 2 COOH (водн.) + NaOH (водн.) → CH 3 CH 2 COO Na + (водн.) + H 2 O (ℓ)

Образование сложных эфиров из карбоновых кислот и спиртов

Сложный эфир может быть образован путем объединения карбоновой кислоты со спиртом в присутствии сильной кислоты или в присутствии фермента в биологических системах.В реакции этерификации гидроксильная группа карбоновой кислоты действует как уходящая группа и образует молекулу воды в конечном продукте. Он заменен группой -OR из спирта.

Реакция обратимая. В качестве конкретного примера реакции этерификации бутилацетат может быть получен из уксусной кислоты и 1-бутанола.

Более подробно: конденсационные полимеры

Коммерчески важной реакцией этерификации является конденсационная полимеризация, при которой происходит реакция между дикарбоновой кислотой и двухатомным спиртом (диолом) с удалением воды.Такая реакция дает сложный эфир, который содержит свободную (непрореагировавшую) карбоксильную группу на одном конце и свободную спиртовую группу на другом конце. Затем происходят дальнейшие реакции конденсации с образованием полиэфирных полимеров.

Самый важный полиэфир, полиэтилентерефталат (ПЭТ), производится из мономеров терефталевой кислоты и этиленгликоля:

Из молекул полиэстера получаются отличные волокна, которые используются во многих тканях. Вязаная полиэфирная трубка, которая является биологически инертной, может использоваться в хирургии для восстановления или замены пораженных участков кровеносных сосудов.ПЭТ используется для изготовления бутылок для газировки и других напитков. Из него также формируются пленки, называемые майларом. В магнитном покрытии майларовая лента используется в аудио- и видеокассетах. Синтетические артерии могут быть изготовлены из ПЭТ, политетрафторэтилена и других полимеров.

Практические проблемы:

Завершите следующие реакции:

Гидролиз сложных эфиров

Обратную реакцию образования сложного эфира можно использовать для разложения сложных эфиров на карбоновую кислоту и спирт.Эта реакция требует включения воды в сложноэфирную связь, и поэтому называется реакцией гидролиза .

Сложный эфир нагревают с большим избытком воды, содержащей сильнокислый катализатор. Как и при этерификации, реакция обратима и не доходит до завершения.

В качестве конкретного примера, бутилацетат и вода реагируют с образованием уксусной кислоты и 1-бутанола. Реакция обратима и не доходит до завершения.

Практические проблемы:


Вернуться к началу

9.7 Краткое содержание главы

Гидроксильная группа (ОН) является функциональной группой из спиртов . Спирты представлены общей формулой ROH. Спирты получают из алканов заменой одного или нескольких атомов водорода на группу ОН. Первичный (1 °) спирт (RCH 2 OH) имеет группу ОН на атоме углерода, присоединенную к одному другому атому углерода; вторичный (2 °) спирт (R 2 CHOH) имеет группу ОН на атоме углерода, присоединенную к двум другим атомам углерода; и третичный (3 °) спирт (R 3 COH) имеет группу ОН на атоме углерода, присоединенном к трем другим атомам углерода.

Способность участвовать в водородных связях значительно увеличивает точки кипения спиртов по сравнению с углеводородами сопоставимой молярной массы. Спирты также могут вступать в водородную связь с молекулами воды, а спирты, содержащие до четырех атомов углерода, растворимы в воде.

Многие спирты можно синтезировать путем гидратации алкенов. Обычные спирты включают метанол, этанол и изопропиловый спирт. Метанол довольно ядовит. Это может вызвать слепоту или даже смерть. Этанол можно получить из этилена или получить путем ферментации.Это «алкоголь» в алкогольных напитках. Иногда люди по ошибке пьют метанол, думая, что это алкогольный напиток. Иногда недобросовестные бутлегеры продают метанол ничего не подозревающим покупателям. В любом случае результаты зачастую трагичны.

Когда вода удаляется из спирта на стадии дегидратации, результатом является либо алкен, либо простой эфир, в зависимости от условий реакции. Первичные спирты окисляются до альдегидов или карбоновых кислот, а вторичные спирты окисляются до кетонов.Третичные спирты не окисляются легко.

Спирты, содержащие две группы ОН на соседних атомах углерода, называются гликолями .

Фенолы (ArOH) представляют собой соединения, имеющие группу ОН, присоединенную к ароматическому кольцу.

Простые эфиры (ROR ′, ROAr, ArOAr) представляют собой соединения, в которых атом кислорода присоединен к двум органическим группам. Молекулы эфира не имеют группы ОН и, следовательно, межмолекулярной водородной связи. Следовательно, простые эфиры имеют довольно низкие температуры кипения для данной молярной массы.Молекулы эфира имеют атом кислорода и могут вступать в водородную связь с молекулами воды. Молекула эфира имеет примерно такую ​​же растворимость в воде, как и спирт, изомерный с ней.

Карбонильная группа , двойная связь углерод-кислород, встречается повсеместно в биологических соединениях. Он содержится в углеводах, жирах, белках, нуклеиновых кислотах, гормонах и витаминах — органических соединениях, важных для живых систем.

Карбонильная группа является определяющей особенностью альдегидов и кетонов .В альдегидах по крайней мере одна связь в карбонильной группе представляет собой связь углерод-водород; в кетонах обе доступные связи у карбонильного атома углерода являются связями углерод-углерод. Альдегиды синтезируются окислением первичных спиртов. Альдегид можно дополнительно окислить до карбоновой кислоты. Кетоны получают окислением вторичных спиртов. Мягкие окислители окисляют альдегиды до карбоновых кислот. Кетоны этими реагентами не окисляются.

Альдегиды и кетоны могут реагировать со спиртами с образованием полуацеталей и полукеталей соответственно.Эти реакции происходят без добавления катализатора и могут двигаться как в прямом, так и в обратном направлении. Гемиацетали и гемикетали могут вступать в реакцию с дополнительной молекулой спирта с образованием ацеталей и кеталей. Образование ацеталя или кеталя требует удаления воды и называется реакцией дегидратации. Эти реакции требуют катализатора или фермента, чтобы они происходили. Обратная реакция, которая расщепляет ацеталь с образованием полуацеталя и спирта, требует добавления молекулы воды и называется гидролизом.

Карбоновая кислота (RCOOH) содержит функциональную группу COOH, называемую карбоксильной группой , которая имеет группу ОН, присоединенную к карбонильному атому углерода. Сложный эфир (RCOOR ‘) имеет группу OR’, присоединенную к карбонильному атому углерода.

Карбоновая кислота образуется при окислении альдегида с тем же числом атомов углерода. Поскольку альдегиды образуются из первичных спиртов, эти спирты также являются исходным материалом для карбоновых кислот.

Карбоновые кислоты имеют сильный, часто неприятный запах. Это высокополярные молекулы, которые легко образуют водородные связи, поэтому имеют относительно высокие температуры кипения.

Карбоновые кислоты — слабые кислоты. Они реагируют с основаниями с образованием солей и с карбонатами и бикарбонатами с образованием газообразного диоксида углерода и соли кислоты.

Сложные эфиры — это соединения с приятным запахом, которые отвечают за аромат цветов и фруктов. У них более низкие температуры кипения, чем у сопоставимых карбоновых кислот, потому что, хотя молекулы сложного эфира в некоторой степени полярны, они не могут участвовать в водородных связях.Однако с водой сложные эфиры могут образовывать водородные связи; следовательно, сложные эфиры с низкой молярной массой растворимы в воде. Сложные эфиры могут быть синтезированы путем этерификации , в которой карбоновая кислота и спирт объединяются в кислых условиях. Сложные эфиры представляют собой нейтральные соединения, которые подвергаются гидролизу , реакции с водой. В кислых условиях гидролиз по существу является обратным этерификации.

Рисунок 9.15 Сводка важных реакций с кислородом.


Фармер С., Ройш В., Александер Э. и Рахим А. (2016) Органическая химия. Либретексты. Доступно по адресу: https://chem.libretexts.org/Core/Organic_Chemistry

Ball, et al. (2016) MAP: Основы химии ГОБ. Либретексты. Доступно по ссылке: https://chem.libretexts.org/Textbook_Maps/Introductory_Chemistry_Textbook_Maps/Map%3A_The_Basics_of_GOB_Chemistry_(Ball_et_al.)/14%3A_Organic_Compounds_of_Oxygen/14.10%3A_Proounds_of_Oxygen/14.10%3A_Design_of_Oxygen/14.10%

McMurray (2017) MAP: Органическая химия.Либретексты. Доступно по адресу: https://chem.libretexts.org/Textbook_Maps/Organic_Chemistry_Textbook_Maps/Map%3A_Organic_Chemistry_(McMurry)

Soderburg (2015) Карта: органическая химия с биологическим акцентом. Либретексты. Доступно по адресу: https://chem.libretexts.org/Textbook_Maps/Organic_Chemistry_Textbook_Maps/Map%3A_Organic_Chemistry_With_a_Biological_Emphasis_(Soderberg)

Антифриз. (2017, 5 января). В Википедия, Бесплатная энциклопедия . Получено в 06:07, 21 апреля 2017 г., с https: // en.wikipedia.org/w/index.php?title=Antifreeze&oldid=758484047

Этиленгликоль. (2017, 4 апреля). В Википедия, Бесплатная энциклопедия . Получено в 06:09, 21 апреля 2017 г., с https://en.wikipedia.org/w/index.php?title=Ethylene_glycol&oldid=773769112

.

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Определение класса для класса 570 — ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ —

Этот подкласс выделен под подклассом 101. Галогенсодержащее соединение, содержащее дополнительный ингредиент предназначен для предотвращения или уменьшения химического или физического изменения соединения.
(1) Примечание. Консервированный состав, заявленный как имеющий полезность ибо в классах композиции классифицируется вместе с композицией. простое изложение дестабилизирующего эффекта или средства защиты, от которой например, «в контакте с алюминием» и т. д., не будет предотвратить размещение патента в этом или подклассах с отступом.

ПОСМОТРЕТЬ ИЛИ ПОИСК ЭТОГО КЛАССА, ПОДКЛАСС:

177+, 211, 238+ или 262+, для процесса повышения стабильности соответствующего соединения очисткой.
264, для процесса обработки соединения этого класса для повышения стабильности, не требующей очистки или использования добавленного агента, который остается в составе композиции.

КЛАСС ПОИСКА ИЛИ ПОИСКА:

134, Очистка и контакт жидкости с твердыми телами, для процесса очистки с использованием галогенированного растворителя, особенно подкласс 31 для парового обезжиривания.
252, Композиции, подкласс 364 для растворителей, обычно содержащих галоген соединения; подклассы 397+ для композиций, которые ингибируют физический или химическое изменение как таковое; и подкласс 68 для хладагентов, содержащих галогенсодержащие соединения.
422, Химическое оборудование и процессы Дезинфекция, дезодорирование, Консервирование или стерилизация, подклассы 41+ для манипулятивных текущих методов хранения или защиты жидкости, в частности подкласс 42 для предотвращения испарения.
510, Составы для чистки твердых поверхностей, вспомогательные Композиции для них или процессы приготовления композиций, подклассы 201+, 245+ и 405 для очистки растворителем композиции, которые могут включать галогенсодержащие соединения, в частности подклассы 204+, 254+, 273 и 412, а также другие соответствующие подклассы.

Классификация органических материалов по элементному соотношению кислорода и углерода для прогнозирования режима активации ядер облачной конденсации (CCN)

Исследовательская статья 27 мая 2013

Исследовательская статья | 27 мая 2013

М. Кувата, В. Шао, Р. Лебутейлер и С. Т. Мартин М.Kuwata et al. М. Кувата, В. Шао, Р. Лебутейлер, С. Т. Мартин.
  • Школа инженерных и прикладных наук и Департамент наук о Земле и планетах, Гарвардский университет, Кембридж, Массачусетс, США
  • Школа инженерных и прикладных наук и Департамент наук о Земле и планетах, Гарвардский университет, Кембридж, Массачусетс, США
Скрыть сведения об авторе Получено: 28 ноября 2012 г. — Начало обсуждения: 11 декабря 2012 г. — Исправлено: 29 марта 2013 г. — Принято: 17 апреля 2013 г. — Опубликовано: 27 мая 2013 г.

Управляющий режим активации высокорастворимых, малорастворимых или нерастворимых органических соединений в качестве ядер облачной конденсации (CCN) был исследован в зависимости от соотношения элементов кислорода и углерода (O: C).Новые данные были собраны для адипиновой, пимелиновой, субериновой, азелаиновой и пиноновой кислот. В анализ также были включены вторичные органические материалы (ВОВ), полученные озонолизом α-пинена и фотоокислением изопрена. Концентрации насыщения C органических соединений в водных растворах служили ключевым параметром для определения режимов активации CCN, а значения C тесно коррелировали с отношениями O: C. Было обнаружено, что хорошо растворимые, малорастворимые и нерастворимые режимы активации CCN соответствуют диапазонам [O: C]> 0.6, 0,2

Технический обзор летучих органических соединений | Качество воздуха в помещении (IAQ)

На этой странице:


Обзор

Органические химические соединения1 присутствуют повсюду как в помещениях, так и на открытом воздухе, поскольку они стали важными ингредиентами многих продуктов и материалов.

  • На открытом воздухе ЛОС улетучиваются или выбрасываются в воздух в основном при производстве или использовании повседневных товаров и материалов.
  • Внутри помещений ЛОС в основном выбрасывается в воздух в результате использования продуктов и материалов, содержащих ЛОС.

Летучие органические соединения вызывают озабоченность как загрязнители воздуха внутри помещений и как загрязнители наружного воздуха. Однако акцент этой заботы на открытом воздухе отличается от акцента в помещении. Основная проблема в помещении — это возможность ЛОС негативно повлиять на здоровье людей, подвергшихся их воздействию. Хотя летучие органические соединения также могут быть опасны для здоровья на открытом воздухе, EPA регулирует выбросы летучих органических соединений на открытом воздухе в основном из-за их способности создавать фотохимический смог при определенных условиях.

Хотя один и тот же термин «летучие органические соединения» используется для обозначения качества воздуха внутри и снаружи помещений, этот термин определяется по-разному, чтобы отразить его преобладающую проблему в каждом контексте. Это вызвало недопонимание на рынке и в экологическом сообществе. Кроме того, измеренное количество и состав ЛОС в воздухе могут значительно различаться в зависимости от используемых методов измерения, что вызывает дополнительную путаницу.

Начало страницы


Общее определение и классификации

Летучие органические соединения (ЛОС) означают любое соединение углерода, за исключением монооксида углерода, диоксида углерода, угольной кислоты, карбидов или карбонатов металлов и карбоната аммония, которое участвует в фотохимических реакциях в атмосфере, за исключением тех, которые определены EPA как имеющие незначительную фотохимическую реактивность 2 .

Летучие органические соединения или ЛОС представляют собой органические химические соединения, состав которых позволяет им испаряться при нормальных атмосферных условиях температуры и давления в помещении. 3 . Это общее определение ЛОС, которое используется в научной литературе и согласуется с определением, используемым для определения качества воздуха в помещениях. Поскольку летучесть 4 соединения обычно тем выше, чем ниже его температура кипения, летучесть органических соединений иногда определяют и классифицируют по их температурам кипения.

Например, Европейский Союз использует точку кипения, а не его волатильность в своем определении ЛОС.

ЛОС — это любое органическое соединение, начальная точка кипения которого меньше или равна 250 ° C, измеренная при стандартном атмосферном давлении 101,3 кПа. 5, 6, 7

ЛОС иногда классифицируют по легкости их выделения. Например, Всемирная организация здравоохранения (ВОЗ) классифицирует органические загрязнители помещений как:

  • Очень летучие органические соединения (ЛОС)
  • Летучие органические соединения (ЛОС)
  • Полулетучие органические соединения (SVOC)

Чем выше летучесть (ниже точка кипения), тем более вероятно, что соединение будет выброшено из продукта или поверхности в воздух.Очень летучие органические соединения настолько летучие, что их трудно измерить, и они почти полностью обнаруживаются в виде газов в воздухе, а не в материалах или на поверхностях. Наименее летучие соединения, обнаруженные в воздухе, составляют гораздо меньшую часть от общего количества, присутствующего в помещении, в то время как большинство из них находится в твердых или жидких веществах, которые их содержат, или на поверхностях, включая пыль, мебель и строительные материалы.

Классификация неорганических органических загрязнителей (адаптировано из ВОЗ 8 )

Описание Сокращение Диапазон температур кипения
(° C)
Соединения примера
Очень летучие (газообразные) органические соединения VVOC <0 до 50-100 Пропан, бутан, метилхлорид
Летучие органические соединения VOC 50-100 до 240-260 Формальдегид, d-лимонен, толуол, ацетон, этанол (этиловый спирт) 2-пропанол (изопропиловый спирт), гексаналь
Полулетучие органические соединения SVOC 240-260 до 380-400 Пестициды (ДДТ, хлордан, пластификаторы (фталаты), антипирены (ПХД, ПБД))

Начало страницы


Нормативное определение EPA для ЛОС, влияющих на фотохимическое окисление в наружном воздухе

Справочная информация

В Соединенных Штатах выбросы ЛОС в окружающую среду регулируются EPA в основном для предотвращения образования озона, составляющей фотохимического смога.Многие ЛОС образуют приземный озон, «реагируя» с такими источниками молекул кислорода, как оксиды азота (NOx) и монооксид углерода (CO) в атмосфере в присутствии солнечного света. Однако только некоторые ЛОС считаются достаточно «реактивными», чтобы вызывать беспокойство. ЛОС, которые не вступают в реакцию или обладают незначительной реакционной способностью с образованием озона в этих условиях, не подпадают под определение ЛОС, используемое Агентством по охране окружающей среды в своем регламенте. С момента создания списка исключенных соединений в 1977 году Агентство по охране окружающей среды добавило несколько к этому списку и часто имеет несколько петиций о дополнительных соединениях, находящихся на рассмотрении.Кроме того, в некоторых штатах есть свои определения и списки исключенных соединений. Таким образом, для целей регулирования конкретное определение ЛОС вне помещений может изменяться в зависимости от того, что исключено из этого определения.

Непонимание и заблуждение относительно ЛОС

EPA ранее определяло регулируемые органические соединения в наружном воздухе как «Реактивные органические газы» (ROG). Эта терминология пояснила, что ее значение ограничивается реактивными химическими веществами. Однако позже EPA изменило эту терминологию на «ЛОС».К сожалению, использование термина «ЛОС», а не «ROG», вызвало недоразумение применительно к качеству воздуха в помещении. Многие люди и организации, в том числе производители строительных материалов и продукции, а также сторонние организации по сертификации, пришли к выводу, что ЛОС — это «только те, которые регулируются EPA для наружного воздуха», и применяют то же определение для воздуха внутри помещений.

В той степени, в которой некоторые исключенные соединения влияют на здоровье людей, подвергшихся воздействию в помещении, определение ЛОС, регулируемых для наружного воздуха, может создать серьезные неправильные представления о качестве воздуха в помещении, поэтому такие ЛОС не следует исключать из рассмотрения для воздуха в помещении.Например, метиленхлорид (средство для снятия краски) и перхлорэтилен (жидкость для химической чистки) являются соединениями, не подпадающими под действие правил на открытом воздухе, но они могут представлять серьезную опасность для здоровья людей, подвергшихся воздействию, если находятся в помещении. Первый указан Международным агентством по изучению рака (IARC) как потенциальный канцероген для человека, а второй — как вероятный канцероген для человека. ЛОС внутри помещений вступают в реакцию с озоном внутри помещений 9 даже при концентрациях ниже норм общественного здравоохранения.В результате химических реакций образуются частицы субмикронного размера и вредные побочные продукты, которые могут быть связаны с неблагоприятными последствиями для здоровья некоторых уязвимых групп населения.

Начало страницы


Классификация ЛОС

При обсуждении условий внутри помещений все органические химические соединения, которые могут улетучиваться при нормальных условиях температуры и давления в помещении, являются летучими органическими соединениями. Хотя демаркационная линия между классификациями очень летучих органических соединений (VVOC), летучих органических соединений (VOC) и полулетучих органических соединений (SVOC) (см. Таблицу выше) в некоторой степени условна, она показывает широкий диапазон летучести среди органических соединений. Все три классификации важны для воздуха в помещениях и считаются подпадающими под широкое определение летучих органических соединений в помещениях. Никакие другие критерии, кроме летучести (или точки кипения), не используются для определения ЛОС в помещении.

Измерение ЛОС в воздухе помещений

Знание о ЛОС, которые присутствуют в низких концентрациях, обычно присутствующих в воздухе помещений. в любой конкретной ситуации сильно зависит от того, как они измеряются.Все доступные методы измерения избирательны в том, что они могут точно измерить и количественно определить, и ни один из них не способен измерить все присутствующие ЛОС. Например, бензол и толуол измеряются другим методом, чем формальдегид и другие подобные соединения. Диапазон методов измерения и аналитических инструментов велик и будет определять чувствительность измерений, а также их избирательность или систематические ошибки. Вот почему любое заявление о ЛОС, присутствующих в данной среде, должно сопровождаться описанием того, как были измерены ЛОС, чтобы профессионал мог правильно интерпретировать результаты.В отсутствие такого описания заявление имело бы ограниченное практическое значение.

Маркировка продукции

Для потребителей важно понимать, что информация на этикетках или другой документации о продукте с широкими заявлениями о воздействии на окружающую среду с использованием таких терминов, как «зеленый» или «экологически чистый», может включать или не включать некоторые ЛОС, выделяемые продуктом, и, следовательно, не могут иначе рассматривать их неблагоприятное воздействие на здоровье.

Однако существуют национальные и международные программы, которые сертифицируют и маркируют продукты и материалы на основе их воздействия на качество воздуха в помещениях, такого как различные эффекты для здоровья и комфорта человека, включая запах, раздражение, хроническую токсичность или канцерогенность.Такие программы, вероятно, будут включать рассмотрение, по крайней мере, некоторых ЛОС, вызывающих озабоченность в отношении воздуха внутри помещений. Однако нормы и требования, используемые в настоящее время в индустрии маркировки и сертификации продукции для помещений, не стандартизированы. Правительство или сторонняя организация еще не установили основные правила для разработки последовательных, защитных стандартных методов тестирования для оценки и сравнения продуктов и материалов. Отсутствие стандартизации в большинстве случаев затрудняет для потребителя полное понимание того, что означают этикетки и сертификаты.

Некоторые маркировки ЛОС или программы сертификации основаны на ЛОС, выделяемых продуктом во внутреннюю среду, и возможных связанных с этим воздействиях на здоровье. Однако некоторые из них основаны на содержании ЛОС, которые регулируются для контроля образования фотохимического смога на открытом воздухе. Поэтому маркировка ЛОС и программы сертификации могут не дать должной оценки всех ЛОС, выделяемых продуктом, включая некоторые химические соединения, которые могут иметь отношение к качеству воздуха в помещении. Это особенно верно для большинства влажных продуктов, таких как краски или клеи, которые могут иметь маркировку «с низким содержанием летучих органических соединений» или «без летучих органических соединений».

Начало страницы


Заключение

Снижение концентрации ЛОС в помещении и на открытом воздухе является важной задачей для здоровья и окружающей среды. Однако важно понимать, что существуют опасные ЛОС внутри и снаружи помещений, которые не влияют на фотохимическое окисление и поэтому не регулируются EPA (42 U.S.C. §7401 et seq. (1970)). Важно понимать и понимать это различие, пропагандируя или используя стратегии улучшения качества воздуха в помещениях.Что касается качества воздуха в помещении, ВСЕ органические химические соединения, состав которых дает им возможность испаряться при нормальных атмосферных условиях, считаются ЛОС и должны учитываться при любой оценке воздействия на качество воздуха в помещении.

Начало страницы


Список литературы

  1. Органическое соединение — это любое из большого класса химических соединений, молекулы которых содержат углерод. По историческим причинам некоторые типы соединений, такие как карбонаты, простые оксиды углерода и цианиды, а также аллотропы углерода, считаются неорганическими.Разделение на «органические» и «неорганические» углеродные соединения полезно, но может считаться несколько произвольным.
  2. Свод федеральных нормативных актов, 40: Глава 1, подраздел C, часть 51, подраздел F, 51100. Exit по состоянию на 8 февраля 2009 г., а также Глоссарий, сокращения и сокращения терминов EPA по окружающей среде.
  3. Нормальные атмосферные условия температуры и давления в помещении, используемые здесь, относятся к диапазону условий, обычно встречающихся в зданиях, где живут люди. Таким образом, в зависимости от типа здания и его географического положения, температура может быть от середины 30 (в градусах Фаренгейта) до 90 ° F, а давление может быть от уровня моря до возвышенности гор, где могут находиться здания. расположена.Это не следует путать со «Стандартной температурой и давлением», которые часто используются при анализе и представлении научных исследований, но по-разному определяются разными авторитетными источниками. Наиболее часто используемые, хотя и не принятые повсеместно, определения — это определения Международного союза теоретической и прикладной химии (IUPAC) и Национального института стандартов и технологий (NIST). Стандарт IUPAC — это температура 0 ° C (273, 15 K, 32 ° F) и абсолютное давление 100 кПа (14,504 psi), определение NIST — это температура 20 ° C (293, 15 K, 68 ° F). и абсолютное давление 101.325 кПа (14,696 фунтов на кв. Дюйм).
  4. Летучесть определяется давлением паров вещества. Это тенденция вещества к испарению или скорость, с которой оно испаряется. Вещества с более высоким давлением пара будут испаряться легче при данной температуре, чем вещества с более низким давлением пара.
  5. «Директива 2004/42 / CE Европейского парламента и Совета» EUR-Lex. Офис публикаций Европейского Союза. Проверено 27 сентября 2007.
  6. 101,3 кПа = 1 атмосфера, нормальное давление на уровне моря.
  7. 250 ° C = 482 ° F
  8. Всемирная организация здравоохранения, 1989 г. «Качество воздуха в помещениях: органические загрязнители». Отчет о совещании ВОЗ, Берлин, 23-27 августа 1987 г. Отчеты и исследования ЕВРО 111. Копенгаген, Европейское региональное бюро Всемирной организации здравоохранения.
  9. На концентрацию озона в помещении может влиять количество озона, выделяемого внутри помещения офисным оборудованием, таким как фотокопии и лазерные принтеры, а также озоном, попадающим на открытом воздухе в помещение либо путем инфильтрации, либо через воздух.

Начало страницы

Что такое органическое соединение?

Органические соединения всегда содержат углерод вместе с другими элементами, которые необходимы для функционирования живых организмов. Углерод является ключевым элементом, потому что он имеет четыре электрона на внешней электронной оболочке, которая может удерживать восемь электронов. В результате он может образовывать много типов связей с другими атомами углерода и элементами, такими как водород, кислород и азот. Углеводороды и белки — хорошие примеры органических молекул, которые могут образовывать длинные цепи и сложные структуры.Органические соединения, состоящие из этих молекул, являются основой химических реакций в клетках растений и животных — реакций, которые обеспечивают энергию для поиска пищи, воспроизводства и всех других процессов, необходимых для жизни.

TL; DR (слишком долго; не читал)

Органическое соединение является членом класса химических веществ, содержащих атомы углерода, связанные друг с другом и с другими атомами ковалентными связями и обнаруженные в клетках живых организмов. Водород, кислород и азот являются типичными элементами, входящими в состав органических соединений помимо углерода.Следы других элементов, таких как сера, фосфор, железо и медь, также могут присутствовать, когда это необходимо для конкретных органических химических реакций. Основные группы органических соединений — углеводороды, липиды, белки и нуклеиновые кислоты.

Характеристики органических соединений

Четыре типа органических соединений — это углеводороды, липиды, белки и нуклеиновые кислоты, и они выполняют разные функции в живой клетке. Хотя многие органические соединения не являются полярными молекулами и поэтому плохо растворяются в воде клетки, они часто растворяются в других органических соединениях.Например, в то время как углеводы, такие как сахар, слабо полярны и растворяются в воде, жиры — нет. Но жиры растворяются в других органических растворителях, например в простых эфирах. Находясь в растворе, четыре типа органических молекул взаимодействуют и образуют новые соединения при контакте с живой тканью.

Органические соединения варьируются от простых веществ с молекулами, состоящими из нескольких атомов всего двух элементов, до длинных сложных полимеров, молекулы которых включают множество элементов. Например, углеводороды состоят только из углерода и водорода.Они могут образовывать простые молекулы или длинные цепочки атомов и используются для клеточной структуры и в качестве основных строительных блоков для более сложных молекул.

Липиды — это жиры и аналогичные материалы, состоящие из углерода, водорода и кислорода. Они помогают формировать клеточные стенки и мембраны и являются основным компонентом пищи. Белки состоят из углерода, водорода, кислорода и азота и выполняют в клетках две основные функции. Они являются частью структур клеток и органов, но они также являются ферментами, гормонами и другими органическими химическими веществами, которые принимают участие в химических реакциях для производства материалов, необходимых для жизни.

Нуклеиновые кислоты состоят из углерода, водорода, кислорода, азота и фосфора. Как РНК и ДНК, они хранят инструкции для химических процессов с участием других белков. Это спиралевидные молекулы генетического кода. Все четыре типа органических молекул основаны на углероде и некоторых других элементах, но имеют разные свойства.

Углеводороды

Углеводороды — это простейшие органические соединения, а самым простым углеводородом является CH 4 или метан.Атом углерода делит электроны с четырьмя атомами водорода, образуя внешнюю электронную оболочку.

Вместо связывания только с атомами водорода, атом углерода может делить один или два электрона своей внешней оболочки с другим атомом углерода, образуя длинные цепи. Например, бутан, C 4 H 10 , состоит из цепочки из четырех атомов углерода, окруженных 10 атомами водорода.

Липиды

Более сложная группа органических соединений — липиды или жиры.Они включают углеводородную цепь, но также имеют часть, в которой цепь связывается с кислородом. Органические соединения, содержащие только углерод, водород и кислород, называются углеводами.

Глицерин — пример простого липида. Его химическая формула: C 3 H 8 O 3 , и он имеет цепочку из трех атомов углерода с атомом кислорода, связанным с каждым из них. Глицерин — это строительный блок, который составляет основу многих более сложных липидов.

Белки

Большинство белков — это очень большие молекулы со сложной структурой, которая позволяет им играть важную роль в органических химических реакциях.В таких реакциях части белков распадаются, перестраиваются или соединяются в новые цепи. Даже самые простые белки имеют длинные цепи и множество подразделов.

Например, 3-амино-2-бутанол имеет химическую формулу C 4 H 11 NO, но на самом деле это последовательность углеводородных участков с присоединенными атомами азота и кислорода. Это более четко показано формулой CH 3 CH (NH 2 ) CH (OH) CH 3 , а аминокислота используется в химических реакциях для получения других белков.

Нуклеиновые кислоты

Нуклеиновые кислоты составляют основу генетического кода живых клеток и представляют собой длинные цепочки повторяющихся субъединиц. Например, для дезоксирибонуклеиновой кислоты или ДНК нуклеиновой кислоты молекулы содержат фосфатную группу, сахар и повторяющиеся субъединицы цитозин, гуанин, тимин и аденин. Часть молекулы ДНК, содержащая цитозин, имеет химическую формулу C 9 H 12 O 6 N 3 P, а участки, содержащие различные субъединицы, образуют длинные полимерные молекулы, расположенные в ядре клетки.

Некоторые органические соединения являются наиболее сложными молекулами из существующих, и они отражают сложность химических реакций, которые делают возможной жизнь. Даже при такой сложности молекулы состоят из относительно небольшого количества элементов, и все они имеют углерод в качестве основного компонента.

Примеры органических соединений

Органическое соединение имеет молекулы, которые содержат ковалентно связанные атомы углерода и водорода. Они могут содержать дополнительные элементы. Некоторые из них возникают в естественных условиях, а другие синтезируются в лабораторных условиях.Эти соединения могут быть газообразными, жидкими или твердыми. Есть четыре основных категории органических соединений. Откройте для себя примеры органических соединений и их молекулярные формулы.

Углеводы

Многие органические соединения представляют собой углеводы. Химическая формула углеводов: (CH 2 O) n. В этой формуле «n» представляет количество атомов углерода в молекуле. Есть три категории углеводов: моносахариды, дисахариды и полисахариды.

Моносахариды

Углеводы из категории моносахаридов представляют собой простые сахара. Многие, но не все, имеют молекулярную формулу (C 6 H 12 O 6 ).

  • фруктоза (C 6 H 12 O 6 )
  • глюкоза (C₆H₁₂O₆)
  • аллоза (C₆H₁₂O₆)
  • альтроза (C₆H₁₂O₆)
  • C₆HO2
  • гулоза11
  • галактоза (C 5 H 10 O 5 )
  • эритроза (C 4 H 8 O 4 )

Дисахариды

Дисахариды — это пары моносахаридов, то есть два простых сахара.Эти примеры образованы путем соединения двух моносахаридов с химической формулой (C 6 H 12 O 6 ), поэтому они имеют одинаковую молекулярную формулу (C₁₂H₂₂O₁₁).

  • лактоза (C₁₂H₂₂O₁₁) — включает глюкозу и галактозу
  • сахароза (C₁₂H₂₂O₁₁) — включает глюкозу и фруктозу
  • мальтоза (C₁₂H₂₂O₁₁) — состоящая из двух молекул глюкозы, соединенных полосой
  • трегалоза (C₁₂H₂₂O₁₁) — состоящая из двух молекулы глюкозы; также называется тремалозой или микозой
  • мелибиоза (C₁₂H₂₂O₁₁) — включает глюкозу и галактозу
  • целлобиоза (C₁₂H₂₂O₁₁) — образована из двух молекул глюкозы

Полисахариды

Полисахариды — это группа углеводов, которые содержат несколько моносахаридов.Это могут быть мономеры (отдельные молекулы) или полимеры (несколько молекул, которые связаны вместе) сахаров. Крахмалы включены в эту категорию.

  • гликоген (C 6 H 10 O 5 ) n
  • целлюлоза (C 6 H 10 O 5 ) n
  • амилоза (C 6 H 1080 1080 1080 5 ) n
  • ксантановая камедь (C 35 H 49 O 29 )
  • каррагинан (C 24 H 36 O 25 S 2 16-2 alactoman)
      (C 18 H 32 O 16 )

    Липиды

    Липид — это жирное или воскообразное органическое соединение.Они преимущественно состоят из углеводородов. Существуют десятки липидов, многие из которых имеют чрезвычайно сложные молекулярные формулы.

    • триглицериды — глицерин (C 3 H 8 O 3 ) в паре с жирными кислотами; существует множество типов триглицеридов с различной молекулярной формулой, включая насыщенные, ненасыщенные и трансжиры
    • диглицерид (C 43 H 68 O 5 )
    • цитрат моноглицерида (C 9 H 14 O 9 )
    • фосфоглицериды (CH 2 OH – CHOH – CH 2 OH)
    • глицериды (C 16 H 32 O 4 )
    • церамид (C 36 H NO 4 )
    • археол (C 43 H 88 O 3 )
    • алдархеол (C 86 H 172 O 6 )
    • H
    • Intralipid НЕТ 10 P + )

    Белки

    Белки чрезвычайно сложны.Все органы и ткани содержат белки, которые представляют собой молекулы с полимерами аминокислот, скрепленных пептидными связями. Белки состоят из аминокислот. Помимо углерода и водорода они также содержат азот и кислород.

    • инсулин (C 257 H 383 N 65 O 77 S 6 )
    • коллаген (C 65 H 102 N 18 O 16 21 эластин) 902 C 27 H 48 N 6 O 6 )
    • кератин (C 28 H 48 N2O 32 S 4 )
    • окситоцин (C 901 4380 9018 6618 H 4380 9018 N 12 O 12 S 2 )
    • тромбин (C 12 H 10 ClN 3 S)
    • актин (C 25 H 34 ClN 5 )

    Нуклеотиды

    Нуклеотиды — это органические соединения, содержащие азотистое основание, рибозу или дезоксирибозу (моносахариды с пятью атомами углерода), по крайней мере, одну фосфатную группу и водород.Все нуклеотиды, кроме одного, являются нуклеиновыми кислотами. Аденозинтрифосфат также является нуклеотидом.

    Нуклеиновые кислоты

    Нуклеиновые кислоты необходимы для всех форм жизни. Дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК) являются примерами нуклеиновых кислот. Примеры модифицированных нуклеотидов, из которых состоят нуклеиновые кислоты, включают:

    • инозин (C 10 H 12 N 4 O 5 )
    • псевдоуридин (C 9 H 12 N 2 O 6 )
    • 17
    • queue H 23 N 5 O 7 )
    • дигидроуридин (C 9 H 14 N 2 O 6 )
    • вибутозин (C 21 9018 H O 9 )
    • 3-метилцитидин (C 10 H 15 N 3 O 5 )
    • 5-метилцитидин (C 10 H 15 N 3 O 3 O )
    • 2-тиоуридин (C 9 H 12 N 2 O 5 S)
    • 4-тиуридин (C 9 H 12 N 2 O 902 5 S)

    Аденозинтрифосфат

    Аденозинтрифосфат (C 10 H 16 N 5 O 13 P 3 ), обычно называемый аббревиатурой АТФ, является источником энергии, используемой и хранимой клетками.

Как решать системы двух уравнений с двумя переменными – Системы уравнений с двумя переменными, способы решения

Как решать системы двух уравнений с двумя переменными – Системы уравнений с двумя переменными, способы решения

определение, алгоритм и методы решения, примеры

В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

Определение

Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

Ниже приведены несколько примеров:

  • 10x + 25y = 180.
  • x — y = 6.
  • -6x + y = 7.

Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

Решение задач

Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

Для наглядности объяснений подберем корни для выражения: y-x = 6.

При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

Приведем исходное равенство к следующему виду:

В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

  • 20y — 3x = 16;
  • -3x = 16−20y.

Оба равенства равносильны.

Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

Пример:

  • y — x = 6*2;
  • 2y — 2x = 12.

Оба уравнения также равносильны.

Учимся решать

Система уравнений с двумя неизвестными

Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

Решить подобные системы уравнений можно, применяя следующие методы.

Метод подстановки

Последовательность действий:

  1. Выражаем неизвестное из любого равенства через вторую переменную.
  2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
  3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

Метод сложения

Этапы решения:

  1. Приводим к равенству модули чисел при каком-либо неизвестном.
  2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
  3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

Графический метод

  1. Выражаем в каждом равенстве одну переменную через другую.
  2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
  3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
  4. Делаем проверку, подставив полученные значения в исходную систему равенств.

При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

Видео

Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

liveposts.ru

как решаются системы уравнений в 7 классе

В 7 классе изучаются системы двух линейных уравнений с двумя неизвестными. Это системы вида a1x + b1y + c1 = 0 a2x + b2y + c2 = 0 Решением такой системы называется пара чисел (x0,y0), при подстановке которой вместо пары чисел (x,y), то есть x0 вместо x, y=0 вместо y получаются два верных числовых равенства. Любая такая система может иметь единственное решение, бесконечно много различных решений, не иметь решений. В 7 классе рассматриваются следующие способы решения системы двух линейных уравнений с двумя неизвестными: 1. Способ алгебраического сложения. Суть способа состоит в том, что каждое уравнение системы умножают на некоторое число так, чтобы при одной из неизвестной оказались коэффициенты, равные по модулю и противоположные по знаку. Затем, полученные уравнения складывают и получают уравнение с одним неизвестным, которое легко решается. Полученное значение неизвестного подставляют в любое из двух уравнений и решают его относительно второго неизвестного. Пример Решить систему 7х — 2у = 3 2х + 5у = 12 Умножим первое уравнение системы на 5, а второе на 2 35х — 10у = 15 4х + 10у = 24 Сложим полученные уравнения 35х — 10у + 4х + 10у = 15 + 24 39х = 39 х = 1 Подставим это значение х, например, в первое уравнение 7 — 2у = 3 4 = 2у у = 2 Ответ: х = 1, у = 2 2. Способ подстановки Суть способа состоит в том, что в одном из уравнений выражают одну из переменных через другую, т. е. преобразовывают его так, чтобы в левой части содержалась чистое неизвестное, без коэффициентов, а правая часть не зависела от этого неизвестного. Полученное выражение подставляют в другое уравнение вместо неизвестной и решают уравнение с одним неизвестным. По выражению для другой неизвестной через найденную определяют второе неизвестное. Данный способ является самым распространённым среди семиклассников. Пример Решить систему (та же самая система) 7х — 2у = 3 2х + 5у = 12 Выразим из первого уравнения у через х 2у = 7х — 3 у = (7х — 3)/2 Подставим это выражение вместо у во второе уравнение. 2х + 5*(7х — 3)/2 = 12 2х + 17,5х — 7,5 = 12 19,5х = 19,5 х = 1 Из выражения у = (7х — 3)/2 найдём н н = (7*1 — 3)/2 = 4/2 = 2 Ответ: х = 1, у = 2 3. Графический способ Суть способа состоит в том, что в каждом уравнении выражают одну переменную через другую, например, у через х, и строят в одной системе координат графики двух полученных линейных функций. Это будут две прямые. Координаты точки пересечения этих прямых (если они есть) составят ответ. Можно и не выражать одну переменную через другую, а просто выбрать два каких нибудь значения х, подставить каждое из них в первое уравнение и решить его относительно у. Получатся две точки, через которые можно провести прямую. Таким же способом построить и вторую прямую. Этот способ является самым наглядным, потому что он показывает, сколько решений имеет система. Пример Решить систему (та же самая система) 7х — 2у = 3 2х + 5у = 12 Пусть х =0, тогда из первого уравнения определяем у = -1,5, из второго — у = 2,4. Пусть х =2, тогда из первого уравнения определяем у = 5,5, из второго — у =1,6. Значит первая прямая проходит через точки (0; -1,5) и (2; 5,5), а вторая — через точки (0; 2,4) и (2; 1,6). Строим эти прямые на одном графике: <img src=»//otvet.imgsmail.ru/download/047da14d4f6ad70142043e9c6b0f5052_i-140.jpg» > Из полученного рисунка видно, что прямые пересекаются в единственной точке с координатами (1; 2), значит система имеет единственное решение х = 1; у = 2. Ответ: х = 1, у = 2.

touch.otvet.mail.ru

Системы линейных уравнений с двумя переменными

Вопросы занятия:

·  ввести понятие «система линейных уравнений»;

·  рассмотреть графический способ решения систем линейных уравнений.

Материал урока

Прежде, чем приступить к рассмотрению новой темы вспомним, что:

А теперь давайте рассмотрим задачу. Сумма двух чисел равна 25, а их разность – 17. Чему равны эти числа?

Пусть икс – первое число, а игрек – второе.

Так как по условию задачи сумма этих чисел равна 25, то можно составить уравнение:

Также известно, что разность чисел равна 17, а тогда можем записать следующее уравнение:

Таким образом, мы получили два уравнения с двумя переменными.

Чтобы ответить на вопрос задачи, нам надо найти такие значения переменных x и y, которые обращают каждое из уравнений в верное равенство, то есть найти общие решения уравнений.

Говорят, что требуется решить систему уравнений и записывают вот таким образом:

Теперь подбором найдём пару значений переменных:

Действительно, эта пара является решением каждого уравнения системы, так при подстановке этих значений мы получаем верные равенства.

Такая пара чисел называется решением системы.

Сформулируем определение.

Определение.

Решением системы уравнений с двумя переменными называется пара значений переменных, которая обращает каждое уравнение системы в верное равенство.

Решить систему уравнений – значит найти все её решения или доказать, что их нет.

Существует несколько способов решения систем уравнений с двумя переменными. И сейчас мы познакомимся с одним из них.

Возьмём следующую систему

Вам уже известно, как строить график линейного уравнения с двумя переменными. Давайте построим график каждого уравнения нашей системы.

Из каждого уравнения системы выразим переменную у через переменную х.

Так как графиком каждого из уравнений будет прямая, то для его построения нам достаточно указать две точки.

Отметим эти точки на координатной плоскости и проведём через них линии.

Обратите внимание, что построенные графики пересекаются в точке:

Координаты этой точки удовлетворяют обоим уравнениям, то есть являются решением системы уравнений. В этом можете убедиться самостоятельно, подставив эти значения в уравнения системы.

Таким образом, система имеет единственное решение:

Такой способ решения системы называется графическим.

Возникает вопрос: всегда ли система уравнений с двумя переменными имеет решения и если имеет, то сколько?

На примере мы с вами увидели, что если прямые (то есть графики уравнений) пересекаются, то система имеет единственное решение. А вот если прямые параллельны, то система не имеет решений. Если же прямые совпадают, то система имеет бесконечно много решений.

Рассмотрим пример, в котором надо выяснить, сколько решений имеет система.

Но сначала вспомним, что:

Пример.

Пример.

Пример.

Итоги урока

Итак, сегодня на уроке мы рассмотрели одни из способов решения систем линейных уравнений с двумя переменными. Но следует отметить, что графический способ позволяет чаще всего находить решения лишь приближённо.

videouroki.net

Слова разобрать по звукам: Поиск слов по словарю фонетических разборов

Слова разобрать по звукам: Поиск слов по словарю фонетических разборов

Фонетический (звуко-буквенный) разбор слова, транскрипция. Онлайн сервис

{{ info }}



Неправильно Правильно
люб-овь лю-бовь
дяд-енька дя-денька, дядень-ка
реб-ята ре-бята, peбя-ma
паст-ух па-стух, пас-тух

Неправильно Правильно
раз-ыскать ра-зыскать, разыс-кать
роз-ыгрыш ро-зыгрыш, розыг-рыш

Неправильно Правильно
под-ъезд подъ-езд
бол-ьшой боль-шой
бул-ьон буль-он, бу-льон

Неправильно Правильно
во-йна вой-на
сто-йкий стой-кий
фе-йерверк фей-ерверк, фейер-верк
ма-йор май-ор

Неправильно Правильно                            
а-кация, акаци-я ака-ция

Неправильно Правильно
по-дбить под-бить
ра-змах раз-мах

Неправильно Правильно
прис-лать при-слать
отс-транять от-странять

        Неправильно                                   Правильно
        пятиг-раммовый                   пяти-граммовый и пятиграм-мовый

Неправильно Правильно
жу-жжать жуж-жать
ма-сса мас-са
ко-нный кон-ный

Неправильно Правильно
спе-цодежда спец-одежда


Для подсчета степени окисления существуют правила:

1)      Степень окисления элемента в составе простого вещества принимается равной нулю; если вещество в атомарном состоянии, то степень окисления его атомов также равна нулю.

2)      Ряд элементов проявляют в соединениях постоянную степень (пример фтор (-1), щелочные металлы (+1), щелочноземельные металлы, бериллий, магний и цинк (+2), алюминий (+3)).

3)      Кислород, как правило, проявляет степень окисления -2(исключения: пероксид Н2О2(-1) и фторид кислорода OF2 (+2)).

4)      Водород в соединениях с металлами (в гидридах) проявляет степень окисления -1, как правило, +1(кроме SiH4, B2H6).

5)      Алгебраическая сумма степеней окисления всех атомов в молекуле должна быть равной нулю, а в сложном ионе – заряду этого иона.

Валентные возможности атома определяются числом:

1)      Неспаренных электронов.

2)      Неподелённых электронных пар.

3)      Вакантных валентных пар.

Примеры: Н –водород IА группа, имеет 1 валентный электрон, образует 1 ковалентную связь с каким-либо другим атомом. Его валентность I.

Углерод  С – стоит  в  IVА группе, имеет электронную формулу  —

1S2S2 2P2, очевидно его валентность может быть II( CO),  но наиболее устойчивая валентность IV, в возбужденном состоянии  углерода все электроны становятся неспаренными – свободными, образуя 4 ковалентные связи ( CO2, CH4, CF4, H2CO3, CH3OH)

Высшая степень окисления равна, как правило, номеру группы элемента в Периодической системе (пример: сера(S) – элемент VI группы главной подгруппы высшая степень окисления +6.

Это правило не распространяется на элементы I группы побочной подгруппы, степени окисления которых обычно превышают +1, а также на элементы побочной подгруппы VIII группы.

Также не проявляют своих высших степеней окисления, равных номеру группы, элементы  кислород и фтор.

Понятие «валентность», более подробно изучается в 10 классе, в курсе изучения органической химии.

О сайте:   конспекты по математике, русскому языку и химии
Связь:   [email protected]
Новое на сайте | © 2018 – 2019

ОбращениеПодлежащее и сказуемое
Alice, close the door. – Элис, закрой дверь.Alice closed the door. – Элис закрыла дверь.
Peter, walk the dog before dinner. – Питер, выгуляй собаку перед ужином.Peter was walking the dog before dinner. – Питер выгуливал собаку перед ужином.

Булочка (Б)

Ватрушка (В)

Пирожок  (П)

Сок (С)

С Б

С В

С П

Чай (Ч)

Ч Б

Ч В

Ч П

Название метода

Достоинства метода

Недостатки метода

Метод перебора

Наглядность, возможность увидеть все варианты.

Очень длительный, можно пропустить варианты

Название метода

Достоинства метода

Недостатки метода

Метод перебора

Наглядность, возможность увидеть все варианты.

Очень длительный, можно пропустить варианты

«Дерево» вариантов

Наглядность, возможность увидеть все варианты

Очень громоздкий и длительный.

Название метода

Достоинства метода

Недостатки метода

Метод перебора

Наглядность, возможность увидеть все варианты.

Очень длительный, можно пропустить варианты

«Дерево» вариантов

Наглядность, возможность увидеть все варианты

Очень громоздкий и длительный.

Правило умножения

Компактность, быстрота решения.

«Не видно» самих вариантов, можно посчитать только их количество.

Название метода

Достоинства метода

Недостатки метода

Метод перебора

Наглядность, возможность увидеть все варианты.

Очень длительный, можно пропустить варианты

Название метода

Достоинства метода

Недостатки метода

Метод перебора

Наглядность, возможность увидеть все варианты.

Очень длительный, можно пропустить варианты

«Дерево» вариантов

Наглядность, возможность увидеть все варианты

Очень громоздкий и длительный.

Название метода

Достоинства метода

Недостатки метода

Метод перебора

Наглядность, возможность увидеть все варианты.

Очень длительный, можно пропустить варианты

«Дерево» вариантов

Наглядность, возможность увидеть все варианты

Очень громоздкий и длительный.

Правило умножения

Компактность, быстрота решения.

«Не видно» самих вариантов, можно посчитать только их количество.